

Char Oxidation Concepts

- 1. χ
- 2. CO/CO₂ ratio
- 3. nth order
- 4. α
- 5. T dependence
- 6. d_p dependence
- 7. $CO \rightarrow CO_2$ in boundary layer (2-film model)
- 8. energy balance / iteration

- 9. Thiele modulus
- 10. Ian Smith reactivity correlation
- 11. TGA rate vs high T rate
- 12. Catalytic effects at low T
- 13. Pressure effects
- 14. Correlations vs. chemistry
- 15. Late burnout ideas
- 16. N-release during char oxidation

Order of Presentation

- 1. Basic concepts (film diffusion, surface reaction), d_p & T dependence, CO/CO₂ ratio, α , nth order, χ , Bob Hurt parameters
- 2. Intrinsic reactivities, Thiele modulus, Reade-Hecker approach
- 3. Catalytic effects, pressure effects, correlations vs elemental composition, late burnout

3

Concepts

- Question 1 (definitions)
 - film diffusion
 - surface reaction
 - pore diffusion
- Question 2 (rate expressions)
 - pure film diffusion control
 - pure surface reaction control
- Question 3 (1st order rate expression)
 - surface rxn = diffusion rate through film
 - Units must match (grams of C reacted/m².s)

Δ

	Temperature*	Rxn controlled by	What happens to the particle
Zone 1	Low (ca. 1100 - 1300K)	Intrinsic rxn rate inside pores	Particle burns from inside. Particle density decreases while particle size remains the same.
Zone 2	Medium (ca. 1300 – 1600K)	Both diffusion & reaction kinetics. Consumption of the reactant gas exceeds the rate of internal diffusion. The reactant is consumed before it reaches the particle core.	Particle burns from both inside and outside. Particle size and density both decrease.
Zone 3	High (ca.1600 – 2000K and up)**	Film diffusion controls. Reactant gas does not have time to diffuse into the particle before it reacts at the particle surface.	Particle burns from outside. Particle diameter decreases and reactivity/porosity remain constant.

Questions 3-4

- 3. Derivation of Eq. 6.19
- 4. What if $n \neq 1$

5. Effects of CO_2 Formation at Surface $C + O_2 \rightarrow CO_2$

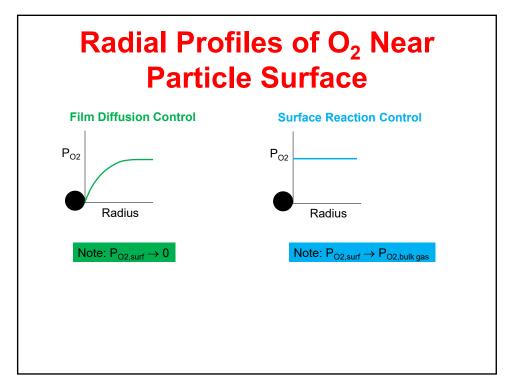
- Affects the consumption rate of O₂
 - More O₂ is used per C consumed
- Net heat of reaction increases as CO₂ production increases
- CO₂ a possibly a gasification agent

7

Heats of Reaction

- C(s) + $\frac{1}{2}$ O₂ \rightarrow CO Δ H_c = -26.4 kcal/mol of C
- C(s) + O₂ \rightarrow CO₂ Δ H_c = -94.052 kcal/mol of C EXOTHERMIC!!
- CO + $\frac{1}{2}$ O₂ \rightarrow CO₂ Δ H_c = -67.7 kcal/mol of C
- · In other words,
 - $\frac{1}{3}$ of heat for C \rightarrow CO
 - $-\frac{2}{3}$ of heat for CO \rightarrow CO₂

Should the heat of reaction for char be the same as graphite?


The χ Factor

• Definition: $\chi = \dot{r}_p / \dot{r}_{p,\text{max}}$

where $\dot{r}_{p,\max}$ is the maximum rate defined by film diffusion limitations

- Useful to know how close you are to the diffusion limit
 - $-\chi ==> 1$ when at the diffusion limit
 - $-\chi$ << 1 when controlled by surface reaction

C

Case 1: T_p specified

$$\dot{r}_{p}'' = k_{diff} \left(\rho_{og} - \rho_{os} \right)$$

$$\dot{r}_{p,\text{max}}'' = k_{diff} \left(\rho_{og} \right)$$

$$\therefore \chi = \frac{k_{diff} \left(\rho_{og} - \rho_{os} \right)}{k_{diff} \left(\rho_{og} \right)} = 1 - \frac{\rho_{os}}{\rho_{og}} = 1 - \frac{P_{os} / T_{s}}{P_{og} / T_{g}}$$

 $\rho_{os} = density \ at \ surface = \frac{P_{os} \cdot MW_{os}}{R \cdot T_{s}}$

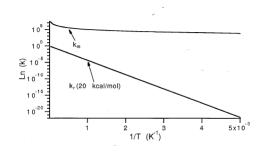
11

Case 2: T_q specified

- Constant T_q, but T_p changes with r

 _p
- The energy equation becomes:

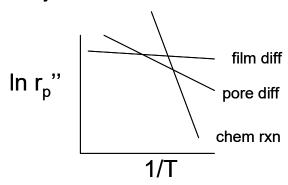
$$0 = q_c + q_{rad} + \dot{r}_p'' \Delta H_{rxn}$$


• so as \dot{r}_p'' increases, the particle temperature increases (at constant T_g)

What is the temperature dependence of the film diffusion limited rate?

$$\dot{r}_{02}^{\prime\prime} = k_m \rho_{02,g} = \frac{2D_{02}}{d_p} \rho_{02,g}$$

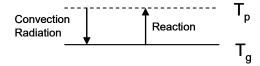
$$D_{02} \sim T^{1.67}$$


$$\rho_{02,g} \sim \frac{1}{T}$$

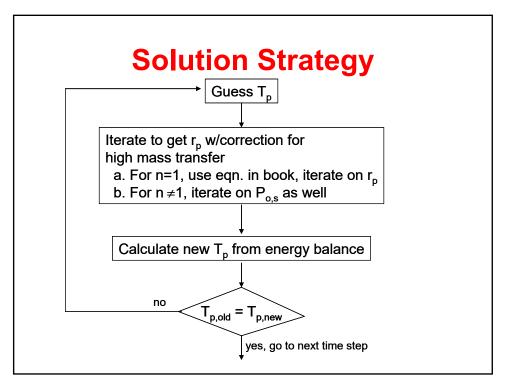
13

Char Combustion Zones

- As $\chi \rightarrow 1$, Zone III
- As $\chi \rightarrow 0$, Zone I
- Everywhere else, Zone II



Particle Energy Balance


$$m_p C_p \frac{dT_p}{dt} = h A_p \left(T_g - T_p \right) + \sigma \varepsilon_p A_p \left(T_w^4 - T_p^4 \right) + \sum_{p,i} \Delta H_{rxn,i}$$

• We usually assume steady-state for simple problems, so $\frac{dT_p}{dt} = 0$

Driving forces:

15

Shortcuts

- Diffusion coefficients
 - Sh = $k_{diff} d_p / \mathcal{D}_{ox}$ (= 2.0 for small particles)
- How do you get \mathcal{D}_{ox} ?
 - Chapman-Enskog
 - Really $\mathscr{D}_{\textit{ox,m'}}$ but perhaps $\mathscr{D}_{\textit{ox,N2}}$ might work

TABLE T.6 VISCOSITY, THERMAL COMPUCTIVITY AND DIFFUSION COEFFICIENT PARAMETERS										
	$\mu = bT^0$	5								
Species i	bx10 ⁶	cx10 ⁷	<u>d</u>	fi,N2 x105	Species	bx10 ⁶	.N2 ^{T1.67} /P.	<u>d</u>	f _{1,N2} ×10 ⁵	
С	3.5360	25.799	0.6507	2.310	C2H6	2.3031	0.3522	1.3129	1.132	
CII	3.2224	14.067	0.7749	2.106	C3H4	1.9712	1.8986	0.9891	0.6163	
CN	3.4268	7.5857	0.7761	1.488	H	1.5426	137.20	0.6484	8.171	
CO	3.7486	7.3710	0.7820	1.500	Н2	1.8405	51.840	0.7681	5.525	
CH2	2.9280	3.9953	0.9793	1.928	IIN	3.6149	12.567	0.7837	2.050	
CHN	2.7605	0.7191	1.1179	1.317	но	4.1150	14.804	0.7601	2.030	
СНО	3.3357	3.9372	0.8992	1.393	H ₂ N	3.2281	4.7781	0.9370	1.865	
CO ₂	3.6078	2.3291	0.9386	1.191	H ₂ 0	0.5083	0.8304	1.1748	1.905	
CH ₃	2.6982	1.9829	0.9998	1.781	H02	3.2964	4.2967	0.8862	1.301	
CH ₂ 0	3.2320	1.7205	1.0485	1.350	H ₃ N	3.4436	0.5748	1.2642	1.849	
CH ₄	2.5100	1.1111	1.1778	1.658	N	3.4672	2.0981	0.6581	2.089	
c ₂	3.1695	24.056	0.6264	1.491	N ₂	3.6974	7.6893	0.7722	1.488	
C2112	2.5695	1.8791	1.0265	1.291	NO	4.1530	7.5012	0.7870	1.550	
C ₂ H ₃	2.5436	0.5798	1.2231	1.260	NO ₂	3.7247	3.9255	0.8565	1.187	
C ₂ H ₄	2.5163	0.5798	1.2231	1.229	0	4.0387	22.219	0.6547	2.076	
C ₂ H ₅	2.4062	0.3522	1.3129	1.179	02	4.4203	7.1352	0.7968	1.523	

Diameter & Density Changes

$$\frac{m}{m_0} = \frac{\rho}{\rho_0} \left(\frac{d}{d_0} \right)^3$$

- We get m/m_0 from the rate equation, but this does not tell us whether we have:
 - constant density burning
 - constant diameter burning
 - some combination
- Let's define a variable called α as follows:

$$\frac{\rho}{\rho_0} = \left(\frac{m}{m_0}\right)^{\alpha}$$

19

Diameter vs Density (cont)

- α is the burning mode parameter
 - For constant density, $\alpha = 0$
 - For constant diameter, α = 1
- · Combining definitions,

$$\frac{m}{m_0} = \left(\frac{m}{m_0}\right)^{\alpha} \left(\frac{d}{d_0}\right)^3$$

which simplifies to:

$$\left(\frac{m}{m_0}\right)^{1-\alpha} = \left(\frac{d}{d_0}\right)^3 \quad \text{and then} \quad \left|\frac{d}{d_0} = \left(\frac{m}{m_0}\right)^3\right|$$

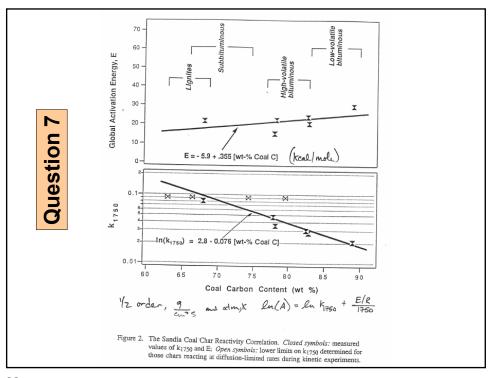
$$\frac{d}{d_0} = \left(\frac{m}{m_0}\right)^{\frac{1-\alpha}{3}}$$

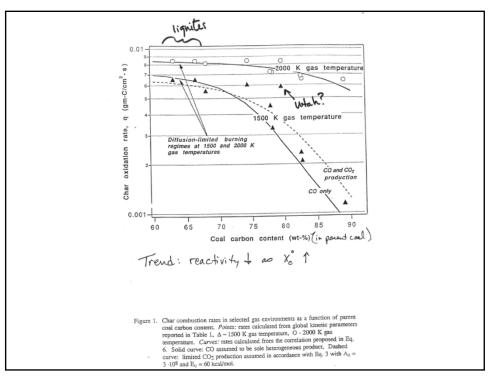
Bob Hurt Model (CBK)

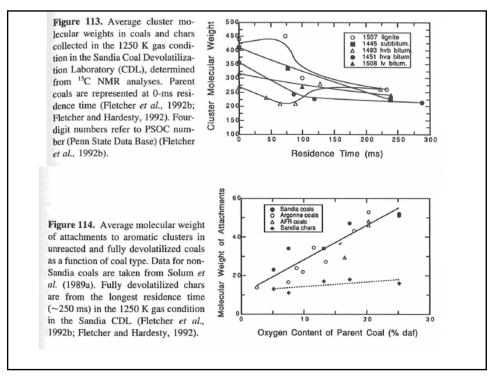
(Question 7)

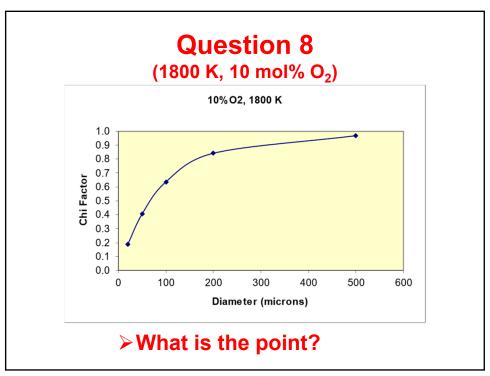
21

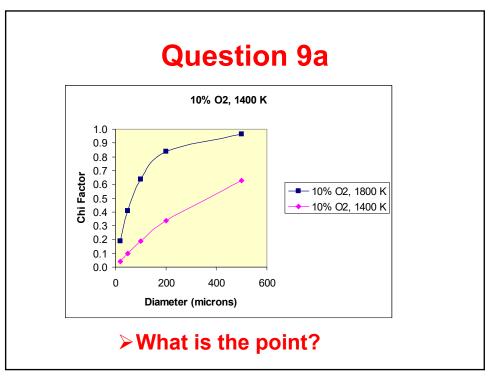
CO/CO₂ ratio


Table 2.2 Char Combustion Parameters and Selected Properties for the Suite of Coals Investigated


Seam Name; PETC Designation	Reported Rank (ASTM)	Matter	Val., mmf	Elemen. Carbon Content (wt-%)	Preexp. Factor, A (g-carb./cm ² -s-atm ^{0.5})	Activation Energy E (kcal.mol)	Ratio	Physical mode of burning	swelling	initial carbon density (g/cc)	Standard†† burning rate q (g/cm²-s)	Characteristic††† burnout time T50 (sec)
Pocal ontas #3 PSOC-1508D	low vol. bitum.	16.21	35.74	89.0	114	30.0	1	0.3	1.21	0.63	1.2 x10 ⁻³	.0.63
Low. Kittanning - PSOC-1516D	low vol. bitum.	18.55	34.84	82.8	10.5	20.5	2	0.0	1.27	.48	2.1 x10 ⁻³	0.29
Pittsburgh #8 PSOC-1451D	hvA bitum.	38.81	34.18	82.6	29	24	3	0.1	1.1	0.40	2.4 x10 ⁻³	0.19
Hiawatha PSOC-1502D	hvC bitum.	44.24	29.39	79.6	*	_*	1 .	0.1	1.16	0.44	6.5 x10 ⁻³	0.070
Illinois #6 PSOC-1493D	hvC bitum.	42.91	29.18	78.2	22.4	22.5	4	0.45*	1.06*	0.39*	3.3 x10 ⁻³	0.11
Blue #1 PSOC-1445D	hvC bitum.	47.86	27.81	77.9	3.8	15.3	1	0.25	1.16	0.26	4.5 x10 ⁻³	0.064
Dietz PSOC-1488D	Subbit.	43.88	23.13	74.4	*	_*	5	0.25	1.04	0.41	6.7 x10 ⁻³	0.061
Smith-Roland PSOC-1520D	Subbit.	61.96	21.48	66.4	*	_*	2	0.3	0.85	0.62	7.2 x10 ⁻³	0.069
Lower Wilcox PSOC-1443D	Lignite A	78.22	17.88	67.9	44	21.9	5	0.12	0.92	0.68	5.6 x10 ⁻³	0.11
Beulah PSOC-1507D	Lignite A	45.73	17.26	63.0	-*	*	2	0.2	0.92	0.63	7.2 x10 ⁻³	0.078


^{*} Combustion rates of chars from these coals are limited by the rate of diffusion of oxygen from the bulk gas to the particle surface (Zone 3 combustion) under the


From Hurt and Mitchell, 1992


Combustion rates of chars from these coals are limited by the rate of diffusion of oxygen from the bulk gas to the particle surface (Zone 3 combustion) under the experimental conditions.
 Values for 75 - 106 µm size fraction. (All others are for 106 - 125 µm size fraction.)
 CO/CO2 product ratio under the experimental conditions correlated by the empirical relation: (moles-CO)/(moles-CO2) = Λ_c exp(-E_c/R_{Tp}). Correlation type 1: Λ_c = 3 · 10⁸, E_c = 60 kcal/mol.; 2: CO only; 3: Λ_c = 4 · 10⁶, E_c = 30 kcal/mol.; 4: Λ_c = 2.5 · 10⁸, E_c = 60 kcal/mol.; 2: CO only; 3: Λ_c = 4 · 10⁶, E_c = 30 kcal/mol.; 4: Λ_c = 2.5 · 10⁸, E_c = 60 kcal/mol.; 5: Λ_c = 5 · 10⁸, E_c = 60 kcal/mol. These values are to be regarded as empirical parameters useful only for the prediction of char combustion rates are any environments investigated.
 Burning rates in 6 mole-% oxygen at 1500 K gas temperature with radiation to cold walls (g-cutbon/s-cm²-external surface)
 Characteristic time for 50 wt-% carbon conversion of char (volatile matter free basis) in 6 mole-% oxygen at 1500 K gas temperature with radiation to cold walls. Values computed for each coal from Λ, E, n, Λ_c, E_c, α, ω, and ρ_{co}.

