Char Oxidation Concepts

- 1. χ
- 2. CO/CO_2 ratio
- 3. nth order
- 4. α
- 5. T dependence
- 6. d_p dependence
- 7. $CO \rightarrow CO_2$ in boundary layer (2-film model)
- 8. energy balance / iteration

- 9. Thiele modulus
- 10. Ian Smith reactivity correlation
- 11. TGA rate vs high T rate
- 12. Catalytic effects at low T
- 13. Pressure effects
- 14. Correlations vs. chemistry
- 15. Late burnout ideas
- 16. N-release during char oxidation

Review (cont.) • If the surface reaction rate is: $r''_{rxn} = k_{rxn} P^n_{O_{2},s}$ and the film diffusion rate is: $r''_{diff,O_{2}} = k_m (P_{O_{2},g} - P_{O_{2},s})$ How do you calculate the reaction rate of the char? • How do you calculate the char oxidation rate when you need to solve the particle energy equation as well?

2-film Model of Char Oxidation • For large particles, where the boundary layer is large enough (200 µm or higher?) • Actual surface reaction is C + $CO_2 \rightarrow 2CO$ • The "flame" is from flame zone $CO + \frac{1}{2}O_2 \rightarrow CO_2$ **O**₂ • CO₂ diffuses back to the y_i CO_2 particle surface and away from the flame to the bulk gas r/R 1

Chemical Kinetics	Particle Morphology
 Internal reaction including: Pore diffusion Adsorption/desorption Intrinsic chemical reaction Mineral matter catalysis Chemical reactions considered Heterogeneous/homogeneous Particle heating 	 Postulated pore geometry Total or active surface area Degree of pore branching Evolution of pore structure Particle fragmentation Mineral matter blockage effects

Intrinsic Kinetics (macroscopic)

1. Determine rate per external surface area from kinetic expression $\dot{r}_{C}^{\prime\prime\prime} = \eta k^{\prime\prime\prime} C_{O_2,s}$

n

where η is a "fudge factor" to correct for pore diffusion effects

$$=\frac{C_{O_2,average}}{C_{O_2,surface}}$$

- 2. Determine value of η from the effective diffusivity (D_e), the tortuosity, etc.
- 3. The η is called the effectiveness factor
 - $\eta = 1$ means no pore diffusion resistance (C₀₂ = constant in particle interior)
 - $\eta < 1$ means some pore diffusion resistance

$$(C_{O2.avg} < C_{O2.surface})$$

- 4. Since the η terms contains some temperature dependence, the overall "apparent" activation energy turns out to be $E_{app} = E_{true}/2$
- 5. The η is therefore a function of reaction rate (k'''), T_p, d_p, and pore size

Microscopic Intrinsic Models

- More complex pore model
- Model local diffusivity and pore structure

 No empirically-determined effective diffusivity
- Strength: Promise of better fundamental understanding
- Weakness: Numerically cumbersome
 - Not for use in boiler simulation codes

