

New Coal Utility Boiler Configuration

No So2 NOX Particles

Old Utility

Boiler

Configuration

No Air Pollution Control

Question 1: Describe the environmental problems associated with emission of the following chemicals (at both ground level and in the upper atmosphere). NO, NO_2 , NH_3 , HCN, N_2O

NOx represent a family of seven compounds. Actually, EPA regulates only nitrogen dioxide (NO_2) as a surrogate for this family of compounds because it is the most prevalent form of NOx in the atmosphere that is generated by anthropogenic (human) activities. NO_2 is not only an important air pollutant by itself, but also reacts in the atmosphere to form ozone (O_2) and acid rain.

Formula	Name	Nitrogen Valence	Properties
N ₂ O	nitrous oxide	1	colorless gas water soluble
NO N ₂ O ₂	nitric oxide dinitrogen dioxide	2	colorless gas slightly water soluble
N ₂ O ₃	dinitrogen trioxide	3	black solid water soluble, decomposes in water
NO ₂ N ₂ O ₄	nitrogen dioxide dinitrogen tetroxide	4	red-brown gas very water soluble, decomposes in water
N ₂ O ₅	dinitrogen pentoxide	5	white solid very water soluble, decomposes in water

U.S. EPA, Clean Air Technology Center., Niotrogen Oxides (NO_x), Why and How they are Controlled. EPA-456/F-99-006R. November 1999

Fig. 2. The fate of nitrogen oxides in the atmosphere. 6,27

C. Bowman, Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International on Combustion). 24(1), 1992, 859-878 BYU BYU 1875 PHOVO, UTA

5

Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x .

Thermal NO_x

Zeldovich Mechanism

$$O+N_2 \leftrightarrow NO+N$$

$$N + O_2 \leftrightarrow NO + O$$

$$N + OH \leftrightarrow NO + H$$

Converts molecular nitrogen from combustion air into NO

High temperature reaction, most important above 1800K This is because the first reaction has a high activation energy

Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x .

Prompt NO_x

Fenimore Mechanism

$$CH + N_2 \leftrightarrow HCN + N$$
$$C + N_2 \leftrightarrow CN + N$$

Converts molecular nitrogen from combustion air into cyano compounds through attack by hydrocarbon fragments

Fuel rich reaction

7

Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x .

Fuel NO_x

Oxidation of nitrogen originating in the fuel molecular structure

Question 4: Describe the following process NO_x control strategies: Low excess air, Low NO_x burners, Overfire air, Reburning, SNCR (selective non-catalytic reduction), SCR (selective catalytic reduction).

Question 5: Describe the costs (relative to each other) of each of the NO_x control strategies in question 4. Which strategies are generally used for retrofits on old boilers, rather than on new boilers?

See Previous Slides

Mercury Behavior in a Coal Power Station

NO
NO
NO
Catalyst
N2
Acid gases (SO₂)
adsorbed by lime
or limestone slurry

SCR

ESP – Electric field charges and collects particulate
FF – Particulate is collected on a fabric filter

