New Coal Utility Boiler Configuration No So2 NOX Particles Old Utility Boiler Configuration No Air Pollution Control Question 1: Describe the environmental problems associated with emission of the following chemicals (at both ground level and in the upper atmosphere). NO, NO_2 , NH_3 , HCN, N_2O NOx represent a family of seven compounds. Actually, EPA regulates only nitrogen dioxide (NO_2) as a surrogate for this family of compounds because it is the most prevalent form of NOx in the atmosphere that is generated by anthropogenic (human) activities. NO_2 is not only an important air pollutant by itself, but also reacts in the atmosphere to form ozone (O_2) and acid rain. | Formula | Name | Nitrogen
Valence | Properties | |--|--|---------------------|--| | N ₂ O | nitrous oxide | 1 | colorless gas
water soluble | | NO
N ₂ O ₂ | nitric oxide
dinitrogen dioxide | 2 | colorless gas
slightly water soluble | | N ₂ O ₃ | dinitrogen trioxide | 3 | black solid
water soluble, decomposes in water | | NO ₂
N ₂ O ₄ | nitrogen dioxide
dinitrogen tetroxide | 4 | red-brown gas
very water soluble, decomposes in water | | N ₂ O ₅ | dinitrogen pentoxide | 5 | white solid very water soluble, decomposes in water | U.S. EPA, Clean Air Technology Center., Niotrogen Oxides (NO_x), Why and How they are Controlled. EPA-456/F-99-006R. November 1999 Fig. 2. The fate of nitrogen oxides in the atmosphere. 6,27 C. Bowman, Control of combustion-generated nitrogen oxide emissions: technology driven by regulation. Symposium (International on Combustion). 24(1), 1992, 859-878 BYU BYU 1875 PHOVO, UTA 5 ## Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x . ## Thermal NO_x Zeldovich Mechanism $$O+N_2 \leftrightarrow NO+N$$ $$N + O_2 \leftrightarrow NO + O$$ $$N + OH \leftrightarrow NO + H$$ Converts molecular nitrogen from combustion air into NO High temperature reaction, most important above 1800K This is because the first reaction has a high activation energy Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x . Prompt NO_x Fenimore Mechanism $$CH + N_2 \leftrightarrow HCN + N$$ $$C + N_2 \leftrightarrow CN + N$$ Converts molecular nitrogen from combustion air into cyano compounds through attack by hydrocarbon fragments Fuel rich reaction 7 Question 2: Please discuss the different potential mechanisms of NO_x formation and destruction including: Thermal NO_x , Prompt NO_x , Fuel NO_x . Fuel NO_x Oxidation of nitrogen originating in the fuel molecular structure Question 4: Describe the following process NO_x control strategies: Low excess air, Low NO_x burners, Overfire air, Reburning, SNCR (selective non-catalytic reduction), SCR (selective catalytic reduction). Question 5: Describe the costs (relative to each other) of each of the NO_x control strategies in question 4. Which strategies are generally used for retrofits on old boilers, rather than on new boilers? See Previous Slides Mercury Behavior in a Coal Power Station NO NO NO Catalyst N2 Acid gases (SO₂) adsorbed by lime or limestone slurry SCR ESP – Electric field charges and collects particulate FF – Particulate is collected on a fabric filter