Practical Combustion

Class 3

1

1a. Comparison of Combustors

Modified from Table 5.2 in Smoot & Smith, 1985

	Fixed Bed	Fluidized Bed	Entrained Flow		
Particle Size	10-50 mm	1.5-6 mm	1-100 μm		
Operating T (K)	< 2000	1000-1400	1900-2000		
Residence Time (s)	500-50,000	10-500	1-2		
Coal Feed Rate (kg/hr)	< 40,000 (BYU heating plant was at 5000)	< 40,000	< 450,000		
Advantages	Simple Low grinding costs	Low SO _x & NO _x Low slagging Multi-fuel Low corrosion	High efficiency High capacity		
Disadvantages	Emissions, especially particulates Efficiency Low capacity	Feeding fuel Softening coal Low capacity Risk (not established)	High NO _x Fly ash capture Grinding costs		

Types of Boilers

- Subcritical (38% efficiency, new)
 - 2400 psi (steam pressure)
 - $-T_{\text{steam}} = 1000^{\circ}F$
- Supercritical (42% efficiency, new)
 - 3500 psi
 - $-T_{\text{steam}} = 1000^{\circ}F$
- Ultrasupercritical (44% efficiency, new)
 - 4400 psi
 - 1150°F

5

Gasifiers

- Pretty much the same story as combustors
- · Challenges:
 - Getting heat to where gasification happens
 - Slagging
 - Air separation unit required?
- Pressure?
 - Reduces size of gasifier
 - Adds complexity
 - Feeding
 - · Disposing of ash
 - · Lower volatiles

1b. Comparison of Gasifiers

8		Fixed Bed	Fluidized Bed	Entrained Flow
Par	ticle Size	6-50 mm	0.5-2.5 mm	10-150 μm
Ope	erating T (K)	1150-1300	600-1470	1150-2500
	sidence Time (s)	1-3 hrs	20-150 min	0.4-12 s
Pre	essure (atm)	0.1-2	1-100	1-300
	Coal ratio (mass)	0.14-0.81	0.25-0.97	0.28-1.17
CO	+H ₂ (mol%)	39-66	2-80	35-91
СН	(mol%)	2-15	3-68	0.1-17
Hig	gh Heating Value (Btu/SCF)	250-320	300-800	115-550
Hig Adv	vantages	Established technology (Lurgi) Low thermal losses High turndown ratio	Multi-fuel, multi-size Moderate heat losses	Small, simple design High capacity per volume
	advantages	Low capacity	Softening coal Low capacity Risk (not established)	Down time due to wear of refractory and injectors

2. Wall-Fired vs. Tangential

Tangential

- Lower NO_x due to large swirl zone
- More difficult to tune

Wall-Fired

- · Less complex
- Easier to tune individual burners

9

Fig. 3. Tangential firing pattern

From Combustion: Fossil Power Systems, by Combustion Engineering

3. Figures of Equipment

5. Co-firing Biomass

- Lower fuel costs
- More CO₂ friendly
- · Changes deposit properties
 - Perhaps vaporization of Na, K, HCl
- · Size of biomass?
- · Supply of biomass
- · Ash disposal regulations
- Risk
- Separate biomass handling system
 - Spontaneous ignition of biomass pile
- Lower heating value of biomass
- Possible increase in PM

31

Interesting Stuff

Heat Transfer

Mineral matter in coal and the thermal performance of large boilers

TABLE 11. Effect of ash absorption area on heat absorbed in furnace⁶⁶

	in furnace (MW)
0.7 0.5	362.5 338.9 271.8

FtG. 3. Emissivity of p.f. combustion product components.

from Wall et al., PECS, 5, 1-29 (1979)

