

Class 4

- Coal Formation
- Lithotypes and macerals
- Coalification diagram
- What coal am I?
 - Dmmf
- Definitions
 - Aromaticity, etc.
- Cartoon molecules
- 5

1. Describe the major geologic factors that affected coal formation and discuss why this information is important. Based on these factors, explain why is there no coal in California or Nevada.

(Coal as a Rock)					
 A. Lithotypes (Early broad classification by visual inspection performed by Stopes, 1919) 					
	Vitrain	no visible structure (glassy; "vitro")			
Bright					
	Clarain	visible banded structure ("clare" meaning clear or bright)			
	Durain	dull grey-black granular structure ("dur" meaning hard or tough)			
Dull					

Petrography Cont. (Coal as a Rock)						
B. Mace (Microscop needed sin	erals bic distinction, commonly accepted in the 1930's and modified as ace then)					
Vitrinite	The principal coal maceral and primary constituent of bright coal. Higher in oxygen and aromatic content than liptinites					
Liptinite (exinite)	From hydrogen-rich plant remains such as resins, balsams, spores, latex, pollen, algae, cuticles, waxes, fats, and oils of vegetable origin. Higher in hydrogen and aliphatic groups than vitrinite.					
Inertinite	From "inert," referring to less reactive than the other macerals. Thought to come from charring (prehistoric forest fires), oxidation, moldering and fungal attack. Typically high in carbon, highly aromatic, and low in hydrogen and oxygen.					

aceral oup	Maceral	Description	Origin		
	Telinite	cell wall material derived from vegetable matter	trunks, branches, stems, leaves and roots		
Vitrinite	Collinite	homogeneous structureless material filling cell cavities	humic gel precipitated from solutions of humic matter		
	Vitro- detrinite	fragmental plant or humic peat particles	peat or plant particles degraded at an early stage by pressure		
14	Sporinite	flattened discs of original spores	spores and pollen grains		
	Cutinite	outer layers of leaves or cuticles	leaves, needles, shoots and thin stems		
Exinite	Resinite	secretions from plants resinated in plant metabolisms	essential oils and resins in plant tissue		
	Alginite	algal remains	certain types of algae		
•	Lipto- detrinite	detrital remains of cutinite, resinite, alginite and sporinite	other members of the exinite group		
	Fusinite	cell wall material	charred trunks, branches and stems		
	Semi- fusinite	intermediate stage between fusinite and telinite	partially charred trunks, branches and stems		
Inertinite	Macrinite	groundmass into which other macerals are embedded eg sporinite	variable		
•	Inerto- detrinite	fragmental fusinite, semifusinite, macrinite and sclerotinite	degradation of other mem- bers of the inertinite group by load pressure		
	Sclero-	tubular or cellular fungal	exclusively fungal remains		

Demonstrate how to convert proximate and 4. ultimate coal analyses data to a dry, ash-free basis using the following coal data: Moisture 6.17 Volatile Matter (moisture free) 37.87 Ash (mf) 9.90 H (mf)4.69 C (mf)71.12 N (mf) 1.39 S (mf) 3.80 O (mf)9.11 Heating Value (Btu/lb, dry, ash-free) 14,102 What rank of coal is this, and which coals in Figure 2.3 are similar coals?

23

Bases for Comparison of Coals				
Basis	Abbrev.	Description		
As received	as rec'd	moisture + ash + organic		
Moisture-free	dry	ash + organic		
Dry ash-free	daf	organic		
Dry mineral-matter free	dmmf	organic (corrected for loss of S, CI, CO_2 , etc., during ashing)		

From Smith, L. and L. D. Smoot, PECS, 16, 11 (1990)

Demonstrate how to convert proximate and ultimate coal analyses data to a dry, ash-free basis using the following coal data:

- Data
 - 14,102 Btu/lb daf
 - 9.90% ash moisture free
 - 6.17% moisture as rec'd
 - 37.87% volatile matter moisture free
 - 3.80% S (moisture free)
- · Find the coal rank
 - Heating value on moist mmf basis
 - Volatile matter on dmmf basis

		Fixed carbon limits (%) (dry, mineral- matter-free basic)		Volatile matter limits (%) (dry, mineral- matter-free basis)		Calorific value limits (Btu/Ib) (moist mineral-matter- free basis)		
	Class Group	≥	<	>	≥	>	<	Agglomerating character
T	Anthracitic							
1.	1. Meta-anthracite	98	_	_	2	_	-)	
	2. Anthracite	92	98	2	8	_	_ }	nonagglomerating
	3. Semianthracite	86	92	8	14	_	_)	
II.	Bituminous							
	1. Low volatile bituminous coal	78	86	14	22		-)	
	2. Medium volatile bituminous coal	69	78	22	31	_	_	
	3. High volatile A bituminous coal	_	69	31		14,000	- }	commonly agglomeratin
	4. High volatile B bituminous coal	_	_	_	_	13,000	14,000	
	5. High volatile C bituminous coal	—		_		11,500	13,000	
						10,500	11,500	agglomerating
II.	Subbituminous							
	1. Subbituminous A coal	-	-	-	-	10,500	11,500	
	2. Subbituminous B coal	-	-	-	_	9,500	10,500	
	3. Subbituminous C coal	Start.	-	-	-	8,300	9,500	nonagglomerating
V.	Lignitic							nonuggioniciating
	1. Lignite A	- un	-	-	-	6,300	8,300	
	2. Lignite B		in	-		-	6,300	

Definitions	
Carbon aromaticity	Carbon aromaticity is the ratio of the total number of carbon atoms present in all the aromatic rings to the total number of carbon atoms present in the molecule.
Hydrogen aromaticity	Hydrogen aromaticity is the ratio of the total number of hydrogen atoms present in all the aromatic rings to the total number of hydrogen atoms present in the molecule.
Aliphatic carbon	Carbon atoms which are not directly attached to an aromatic ring are called aliphatic carbons.
Aromatic clusters	A group of aromatic rings in which two adjacent pair of rings share at least 2 carbon atoms is known as a cluster.
Bridges between clusters	Hydroxyl, aliphatic or non-aromatic groups which connects two different aromatic clusters within a molecule is known as bridge between clusters.

Criteria often used

- Elemental composition
- Aromatic and aliphatic C
- Molecular weight of aromatic clusters
- Functional groups attached to clusters
- Molecular weight of bridges
- Reaction behavior during devolatilization

