

		eciniques
Technique	Cost	Capability
FTIR	\$50-100K	Gas, liquids, solid spectra. Limited for heavy hydrocarbons. Capable of trace quantities for specific species.
MS	\$75-500K	Gas and light liquids, no solids. Can be combined with GC. Peaks vs MW.
GC	\$50-100K	Gas and light liquids. Peaks vs time must be calibrated.
Extraction	\$20K	Chemical extraction, must be combined with another technique for analysis.
NMR	\$500K+	Solids (¹³ C NMR) or liquids (¹ H NMR). Spins samples in large supercooled magnet, generates Fourier transform of spectra.
HPLC		High MW liquids

- Py-FIMS (Figure 28)
- Extracts/Depolymerization
 - <u>Table 37</u>
 - Figures <u>45</u>, <u>46</u>, <u>47</u>

Extraction	
	1

TABLE 37. Alumina Column Fractionation Yields of Pre-extracts and HT-BCD Products (daf wt. % of coal)

	Illinoi	s #6	Pocahor	ntas #3	Blind C	anyon	Beulah	-Zap
Fraction	Pre- extract	HT- BCD	Pre- extract	HT- BCD	Pre- extract	HT- BCD	Pre- extract	HT- BCD
Aliphatic	0.89	2.3	0.05	1.0	3.80	6.4	0.19	2.4
Neutral PAH ^a	2.10	9.2	0.10	7.4	3.97	12.4	0.56	7.2
Polar-1	3.16	2.1	0.49	10.2	3.57	2.6	1.04	23.2
Polar-2	10.65	44.7	0.16	3.4	7.56	34.2	0.41	21.4
Total wt. %								
of coal ^b	16.8	58.8	0.8	22.0	18.9	55.6	2.2	54.2

^a PAH = polycyclic aromatic hydrocarbons. ^b Reported on a dmmf basis. *Source:* Carlson *et al.* (1992).

Chemical Structure Relationships

$$M_{cluster} = \frac{C_{cluster} MW_{carbon}}{f'_{a} x_{carbon}}$$
$$m_{\delta} = \frac{M_{cluster} - C_{cluster} MW_{carbon}}{\sigma + 1}$$

 σ +1 = coordination number (avg. number of attachments per cluster)

Attachments = side chains + bridges + loops (not hydrogen)

	Residence Time (ms)	0	43	65	89	128	223
6	Sampling Distance (mm)	0	40	70	100	51	51
ars	Mass Release (% dar)	0	22	20	47	51	51
ch	Aromatic carbon, $f_a = f_a + f_a^C$.71	.72	.74	.79	.81	.86
p	Carbonyl, f_a^C	.04	.05	.04	.05	.03	.02
ar	Aromatic carbon, carbonyl subtracted, f_a	.67	.67	.70	.74	.78	.84
al	Protonated aromatic carbon, f_a^H	.27	.29	.27	.34	.33	.32
8	Non-protonated aromatic C, $f_a^N = f_a^P + f_a^S + f_a^B$.40	.38	.43	.40	.45	.52
õ	Aromatic carbon with O attachment, f_a^P	.08	.09	.07	.07	.05	.05
ċ	Aromatic carbon with alkyl attachment, f_a^S	.17	.19	.16	.19	.18	.22
ž	Aromatic bridgehead and inner carbon, f_a^B	.15	.10	.20	.14	.22	.25
db		20	20	26	21	10	14
un in	Aliphatic carbon, f_{al}	.29	.28	.20	.21	.19	.14
ą	Aliphatic CH and CH_2, J_{al}	.18	.19	.17	.15	.14	.10
itte	Aliphatic CH ₃ and non-protonated carbon, f_{al}	.11	.09	.09	.00	.05	.04
Ā	Aliphatics with oxygen attachment, Jalo	.07	.07	.05	.00	.07	.07
ora	Proton spin-relaxation time, $T_{I\rho}^{Har}$ (ms)	4.0	2.6	2.7	4.4	6.1	8.3
ä	Total carbons per cluster	16	14	19	13	17	18
lat	Aromatic carbons per cluster. C	11	10	14	10	14	15
~	Aliphatic carbons per cluster	4.8	4.2	5.2	2.8	3.4	2.5
Ξ							
z	Total attachments per cluster, $\sigma + l$	4.1	4.2	4.6	3.5	4.1	4.8
ke	Bridges and loops per cluster, B_C	2.3	2.8	2.8	2.7	3.2	4.1
ati	Side chains per cluster	1.8	1.4	1.8	0.8	0.9	0.7
sent	Fraction of intact bridges per cluster, p	.56	.68	.61	.77	.78	.85
pre	Average cluster molecular weight	270	230	330	210	280	260
ě	Side chain molecular weight	34	26	35	26	27	17

	Table III.	Carbon	Structu	ral Dist	ribution	of the A	Argonne	Premiu	m Coals	a		
coal	fa	fa'	f. ^C	f.H	f. ^N	f ^P	í, ^s	$f_{\mathbf{a}}^{\mathbf{B}}$	f_{al}	f_{al}^{H}	fal*	f_{al}^{0}
North Dakota (L)	0.61	0.54	0.07	0.26	0.28	0.06	0.13	0.09	0.39	0.25	0.14	0.12
Wyodak (SB)	0.63	0.55	0.08	0.17	0.38	0.08	0.14	0.16	0.37	0.27	0.10	0.10
Blind Canyon (HVB)	0.65	0.64	0.01	0.22	0.42	0.07	0.15	0.20	0.35	0.22	0.13	0.04
Illinois No. 6 (HVB)	0.72	0.72	0.00	0.26	0.46	0.06	0.18	0.22	0.28	0.19	0.09	0.05
Pittsburgh No. 8 (HVB) 0.72	0.72	0.00	0.27	0.45	0.06	0.17	0.22	0.28	0.13	0.15	0.03
Stockton seam (HVB)	0.75	0.75	0.00	0.27	0.48	0.05	0.21	0.22	0.25	0.14	0.11	0.04
Upper Freeport (MVB)	0.81	0.81	0.00	0.28	0.53	0.04	0.20	0.29	0.19	0.09	0.10	0.02
Pocahontas (LVB)	0.86	0.86	0.00	0.33	0.53	0.02	0.17	0.34	0.14	0.08	0.06	0.01
Zap ^b (L)	0.66	0.58	0.08	0.21	0.37	0.08	0.16	0.13	0.34	0.21	0.13	0.10
Rosebud ^b (SB)	0.63	0.53	0.10	0.16	0.37	0.07	0.14	0.16	0.37	0.20	0.17	0.08
Illinois No. 6 ^b (HVB)	0.71	0.67	0.04	0.24	0.43	0.09	0.19	0.15	0.29	0.17	0.12	0.02

^a Fractions of sp¹-hybridized carbon (error estimate): $f_a = \text{total carbon} (\approx \pm 0.03); f_a = \text{in an aromatic ring} (\approx \pm 0.04); f_a^C = \text{carbonyl}, \delta > 165$ ppm ($\Rightarrow \pm 0.02$); $f_a^H = \text{protonated and aromatic} (\approx \pm 0.03); f_a^N = \text{nonprotonated and aromatic} (\approx \pm 0.03); f_a^P = \text{phenolic or phenolic ether}, \delta = 150-165$ ppm ($\Rightarrow \pm 0.02$); $f_a^H = \text{aromatic bridgehead} (\approx \pm 0.04)$. Fraction of sp³-hybridized carbon (error estimate): $f_a = \text{talk}$ and carbon ($\approx \pm 0.02$); $f_a^H = \text{carbon}(\approx \pm 0.02)$; $f_a^H = \text{carbon}(\approx \pm 0.02); f_a^H = 0$ by the carbon ($\approx \pm 0.02$); $f_a^H = 0$ aromatic bridgehead ($\approx \pm 0.04$). Fraction of sp³-hybridized carbon ($\approx \pm 0.02$); $f_a^H = 0$ CH or CH₂ ($\approx \pm 0.02$); $f_a^H = 0$ bonded to oxygen, $\delta = 50-90$ ppm ($\approx \pm 0.02$). ^b An oxidized sample obtained from Advanced Fuel Research.

Table IV. Aromatic Cluster Size of the Argonne Coals

from the G	ombin	ed Model	•		
coal	χ _b	AC/Cl	att/Cl	MW	
North Dakota (L)	0.17	9	3.2	277	
Wyodak (SB)	0.29	14	5.6	410	
Blind Canyon (HVB)	0.31	15	5.2	359	
Illinois No. 6 (HVB)	0.31	15	5.0	316	
Pittsburgh No. 8 (HVB)	0.31	15	4.8	294	From Solum et al.,
Stockton seam (HVB)	0.29	14	4.9	275	Enerav & Fuels (1989)
Upper Freeport (MVB)	0.36	18	5.2	302	3, (, , , , , , , , , , , , , , , , , ,
Pocahontas (LVB)	0.40	20	4.3	299	
$\operatorname{Zap}^{b}(\mathbf{L})$	0.22	11	4.5	339	
$Rosebud^{b}$ (SB)	0.30	15	5.8	459	
Illinois No. 6 ^b (HVB)	0.22	11	4.6	267	
$^{\circ}\chi_{b}$ = mole fraction of b AC/Cl = number of aromat att/Cl = number of attachmular weight of a cluster. b Ar vanced Fuel Research.	ridgehe ic carbo ents per n oxidize	ad carbon ons per clu cluster. ed sample	uster (error uster (err MW = to obtained	$\approx \pm 0.06$). or $\approx \pm 3$). tal molec- from Ad-	

				- C		ID		at a					
							Do	110	L				
	70 A 10 K 10				-								
	TABLE	40. FT	IR Fun	ctional	Group	Analysis of	n the Ar	gonne Pr	remium	Coals (wt	. % dmmf)"		
-		Aromatic hydrogen ^e Carbonyl ^d											
							Arom	atic hydro	aganc		Carbonuld		
				Hydrog	en ^b		Arom	natic hydro	ogen ^c	Carbon	Carbonyld	Oxy	gen
				Hydrog	ţen ⁸		Arom	natic hydro	ogen ^e 3 or	Carbon	Carbonyl ^d Units	Oxy	ygen
	Coals	Ha	Нон	Hydrog H _{ar}	gen ^b H _{total}	Har/Htotal	Arom 1 Adj	2 Adj	3 or more	$\frac{Carbon}{C_{al}}$	$\frac{\text{Carbonyl}^{d}}{\text{Units}}$ (Abs. \times cm ⁻¹)	Ox; O _{DH}	ygen O _{eth}
	Coals Upper Freeport (mvb)	H _{el}	Н _{он}	Hydrog H _{ar} 2.08	ten ^b H _{total}	H _{ar} /H _{total}	Arom 1 Adj 0.66	2 Adj	3 or more	Carbon Cal	$\frac{\text{Carbonyl}^d}{\text{Units}}$ (Abs. × cm ⁻¹)	Оху О _{он}	O _{ett}
	Coals Upper Freeport (mvb) Wyodak (subC)	H _{at} 3.43 3.03	Н _{он} 0.11 0.33	Hydrog H _{ar} 2.08 1.73	gen ^b H _{total} 5.62 5.09	H _{ar} /H _{total} 0.37 0.34	Arom 1 Adj 0.66 0.52	2 Adj 0.71 0.78	3 or more 0.71 0.43	Carbon Cal 22.87 20.20	$\frac{\text{Carbonyl}^d}{\text{Units}}$ (Abs. × cm ⁻¹) 0.63 23.86	Оху О _{ОН}	0.7:
	Coals Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb)	H _{el} 3.43 3.03 3.41	Н _{он} 0.11 0.33 0.23	Hydrog H _{ar} 2.08 1.73 2.07	gen ^b H _{sotal} 5.62 5.09 5.71	H _{ac} /H _{total} 0.37 0.34 0.36	Arom 1 Adj 0.66 0.52 0.69	2 Adj 0.71 0.78 0.78	3 or more 0.71 0.43 0.60	Carbon Cal 22.87 20.20 22.73	Carbonyld Units (Abs. × cm-1) 0.63 23.86 4.48	Оху О _{он} 1.75 5.25 3.75	0.7: 5.0
	Coals Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb) Pittsburgh (hvAb)	H _{el} 3.43 3.03 3.41 3.60	Н _{он} 0.11 0.33 0.23 0.16	Hydrog H _{ar} 2.08 1.73 2.07 2.07	gen ^b H _{total} 5.62 5.09 5.71 5.83	H _{ac} /H _{total} 0.37 0.34 0.36 0.36	Arom	2 Adj 0.71 0.78 0.78 0.80	0.71 0.71 0.60 0.60	Carbon Cal 22.87 20.20 22.73 24.00		Оху О _{он} 1.75 5.25 3.75 2.5	0.7: 5.0 2.2:
	Coals Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb) Pittsburgh (hvAb) Pocabontas #3 (lvb)	H _{el} 3.43 3.03 3.41 3.60 1.97	Н _{он} 0.11 0.33 0.23 0.16 0.06	Hydrog H _{ar} 2.08 1.73 2.07 2.07 2.19	gen ^b H _{total} 5.62 5.09 5.71 5.83 4.22	H _{st} /H _{total} 0.37 0.34 0.36 0.36 0.52	Arom 1 Adj 0.66 0.52 0.69 0.67 0.60	2 Adj 0.71 0.78 0.78 0.80 0.73	0.71 0.43 0.60 0.60 0.86	Carbon C _{al} 22.87 20.20 22.73 24.00 13.93	$\begin{tabular}{ c c c c } \hline Carbonyl^d \\ \hline Units \\ (Abs. \times cm^{-1}) \\ \hline 0.63 \\ 23.86 \\ 4.48 \\ 0.86 \\ 1.92 \\ \hline \end{tabular}$	Оху О _{ОН} 1.75 5.25 3.75 2.5 1.0	O _{eth} 0.7: 5.0 2.2: 1.8:
	Coals Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb) Pittsburgh (hvAb) Pocahontas #3 (lvb) Blind Canvon (hyBb)	H _{et} 3.43 3.03 3.41 3.60 1.97 4.79	Н _{он} 0.11 0.33 0.23 0.16 0.06 0.16	Hydrog H _{ar} 2.08 1.73 2.07 2.07 2.19 1.90	gen ^b H _{total} 5.62 5.09 5.71 5.83 4.22 6.85	H _{st} /H _{total} 0.37 0.34 0.36 0.36 0.52 0.28	Arom 1 Adj 0.66 0.52 0.69 0.67 0.60 0.51	2 Adj 0.71 0.78 0.78 0.80 0.73 0.80	0.71 0.71 0.43 0.60 0.60 0.86 0.58	Carbon C _{st} 22.87 20.20 22.73 24.00 13.93 31.93	Carbonyl ^d Units (Abs. × cm ⁻¹) 0.63 23.86 4.48 0.86 1.92 8.70	Ох; О _{ОН} 1.75 5.25 3.75 2.5 1.0 2.5	0.7 5.0 2.2 1.8 1.2
1. 2. 3. 4. 5. 5. 7.	Coals Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb) Pittsburgh (hvAb) Pocahontas #3 (lvb) Blind Canyon (hvBb) Lewiston–Stockton (mvb)	H _{et} 3.43 3.03 3.41 3.60 1.97 4.79 3.48	H _{OH} 0.11 0.33 0.23 0.16 0.06 0.16 0.23	Hydroş H _{ar} 2.08 1.73 2.07 2.07 2.19 1.90 2.12	gen ^b H _{total} 5.62 5.09 5.71 5.83 4.22 6.85 5.83	H _{st} /H _{total} 0.37 0.34 0.36 0.36 0.52 0.28 0.36	Arom 1 Adj 0.66 0.52 0.69 0.67 0.60 0.51 0.67	2 Adj 0.71 0.78 0.78 0.78 0.80 0.73 0.80 0.67	0gen ^c 3 or more 0.71 0.43 0.60 0.60 0.86 0.58 0.79	Carbon Cal 22.87 20.20 22.73 24.00 13.93 31.93 23.20	$\begin{tabular}{ c c c c } \hline Carbonyl^d \\ \hline Units \\ (Abs. \times cm^{-1}) \\ \hline 0.63 \\ 23.86 \\ 4.48 \\ 0.86 \\ 1.92 \\ 8.70 \\ 3.59 \end{tabular}$	Ох; О _{ОН} 1.75 5.25 3.75 2.5 1.0 2.5 3.75	Oett 0.7 5.0 2.2 1.8 1.2 4.0

			F	T	IR	Da	ata						
TABLE	40. FT	IR Fun	ctional	Group	Analysis o	n the Ar	gonne Pr	remium ogen ^e	Coals (w	t. % dmmf)" Carbony	1ª	0*	
Coals	Hal	Нон	H _{ar}	H _{total}	Har/Husal	1 Adj	2 Adj	3 or more	C	Units (Abs. × cn	n ⁻¹)	Onu	O
 Upper Freeport (mvb) Wyodak (subC) Illinois #6 (hvCb) Pittsburgh (hvAb) Pocahontas #3 (lvb) Blind Canyon (hvBb) Lewiston-Stockton (mvb) Beulah-Zap (ligA) 	3.43 3.03 3.41 3.60 1.97 4.79 3.48 2.02	0.11 0.33 0.23 0.16 0.06 0.16 0.23 0.34	2.08 1.73 2.07 2.07 2.19 1.90 2.12 1.58	5.62 5.09 5.71 5.83 4.22 6.85 5.83 3.94	0.37 0.34 0.36 0.36 0.52 0.28 0.36 0.40	0.66 0.52 0.69 0.67 0.60 0.51 0.67 0.46	0.71 0.78 0.78 0.80 0.73 0.80 0.67 0.74	0.71 0.43 0.60 0.60 0.86 0.58 0.79 0.37	22.8 19 20.2 45 22.7 18 24.0 30 13.9 14 31.9 39 23.2 25 13.4 45	0.63 23.86 4.48 0.86 1.92 8.70 3.59 24.67	0 8 0 1 0 2 0 10	1.75 5.25 3.75 2.5 1.0 2.5 3.75 5.5	0.7: 5.0 2.2: 1.8: 1.2: 4.0 1.7: 5.0
 Pocanontas #3 (tvb) Blind Canyon (hvBb) Lewiston-Stockton (mvb) Beulah-Zap (ligA) Except carbonyl: relative peak an H_{al} = wt. % hydrogen as aliphati aliphatic groups. O_{con} = wt. % of 1 Adj = one adjacent hydrogen v Peak height at 1700 cm⁻¹ (arbitr ioaurce: Solomon et al. (1987b, 19 	1.97 4.79 3.48 2.02 ea. c hydroge tygen in h thich is at ry units). 90e).	0.06 0.16 0.23 0.34	2.19 1.90 2.12 1.58 wt. % hy proups, an an aroma	4.22 6.85 5.83 3.94 drogen at od O _{ether} = atic carbo	0.52 0.28 0.36 0.40 s hydroxyl hyd wt. % oxyge n; 2 Adj = tw	0.60 0.51 0.67 0.46 drogen, H _{st}	0.73 0.80 0.67 0.74 = wt. % h groups. hydrogens	0.86 0.58 0.79 0.37	13.9 12 31.9 38 23.2 25 13.4 45 ittached to a	1.92 8.70 3.59 24.67 romatic groups, ic carbon.		1.0 2.5 3.75 5.5	

