

Class 6

Physical Properties of Coal

Particle Energy Equation

$$m_p C_p \frac{dT_p}{dt} = q_{conv} + q_{rxn} + q_{rad}$$

- $m_p = \rho_p V_p = \rho_p \frac{4}{3} \pi r_p^3$
- $q_{conv} = \theta h A_p (T_g T_p)$
- $q_{rxn} = \dot{r}_{rxn,p}^{\prime\prime} A_p \Delta H_{rxn}$
- $q_{rad} = \epsilon_p \sigma A_p (T_\infty^4 T_p^4)$
- $\bullet \ A_p = 4 \pi r_p^2$

Particle Energy Equation

$$m_p C_p \frac{dT_p}{dt} = q_{conv} + q_{rxn} + q_{rad}$$

•
$$m_p = \rho_p V_p = \frac{\rho_p}{3} \pi r_p^3$$

•
$$q_{conv} = \theta h \frac{A_p}{T_g} (T_g - T_p)$$

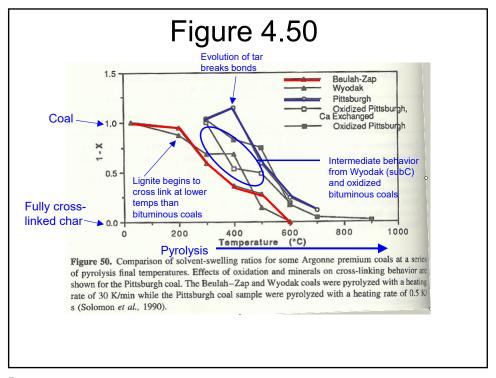
•
$$q_{rxn} = \Sigma \dot{r}_{rxn,i}^{"} A_p \Delta H_{rxn,i}$$

•
$$q_{rad} = \epsilon_p \sigma A_p (T_\infty^4 - T_p^4)$$

$$\bullet \ A_p = 4 \pi r_p^2$$

•
$$Nu = \frac{hd_p}{k_g} = 2 + f(Re_p, Pr)$$

3


Reading Assignment:

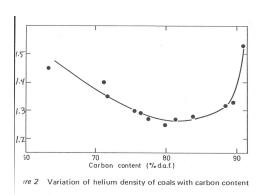
- a. Lee Smith Book, 154-168
- b. Article by Merrick (Fuel, 62, 540-546, 1983)
- c. Richards, A., D. Haycock, J. Frandsen, and T. H. Fletcher, "A Review of Coal Heating Value Correlations with Application to Coal Char, Tar, and Other Fuels," Fuel, 118942:1-16 (2021). DOI: 10.1016/j.fuel.2020.118942
- 1. Discuss Figure 4.50 in the Lee Smith book.
- 2. What is meant by porosity, true density, apparent density, and internal surface area? Why are these quantities important in coal combustion? How do they vary as a function of coal rank? How do the these properties vary between chars and coals?
- 3. Please use your group to find and discuss the model proposed by Merrick for heat capacity.
- Please compute the heat capacity in J/kg/K of the dried Argonne Premium Wyodak coal at temperatures from 300 K to 700 K.
- 5. Please compute the number distribution (# vs. diameter in microns) for the following mass distribution:

 Mesh Size (passing)
 400
 325
 270
 250
 200
 170
 150

 Weight (%)
 5
 10
 20
 30
 20
 10
 5

- 6. Search the web for the DuLong formula, which is used to compute the heating value of coal from the elemental composition. Calculate the heating value of the Illinois #6 Argonne Premium coal and compare the calculated value with the measured value.
- Recalculate the heating value in problem #7 using the Mott-Spooner re-fit correlation in the paper by Richards et al. (2021).

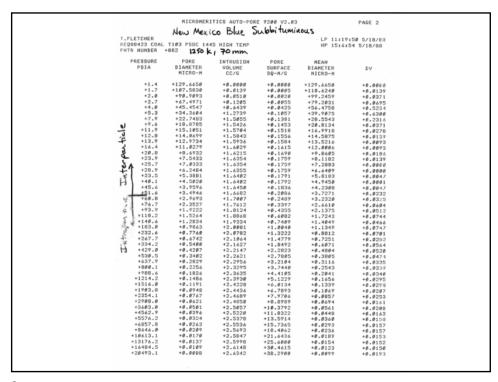
Particle Densities

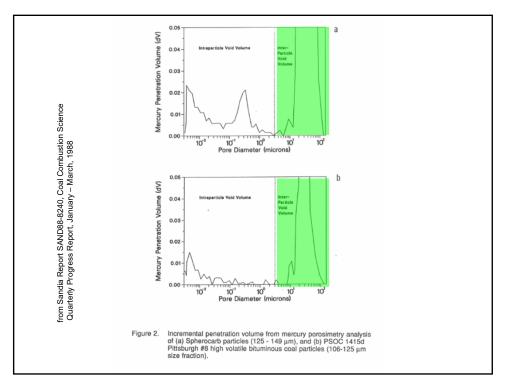

- 1. True Density (He pynchometry) $\frac{mass \ of \ solid}{volume \ of \ solid}$
- 2. Apparent Density

mass of solid volume of solid + volume of voids in solid

3. Bulk Density

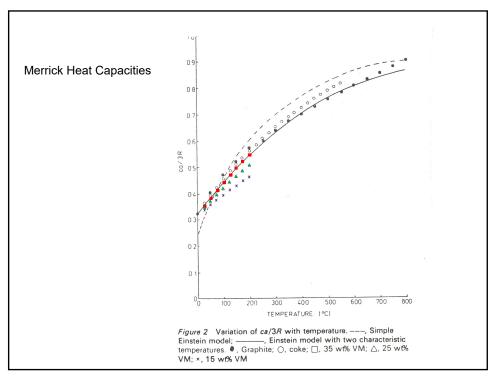
 $\frac{\textit{mass of solid}}{\textit{volume of bed}} \qquad \mathsf{V}_{\mathsf{bed}} = \mathsf{V}_{\mathsf{solid}} + \mathsf{V}_{\mathsf{voids in solid}} + \mathsf{V}_{\mathsf{voids between particles}}$

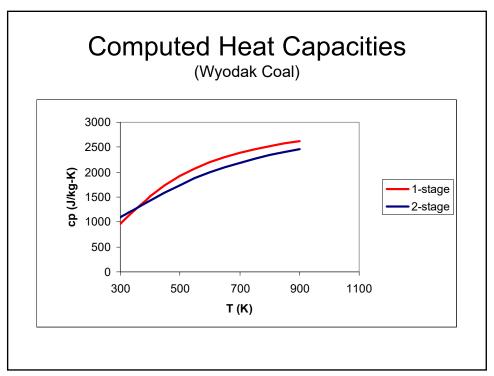



From Gan et al. Fuel, Vol. 51 (1972)


7

Apparent Densities


- Hg porosimetry
 - Measure change in Hg volume as pressure increases
 - Interpret volume change
- Tap density
 - Weigh particles
 - Place in graduated cylinder
 - Tap to settle particles
 - Assume packing factor
 - Ratio of bulk densities $(\rho_b/\rho_{b,0})$ equals ratio of apparent densities $(\rho_a/\rho_{a,0})$




```
Heat Capacity of Coal
             C_{p} \text{ (particle)} = x_{moist} C_{p, moist} + x_{org} C_{p, org} + x_{ash} C_{p, ash}
             Note: Cp is a function of Tparticle
Einstein's Formulation for C<sub>p</sub> (from Merrick, 1983):
A. Simple
C_{p} = (3R/a) g_{1}\{1200/T\} J/kg/K
 weight of element
             g<sub>1</sub> is a function:
             \begin{split} g_1\{z\} &= \frac{\exp(z)}{\left[ (\exp(z)-1)/z \right]^2} \\ R &= \text{universal gas constant (8314.3 N-m/K/kg-mol)} \end{split}
B. 2-stage (along bedding plane and perpendicular to bedding plane)
             C_{_{P}} = \left(R \, / \, a\right) \, g_{_{1}} \left\{380 \, / \, T\right\} + 2 g_{_{1}} \left\{1800 \, / \, T\right\} \, J \, / \, kg \, / \, K
Also note that enthalpy is calculated by Merrick as:
             h = 3600 \big( R \, / \, a \big) \, g_0 \big\{ 1200 \, / \, T \big\} \, J \, / \, kg \quad \text{ or } \quad
             h = (R/a) \left[ 380g_0 \left\{ 380/T \right\} + 3600g_0 \left\{ 1800/T \right\} \right] J/kg
Where g_0\{z\} = \frac{1}{\exp(z) - 1}
C. Cp for Ash
             \begin{array}{l} C_{p,\;ash} = 754 + 0.586\;T\;\; (J/kg/K\;where\;T\;is\;in\;{}^{\circ}C)\;or\\ C_{p,\;ash} = 593 + 0.586\;T\;\; (J/kg/K\;where\;T\;is\;in\;K) \end{array}
```


Heat Capacities (Conclusions)

Cautions about the Merrick model:

- Good for graphite and char (coke)
- Coal heat capacity data are limited
- Model does not fit data from different coal ranks very well!
- Coal data only extends to 200°C (573 K)
 In other words, keep a look out for better heat capacity data!

15

Thermal Conductivities

• Atkinson and Merrick (1983) report that the thermal conductivities *k* of coal, semi-cokes and cokes (W m-1 K-1) can be correlated as follows:

$$k = (\rho_t/4511)^{3.5} T^{0.5}$$

where ρ_t is the true density of the material (2260 kg m³ for amorphous carbon, 1279 kg m³ for coal)

 The temperature dependence of this correlation does not agree well with the findings of Badzioch, et al. (1964), which are approximately correlated by the following expression:

 The two expressions agree at temperatures below 800 K, but the data and correlation from Badzioch and coworkers indicate significantly higher thermal conductivities at temperatures greater than 800 K.

Recommendation

 Set the thermal conductivity to 0.25, which agrees with all of the data at temperatures below 800 K, and agrees somewhat with the correlation of Atkinson and Merrick at even higher temperatures.

Comparison of thermal conductivity correlations from Atkinson and Merrick (1983) and Badzioch et al. (1964).

17

Single Particle Energy Equation

• Temperature form

$$m_{p}C_{p}\frac{dT_{p}}{dt} = \theta hA_{p}(T_{g} - T_{p}) + \varepsilon \sigma A_{p}(T_{w}^{4} - T_{p}^{4}) + \sum_{i} r_{pi} \Delta H_{rxn,i}$$

• Enthalpy form
$$\frac{d(m_p h_p)}{dt} = Q_{rp} + Q_{cp} - r_p h_{pg}$$

where

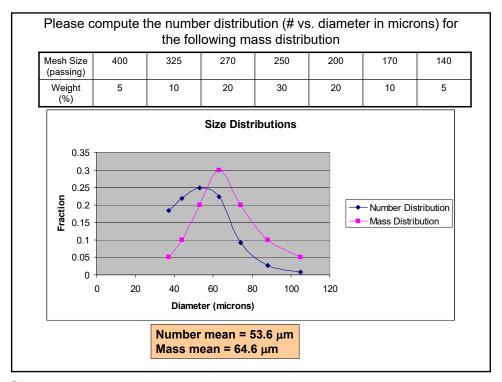
$$h_{pg} = \frac{\sum r_{vol,i} h_{vol,i} + h_{char} \sum r_{char,i}}{r_{tot}}$$

Particle Size Distribution

• In general, means are defined as:

$$x_{m} = \frac{\int_{a}^{b} x \, df}{\int_{a}^{b} df} = \frac{\sum_{i=1}^{n} x_{i} f_{i}}{\sum_{i=1}^{n} f_{i}}$$

Mass mean:


$$d_m = \sum_{i=1}^n d_i w_i, \quad \text{where} \quad \sum_{i=1}^n w_i = 1$$

19

Particle Size Distributions (cont.)

- Mass per particle: $m_p = \rho \frac{4}{3} \pi r^3$
- Number of particles = mass/(mass per particle)
- Number mean becomes:

$$d_{n} = \frac{\sum_{i=1}^{n} d_{i} \left(\frac{6w_{i}}{\rho \pi d_{i}^{3}}\right)}{\sum_{i=1}^{n} \left(\frac{6w_{i}}{\rho \pi d_{i}^{3}}\right)_{i}} = \frac{\sum_{i=1}^{n} d_{i} \left(\frac{w_{i}}{d_{i}^{3}}\right)}{\sum_{i=1}^{n} \left(\frac{w_{i}}{d_{i}^{3}}\right)_{i}}$$

	Table 21-12.					vivalent	s
	Sieve desi	Sieve designation		(A.S.T.M.—E-11 Sieve opening		minal diam.	
Ą	Standard	Alternate	mm.	in. (approx. equiva- lents)	mm.	in. (approx. equiva- lents)	Tyler equivalent designation
oqpu	107.6 mm. 101.6 mm. 90.5 mm. 76.1 mm. 64.0 mm.	4.24 in. 4 in.† 3½ in. 3 in. 2½ in.	107.6 101.6 90.5 76.1 64.0	4.24 4.00 3.50 3.00 2.50	6.40 6.30 6.08 5.80 5.50	0.2520 .2480 .2394 .2283 .2165	
From Perry's Chemical Engineers' Handbook	53.8 mm. 50.8 mm. 45.3 mm. 38.1 mm. 32.0 mm.	2.12 in. 2 in.† 134 in. 132 in. 134 in.	53.8 50.8 45.3 38.1 32.0	2.12 2.00 1.75 1.50 1.25	5.15 5.05 4.85 4.59 4.23	.2028 .1988 .1909 .1807 .1665	
	26.9 mm. 25.4 mm. 22.6 mm.* 19.0 mm.	1.06 in. 1 in.† 76 in. 34 in. 56 in.	26.9 25.4 22.6 19.0 16.0	1.06 1.00 0.875 .750 .625	3.90 3.80 3.50 3.30 3.00	.1535 .1496 .1378 .1299 .1181	1.050 in. 0.883 in. .742 in. .624 in.
	13.5 mm. 12.7 mm. 11.2 mm.* 9.51 mm. 8.00 mm.*	0.530 in. ½ in.† ½ in.† ¾ in. ¾ in. ½ in.	13.5 12.7 11.2 9.51 8.00	.530 .500 .438 .375 .312	2.75 2.67 2.45 2.27 2.07	.1083 .1051 .0965 .0894 .0815	.525 in. .441 in. .371 in. 2½ mesh
	6.73 mm. 6.35 mm. 5.66 mm.* 4.76 mm. 4.00 mm.*	0.265 in. ½ in.† No. 3½ No. 4 No. 5	6.73 6.35 5.66 4.76 4.00	.265 .250 .223 .187 .157	1.87 1.82 1.68 1.54 1.37	.0736 .0717 .0661 .0606 .0539	3 mesh 316 mesh 4 mesh 5 mesh
	3.36 mm. 2.83 mm.* 2.38 mm. 2.00 mm.* 1.68 mm.	No. 6 No. 7 No. 8 No. 10 No. 12	3.36 2.83 2.38 2.00 1.68	.132 .111 .0937 .0787 .0661	1.23 1.10 1.00 0.900 .810	.0484 .0430 .0394 .0354 .0319	6 mesh 7 mesh 8 mesh 9 mesh 10 mesh
п Реп	1.41 mm.* 1.19 mm. 1.00 mm.* 841 micron 707 micron*	No. 14 No. 16 No. 18 No. 20 No. 25	1.41 1.19 1.00 0.841 .707	.0555 .0469 .0394 .0331 .0278	.725 .650 .580 .510 .450	.0285 .0256 .0228 .0201 .0177	12 mesh 14 mesh 16 mesh 20 mesh 24 mesh
Fron	595 micron 500 micron* 420 micron 354 micron* 297 micron	No. 30 No. 35 No. 40 No. 45 No. 50	.595 .500 .420 .354 .297	.0165	.390 .340 .290 .247 .215	.0154 .0134 .0114 .0097 .0085	28 mesh 32 mesh 35 mesh 42 mesh 48 mesh
	250 micron* 210 micron 177 micron* 149 micron 125 micron*	No. 60 No. 70 No. 80 No. 100 No. 120	.250 .210 .177 .149 .125	.0070	.180 .152 .131 .110 .091	.0071 .0060 .0052 .0043 .0036	60 mesh 65 mesh 80 mesh 100 mesh 115 mesh
	105 micron 88 micron 74 micron 63 micron 53 micron	No. 140 No. 170 No. 200 No. 230 No. 270	. 105 . 088 . 074 . 063 . 053	.0035 .0029 .0025	.076 .064 .053 .044 .037	.0030 .0025 .0021 .0017 .0015	150 mesh 170 mesh 200 mesh 250 mesh 270 mesh
	44 micron* 37 micron	No. 325 No. 400	.044	.0017 .0015	.030	.0012	325 mesh 400 mesh

follow some distribution, such as the Rosin-Rammler-Bennett [Rosin and Rammler, J. Inst. Fuel, 7, 29–36 (1933); Bennett, ibid., 10, 22–39 (1936)]:

$$Y = 1 - \left[\exp - \left(\frac{X}{Y'} \right)^n \right]$$
 (8-1)

or the Gates-Gaudin-Schumann distribution [Schumann, A.I.M.E. Tech. Paper 1189, Mining Tech. (1940)]:

$$Y = \left(\frac{X}{k}\right)^m \tag{8-2}$$

or the logarithmic-probability distribution [Hatch and Choate, J. Franklin Inst., 207, 369 (1929)]:

$$Y = \operatorname{erf}\left(\frac{\ln X/X'}{\sigma}\right) \tag{8}$$

or the Gaudin-Meloy distribution [Gaudin and Meloy, Trans. A.I.M.E., 223, 40–50 (1962)]:

$$Y = 1 - \left(1 - \frac{X}{Y'}\right)^r \tag{8-4}$$

where Y = cumulative fraction by weight undersize; X = size; k, X' = parameters with dimension of size; m, n, r = dimensionless

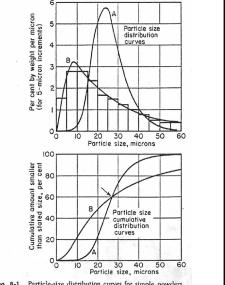
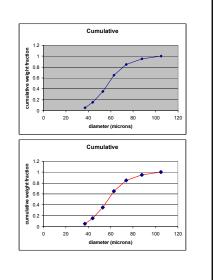


Fig. 8-1. Particle-size distribution curves for simple powders.

From Perry's Chemical Engineers' Handbook


23

Rosin-Rammler Distribution

(similar to a Weibull distribution)

$$f = 1 - e^{-\left(\frac{d}{a}\right)^n}$$

where *f* is the cumulative weight fraction under size d, and a and nare fitting parameters.

Internal Surface Areas

- Internal surface areas are measured by adsorption of some gas (N₂, CO₂, O₂, Ar)
- Units are generally m²/g
- Raw coal generally has less surface area than char (after devolatilization)
- CO₂ method generally gives larger internal surface area than N₂ method
- · No method is accepted as standard

25

Internal Surface Area Data

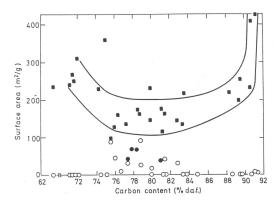
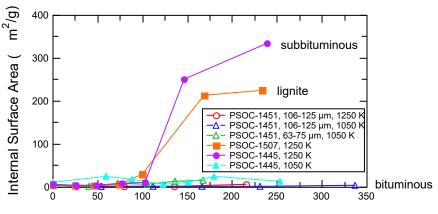



Figure 1 Variation of nitrogen and carbon dioxide surface areas of coals with carbon content \bullet N₂ (from reference 14), \circ N₂ (determined), \bullet CO₂

From Gan et al. Fuel, Vol. 51 (1972)

Particle Residence Time (ms)

Internal surface areas of char particles from different coals as a function of residence time, as measured by the $\rm N_2$ BET method. From Fletcher Sandia Milestone Report

27

Heating Value

- A common terminology has been adopted in the United States regarding the heating value of coal. The term "high heating value" is defined to be the calorific value of coal, computed as if the water (H₂O) products of coal combustion end up in the liquid form.
- · In other words,
- C ==> CO₂ (gas)
- H ==> H_2O (liquid)
- O ==> O₂ (gas), which helps burn the C, H, and S
- N ==> N₂ (gas)
- S ==> SO₂ (gas)
- $Q_h = 145.44 \text{ (\%C)} + 620 \text{ [(\%H)} (\%O)/8] + 41(\%S)$ (Btu/lb) (DuLong formula)
- $Q_I = Q_h$ 92.7 (%H) (Btu/lb)

(daf compositions)

(Q₁ and Q_h are positive when exothermic)

(from Perry's Chem. Eng. Handbook)

Heating Value (cont.)

Note:

- If the high heating value of the coal is defined to have the hydrogen products end up as H₂O (liq.), then the latent heat of moisture evaporation is automatically removed from the problem.
- % moisture = %H2O (liq.) ==> H2O (liq.) $\Delta H_{react} = 0.0$
- So:

$$\frac{Q_{h}\left(Btu/lb\ of\ wet,\ ash-included\ coal\right)}{\left(1-x_{ash}-x_{moist}\right)}=Q_{h}\left(Btu/lb\ of\ daf\ coal\right)$$

29

Other Heating Value Correlations

$$Q_{s} = 338.3C + 1443 \left(H - \frac{O}{8}\right) + 94.2S$$

$$Q_{s} = 340.6C + 14324H - 153.2O + 104.7S$$

$$Q_{s} = 339.1 \left(C - \frac{3}{8}O\right) + 238.6 \left(\frac{3}{8}O\right) + 1444 \left(H - \frac{1}{16}O\right) + 104.7S$$

$$Q_{s} = 339.1C + 1433.7H + 93.1S - 127.3O$$

$$Q_{t} = 519C + 1625H + O^{2} - 17870$$

$$Q_{s} = 340.3C + 1243.2H + 62.8N + 190.9S - 98.4O$$

$$Q_{s} = 351.7C + 1162.6H + 104.7S - 111O$$

$$Q_{s} = 341.4C + 1444.5H - \frac{1000(N + O - 1)}{8} + 93S$$

$$Q_{s} = 341C + 1323H + 68.5 - 119.4(O + N)$$

$$Q_{s} = 349.1C + 1178.3H + 100.5S - 103.4O - 15N$$

$$(10)$$

[7] Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051-63.

[8] Selvig WA, Gibson FH. Calorific value of coal. In: Lowry HH, editor. Chemistry of coal utilization, vol. 1, New York: Wiley; 1945, p. 139.

[9] Strache H, Lant R. Kohlenchemie. Leipzig: Akademische Verlagsgesellschaft; 1924.

[10] Steuer W.: Brennstoff-Chem, vol. 7, 1926, p. 344 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[11] D'Huart K.: Die Warme, vol. 53, 1930, p. 313 Chem Abstr., vol. 24, 1930, p. 5966 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

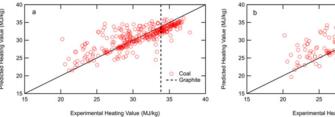
[12] Seylor A.C.: Proc S Wales Inst Engrs., vol. 53, 1938, p. 254 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

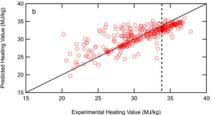
[13] Gumz W.: Feuerungstech, vol. 26, 1938, p. 322. Chem Abstr., vol. 33, 1939, p. 6556 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[14] Boie W.: Energietechnik, vol. 3, 1953, p. 309 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[15] Grabosky M, Bain R. Properties of biomass relevant to gasification. In: Reed TB, editor. Biomass gasification - principles and technology, New Jersey: Noyes Data Corporation; 1981, p. 41.

[16] IGT. Coal Coversion Systems Technical Data Book, DOE Contract EX 76-C-01-2286. Springfield, VA: NTIS; 1978.


[17] Ocheduszko S. Termodynamika stosowana (in Polish). WNT Warszawa; 1967.


(from Sciazko, M., 2012)

31

Andrew Richards Paper

- DuLong and other formulas were obtained from a limited number of coals
- Re-fit data from large number of coals using proposed model forms

Parity plots of all best model forms for coal heating value: a) Mott-Spooner re-fit and b) Boie re-fit. Both plots include a vertical dashed line indicating the heating value of pure graphite.

Richards, A., D. Haycock, J. Frandsen, and T. H. Fletcher, "A Review of Coal Heating Value Correlations with Application to Coal Char, Tar, and Other Fuels," Fuel, 118942:1-16 (2021). DOI: 10.1016/j.fuel.2020.118942