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Reading Questions

1. Please discuss the merits of the following methods for conducting devolatilization
experiments: (a) thermogravimetric analyzers, (b) heated grids, (c) drop tubes, (d) flat
flame burners, and (e) laser-heating of suspended particles. You may have to postulate
what these reactors do if they are unfamiliar.

2. The Lee Smith book states that particle temperature is important for determining
devolatilization kinetics, and that this has generally been a problem (especially at high
heating rates). Please discuss why this is so important yet so difficult to measure. You
may want to refer to the two most common types of rapid devolatilization experiments:
drop tube reactors and heated grid reactors.

3. On p. 225, Lee Smith alludes to the fact that increases in pressure lead to decreases
in tar and total volatiles yields. This can also be seen in Figure 5.110. Please explain why
this happens.

4. Tom Gale (Comb. & Flame, 100, 94-100, 1995) showed how swelling decreased as
heating rate increased between 10,000 K/s and 100,000 K/s for swelling coals. Please
explain why swelling (a) increases with heating rate up to ~10,000 K/s and (b) decreases
with heating rate after 10,000 K/s.

5. Please review the influence of the following variables on total volatiles and tar yield: (a)
heating rate; (b) ambient pressure; (c) temperature; (d) coal rank; (e) particle size. Show
the effect and give a brief explanation why each variable has the exhibited effect.




Equipment
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Figure 1. Schematic of TG/plus.

Solomon et al., Energy & Fuels, Vol. 4, No. 3, 1990




Heated Grid
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Figure 4. Heated-grid devolatilization apparatus.

Freihaut and Proscia  Energy & Fuels, Vol. 3, No. 5, 1989

Figure 5. Stainless-steel screen: (1op) screen at 315X; (bottom)
thermocouple bead on screen at 245X

Heated Grid

Pig. 3.3 The last development prototype reactor, Fig. 3.26 Batch of sample holders ready for annealing.
assembled with the sealable trap in position.
(Photo. L. Moulder)

John Gibbins Thesis, 1988




Heated Grid

Fig. 4.22 Unfired Linby coal sample. Fig. 4.23 Linby char after 1 K/s heating in belium.
Refer to wire-mesh (65 micron holes) for scale. Atm. press. Refer to mesh (65 micron holes) for scale.

John Gibbins Thesis, 1988

Drop Tube

COAL DEVOLATILIZATION a3

Fic. 1. Laminas Flow Furnace System

Kobayashi, et al., Comb. Inst., 16, 411-425 (1976)
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Flat Flame Burner System
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Laser-Heated Particle
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Pluses and Minuses of:

TGA

Heated Grid

Drop Tube

Flat-flame burner

Laser-heating of suspended particles
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Ash Tracer
Handout
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Heated Tube Reactor
(Solomon et al., Fuel, 65, 182-194, 1986)
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Figure 1 Schematic of heated-tube reactor
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Devolatilization
Rates
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Wide Discrepancy Exist in Measured Rates from Heated Grids
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Pittsburgh hv bituminous coal, 1000 K/s, zero hold time
(from Freihaut & Proscia, Energy & Fuels, 1989)
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Reaction
Rates
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Figure 6. Comparison of kinetic rates for weight loss (or tar loss). Cnpy_ri;h! © 19ll.. Elec-
tric Power Research Institute, EPRI Report No. 986-5, “Coal Devolatilization Information for
Reactor Modeling,” printed with p jon.
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Reaction Rates
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Figure 1. Comparison of reported devolatilization rates: 1. Solomon and Hamblen (1985),

2. Ubhayakar et al. (1976), 3. Badzioch and Hawksley (1970), 4. Niksa (1986), 5. Anthony
el al. (1974), and Kobayashi et al. (1976)
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Sandia Coal
Devolatilization Work

Goal: Measure particle temperature during
devolatilization
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Infrared Sizing-Pyrometry System
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Top View
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Figure 2.10 Schematic of the virtual impactor and cyclone system used in the CDL to
aerodynamically separate coal tar from char particles.




Mass Release (% of daf coal)

Mass Release (% of daf coal)
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Meaured and predicted mass release as a function of residence time for PSOC-1451 hva bituminous coal
particles (63-75 um size fraction) using the 2-step model with adjusted yield coefficients and the CPD
model for the (a) 1250 K gas condition and (b) 1050 K gas condition.
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Yields

35

Definitions

Tar = volatiles that condense at room
temperature (& pressure)

Light gas = volatiles that do not condense
at room temperature (& pressure)

Evaporation — phase change only

Pyrolysis — bonds must break, followed by
phase change

36
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Mass Released From Coal (% daf)

Comparison with ASTM Yield
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Figure 6.1 Comparison of mass release due to devolatilization in different experiments

in the CDL and CCL for five PSOC-D coals. The ASTM total volatiles yields are shown for
reference. The elemental oxygen level in the parent coal is used as an indicator of coal rank.

From Sandia Milestone Report, Fletcher & Hardesty (1992)
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Tar and Total Volatile Yields
Are A Function of Coal Rank

Yield (% of daf coal)
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Total Volatile Yield Increases with
Increasing Heating Rate
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Reaction Temperature Increases with
Increasing Heating Rate
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Particle Size Affects Yield Above ~200 um
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Pittsburgh hv bituminous coal in helium at 650-750 K/s
to 1000 °C, 5-20 s holding time (Anthony & Howard,
AIChE J, 1976)
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Total Volatile and Tar Yields Decrease with
Increasing Pressure for hv Bituminous Coals
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experiments, Anthony (1974) and Suuberg (1977), 1000 K/s to
1000 °C. CPD model predictions from Fletcher, et al. (1992)
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Effect of Pressure on Low Rank Coal
Devolatilization is Small
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Fletcher, et al. (1992)
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Analysis of Argonne Premium Coal Samples Energy & Fuels, Vol. 4, No. 3, 1990 325
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Figure 9. TG-FTIR analysis of raw and demineralized Illinois No. 6 coal during the pyrolysis cycle. (a) Weight loss (solid), sum of
evolved products (dashed), and temperature profile. (b) H;O evolution rate and integrated amount evolved. (c) Tar evolution rate
and integrated amount evolved (raw coal (solid line); demineralized coal (dashed line)). (d) CO; evolution rate and integrated amount
evolved (raw coal (solid line); demineralized coal (dashed line)). (e) Methane evolution rate and integrated amount evolved. (f) CO
evolution rate and integrated amount evolved. (g) SO, evolution rate and integrated amount evolved. (h) NH, evolution rate and
integrated amount evolved. (i) CyH, evolution rate and integrated amount evolved. (j) COS evolution rate and integrated amount
evolved. All weight losses are on an as received basis.
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Gas Species
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Swelling during
Pyrolysis
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Concept of Metaplast

Heat +tar + It_arht
—p + light gas
' —_— . + light gas \ onte

extractable portion .
extractable portion extractable portion

* A large pool of “liquid” material forms.
» Low molecular weight metaplast — tar
* High molecular weight metaplast — char
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Evidence for increase
in extractables
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Steam Gasification of Wyodak Coal
(2.5 atm)

* 90 ms char fully pyrolyzed
— CPD predicts ~62% MRy

90 ms
+ Little change in structure from 208-868 ms
— Linear gas temperature decrease of ~300 K from
peak over 14 inches
« Highly porous chars 208 ms
— N, surface area of 360 m?/g at 208 ms
* Zone Il behavior near burner
— Both d; and p, changing in first 200 ms
— Zone lll calculations predict 100% conversion in
~60 ms 868 ms
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Pittsburgh #8 Swelling during Pyrolysis
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Figure 5.31 Scanning electron micrographs of 106-125 um PSOC 1451d hva
¥ Pitisburgh bituminous coal particles collected at 30 mm, 70 mm and
90 mm from the injecter for the 1050 K gas temperature condition.
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Cross-Sections of Pitt 8 Coal during Pyrolysis
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Figure 5.32 Cross-section micrographs of 106-125 um PSOC 1451d hva
Pittsburgh bituminous coal particles collected at different position
in the flow reactor at the 1050 K gas temperature condition.

Effect of Heating Rate at 1 atm
(from Shurtz PhD Dissertation)
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Zygourakis, K., Energy & Fuels, 7(1), 33-41 (1993).

Gale, T. K., C. H. Bartholomew and T. H. Fletcher, Combustion and Flame, 100(1-2), 94-100 (1995).
Eiteneer, B. et al., 26! Annual International Pittsburgh Coal Conference, Pittsburgh, PA (2009).
Shurtz, R. C., K. K. Kolste and T. H. Fletcher, Energy & Fuels, 25(5), 2163-2173 (2011).
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Swelling at Elevated Pressures
(from Shurtz paper in review 2012)
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Changes in Sawdust Shape

Raw sawdust (believed to be
Pine, but definitely a
softwood)

Sawdust char turned

spherical during high T

heating rate pyrolysis

Magnified char
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Changes in Char
Composition
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Chemical Changes during Pyrolysis
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