

Primary Sources of Energy

- Fossil
 - Oil
 - Coal
 - Gas
- Nuclear
 - FissionFusion
- Solar
 - Hydropower
 - Biomass
 - Photovoltaic
 - Solar thermal
 - Wind
- Geothermal

Renewables

Non Renewables

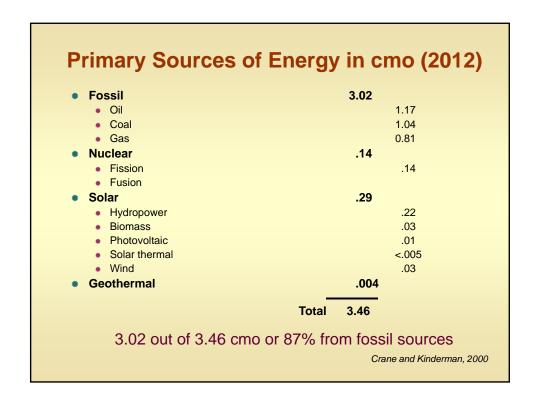
How much do we consume?

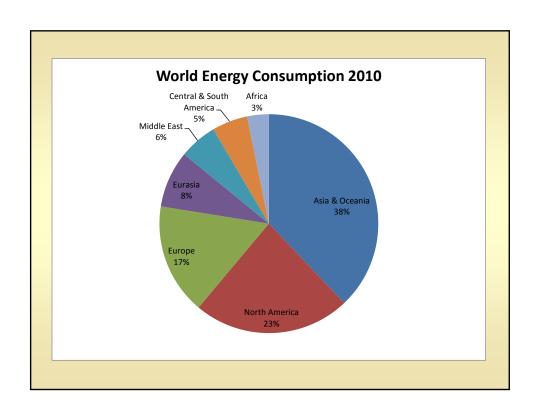
- Worldwide consumption rate (per second)
 - * 37,000 gals of oil
 - 150 tons coal
 - 3.2 Mcf gas
- Units must have come from a veritable tower of Babel!
 - * Therms (or BTUs), Quads, MWh, Barrels (bbl), Tons, Tcf ...
- Lack of uniform units presents a serious impediment to meaningful discussion
- Further confusion caused by the necessity to use millions, billions, trillions, and quadrillions of whatever

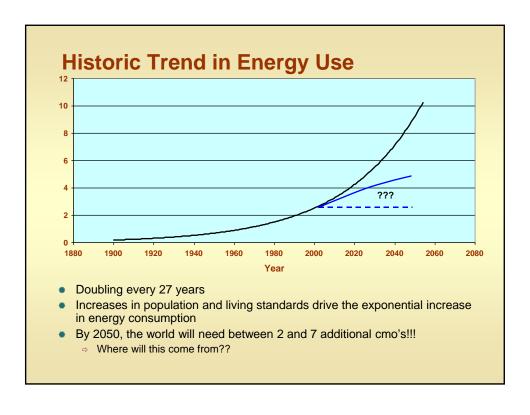
Crane and Kinderman, 2000

mile

Idea: Cubic Mile of Oil Equivalent

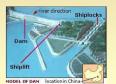

- mile
- A unit that can be visualized
- 1 cmo


 1 trillion gallons of oil
- Also, 1 cmo
 ≅ current annual worldwide oil consumption


1 cmo is equivalent to:

- 26 Billion (10⁹) bbl oil
- 6 Billion (109) tons of hard coal
- 49.5 Trillion (10¹²) KWh electricity
- 153 Quadrillion (10¹⁵) Btu (Quads)
 - 1 Btu ≅ energy from a burning match

Crane and Kinderman, 2000


Switching to Non-Fossil Energy

- What do we do?
 - Hydro
 - Nuclear
 - Wind
 - Biomass
 - Photovoltaic

Let's estimate what it would take to get 1 cmo from any of these sources by 2050

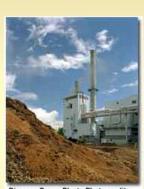
Crane and Kinderman, 2000

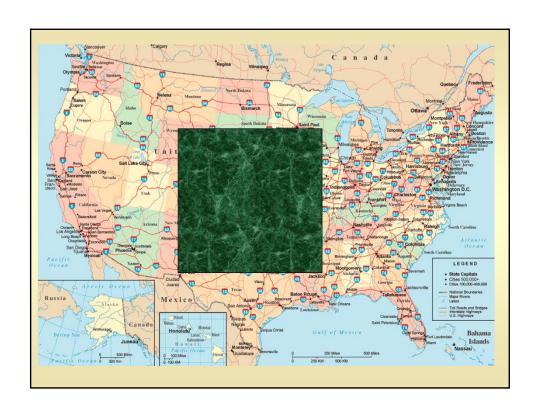
Hydroelectric – to get 1 CMO

- Three Gorges Dam is 18.2 GWe
 - 9 times size of Aswan Dam
 - \$30 billion (US)
 - * 15 years (1994 to 2009)
 - Displaced 1 million people from homes
- 18.2 GWe is .003 CMO!
- Need over 300 such dams to get 1 CMO!
 - By 2050, need 1 completed every 2 months

Nuclear – to get 1 CMO

- Diablo Canyon has two reactors of ~1100 MW each
 - Operating for 15 years
 - Studies on earthquake survivability
 - One of two operating nuclear plants in CA
- Provided 1.72 × 10⁷ MW-hrs of electricity in 2003
- 0.00039 CMO
- Need over 2500 such facilities to get 1 CMO!
 - By 2050, need ~5 facilities completed every month


Wind - to get 1 CMO

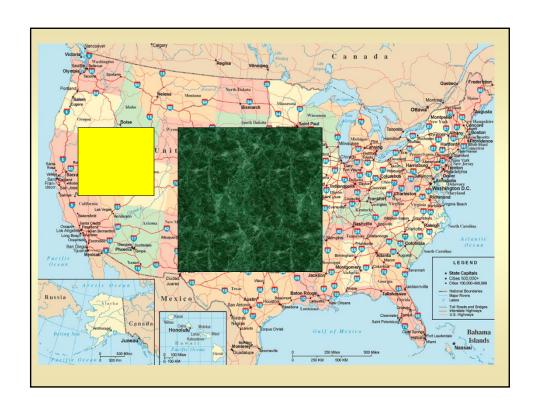

- Denmark is putting 2 MW windmill/turbines into the North Sea
 - 64 m high at hub, 74 m rotor diameter (210 ft high at hub, 243 ft diameter)
- 10 turbines provided 89 x 10³ MW-hrs of electricity for Copenhagen
- ★ 2 × 10⁻⁷ CMO per windmill
- Need over 5 million such facilities to get 1 CMO!
 - By 2050, need over 300 such large windmills completed every day!
 - Problems for 2/3 of time wind is not right

Biomass - to get 1 CMO



Biomass Power Plant - Photo credit U.S. Department of Energy, Energy Efficiency & Renewable Energy Network (EREN)

- Average of 15 tons of biomass per acre per year (in U.S.)
- Average energy content of 7500 Btu/lb
 - Small power plants with low conversion efficiency (~20%)
 - Extra ~75% fossil fuel needed to convert to liquid fuels
- 1.5 × 10⁻⁹ CMO per acre (not including efficiency of conversion)
- Need over 680 million acres to get 1 CMO!
 - ~1 million square miles, or a square 1000 miles by 1000 miles
 - Impact on food prices (especially meat, wheat, etc.)



Photovoltaic – to get 1 CMO

- Quite expensive to get electricity
- Not bad for hot water
- Average 80 kW-hr/m² of power per year
- * 1.8 × 10⁻¹² CMO per m²
- Need over 200,000 square miles of photovoltaics to get 1 CMO!
 - A square 450 miles by 450 miles

This analysis was for 1 CMO by 2050!

The world may need 2-7!

We have an enormous task ahead of us...

What about fossil fuel options?

Coal – to get to 1 CMO

- IPP plant near Delta, UT
 - Two 975 MW facilities
 - Each burns ~1 million pounds/hr of coal
 - All converted to DC power and shipped to the LA basin, then reconverted to AC power
- Assume 36% efficiency, 97% uptime
- 16.6 million MW-hrs of power per year
 - .00103 CMO/yr
- Need 968 such facilities by 2050 to get 1 CMO!
 - 19 plants per year for 50 years, or
 - 1.6 plants per month

This is why we use fossil energy!

- Most projections show that the percentage of fossil fuel use will stay relatively constant
 - We still have to build a lot of facilities!
 - · Rapid building in China
 - Construction prices have risen 25-30%
- Increased renewables will keep pace with increased energy use and only increase slightly as a percentage of the overall energy use

What Should Be Done?

- Define goals
 - Cost?
 - Environment?
 - National security?
 - Reduce dependence on unstable/unfriendly countries?
- Continue expanding renewable energy using economic judgment
 - How much extra are people willing to pay for fossil fuel alternatives?
- Make fossil fuel use as clean and efficient as possible
 - · Rise in natural gas costs -- home heating costs rise
 - Options for cleaner coal IGCC, oxyfiring, CO₂ sequestration
 - Alternate liquid fuels biodiesel, (ethanol), coal-to-liquids, biomass-to-liquids
- Nuclear
 - Projected fuel shortage in ~30 years without breeder technology
 - Wastes from breeder technology much smaller
 - handling large quantities of plutonium is a potential terrorist threat

What Else Should We Do?

- Don't make rash statements or decisions, such as:
 - Eliminate dependence on foreign oil
 - · Stop using fossil fuel
 - Require 50% of motor fuel from renewable sources
 - Require H₂ as a fuel for a specified fraction of energy
- Continue to search for economical renewable energy
 - Criteria for use of renewables
 - Must be economic without subsidies
 - Must not increase use of fossil fuels
 - Should not increase prices of other sectors (like food)
 - Must not create additional environmental problems
 - Depleted forest area
 - · Oxygen-starved area in Gulf of Mexico at mouth of Mississippi River
- Increase use of unconventional oil
 - · Oil sands, oil shale, heavy oil
 - Coal conversion to liquid fuels