

Class 10 Char Oxidation

Char Oxidation Concepts

- 1. χ
- 2. CO/CO₂ ratio
- 3. nth order
- 4. α
- 5. T dependence
- 6. d_p dependence
- 7. $CO \rightarrow CO_2$ in boundary layer (2-film model)
- 8. energy balance / iteration

- 9. Thiele modulus
- 10. Ian Smith reactivity correlation
- 11. TGA rate vs high T rate
- 12. Catalytic effects at low T
- 13. Pressure effects
- 14. Correlations vs. chemistry
- 15. Late burnout ideas
- 16. N-release during char oxidation

Order of Presentation

- 1. Basic concepts (film diffusion, surface reaction), $d_p \& T$ dependence, CO/CO₂ ratio, α , nth order, χ , Bob Hurt parameters
- 2. Intrinsic reactivities, Thiele modulus, Reade-Hecker approach
- Catalytic effects, pressure effects, correlations vs elemental composition, late burnout

Concepts

- Question 1 (definitions)
 - film diffusion
 - surface reaction
 - pore diffusion
- Question 2 (rate expressions)
 - pure film diffusion control
 - pure surface reaction control
- Question 3 (1st order rate expression)
 - surface rxn = diffusion rate through film
 - Units must match (grams of C reacted/m²·s)

	Temperature*	Rxn controlled by	What happens to the particle		
Zone 1	Low (ca. 1100 - 1300K)	Intrinsic rxn rate inside pores	Particle burns from inside. Particle density decreases while particle size remains the same.		
Zone 2	Medium (ca. 1300 – 1600K)	Both diffusion & reaction kinetics. Consumption of the reactant gas exceeds the rate of internal diffusion. The reactant is consumed before it reaches the particle core.	Particle burns from both inside and outside. Particle size and density both decrease.		
Zone 3	High (ca.1600 – 2000K and up)**	Film diffusion controls. Reactant gas does not have time to diffuse into the particle before it reacts at the particle surface.	Particle burns from outside. Particle diameter decreases and reactivity/porosity remain constant.		

Questions 3-4

- 3. Derivation of Eq. 6.19
- 4. What if $n \neq 1$

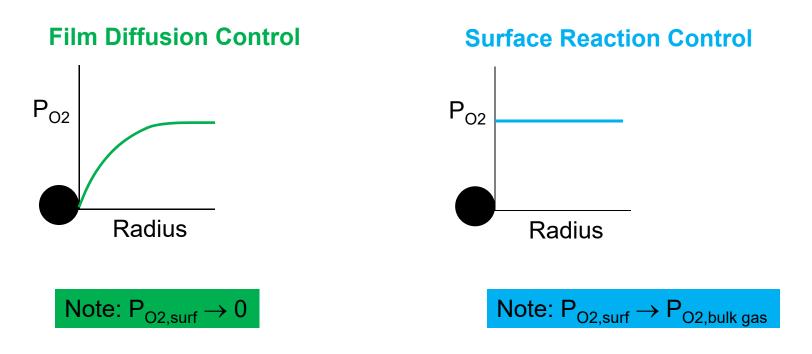
5. Effects of CO_2 Formation at Surface $C + O_2 \rightarrow CO_2$

- Affects the consumption rate of O₂
 More O₂ is used per C consumed
- Net heat of reaction increases as CO₂ production increases
- CO₂ a possibly a gasification agent

Heats of Reaction

- $C(s) + \frac{1}{2}O_2 \rightarrow CO$ $\Delta H_c = -26.4$ kcal/mol of C
- $C(s) + O_2 \rightarrow CO_2 \quad \Delta H_c = -94.052 \text{ kcal/mol of C}$ EXOTHERMIC!!
- CO + $\frac{1}{2}O_2 \rightarrow CO_2$ $\Delta H_c = -67.7$ kcal/mol of C
- In other words,
 - $\frac{1}{3}$ of heat for C \rightarrow CO
 - $^2\!\!/_3$ of heat for CO \rightarrow CO $_2$

Should the heat of reaction for char be the same as graphite?


The χ Factor

• **Definition:**
$$\chi = \dot{r}_p / \dot{r}_{p,\text{max}}$$

where $\dot{r}_{p,\text{max}}$ is the maximum rate defined by film diffusion limitations

- Useful to know how close you are to the diffusion limit
 - $-\chi => 1$ when at the diffusion limit
 - $-\chi << 1$ when controlled by surface reaction

Radial Profiles of O₂ Near Particle Surface

Case 1:
$$T_p$$
 specified
 $\dot{r}_p'' = k_{diff} \left(\rho_{og} - \rho_{os} \right)$
 $\dot{r}_{p,\max}'' = k_{diff} \left(\rho_{og} \right)$
 $\therefore \chi = \frac{k_{diff} \left(\rho_{og} - \rho_{os} \right)}{k_{diff} \left(\rho_{og} \right)} = 1 - \frac{\rho_{os}}{\rho_{og}} = 1 - \frac{P_{os} / T_s}{P_{og} / T_g}$
 $\rho_{os} = density at surface = \frac{P_{os} \cdot MW_{os}}{R \cdot T_s}$

9

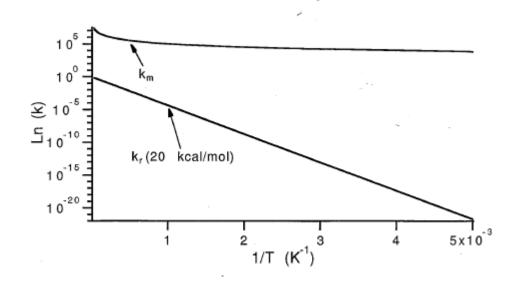
•

Case 2: T_g **specified**

- Constant T_g , but T_p changes with \dot{r}_p''
- The energy equation becomes:

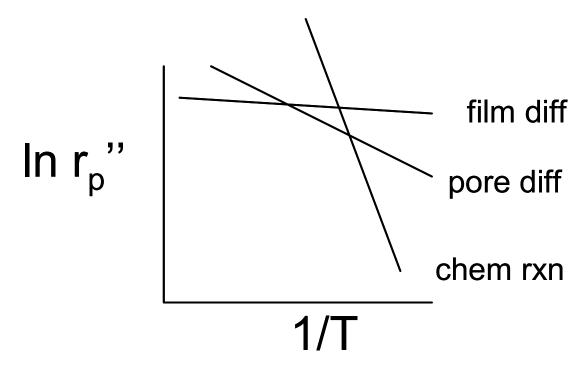
$$0 = q_c + q_{rad} + \dot{r}_p'' \Delta H_{rxn}$$

so as *r*_p["] increases, the particle temperature increases (at constant T_α)


$$\therefore \dot{r}_{p,\max}'' = k_{diff} \Big|_{T_{\max}} \rho_{og}$$
$$\chi = \frac{k_{diff} \left(\rho_{og} - \rho_{os}\right)}{k_{diff,T_{\max}} \left(\rho_{og}\right)}$$

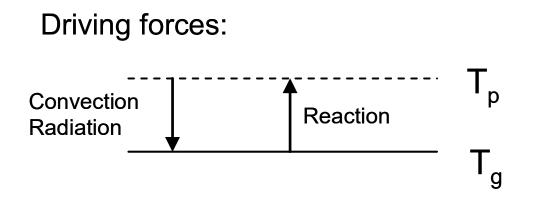
What is the temperature dependence of the film diffusion limited rate?

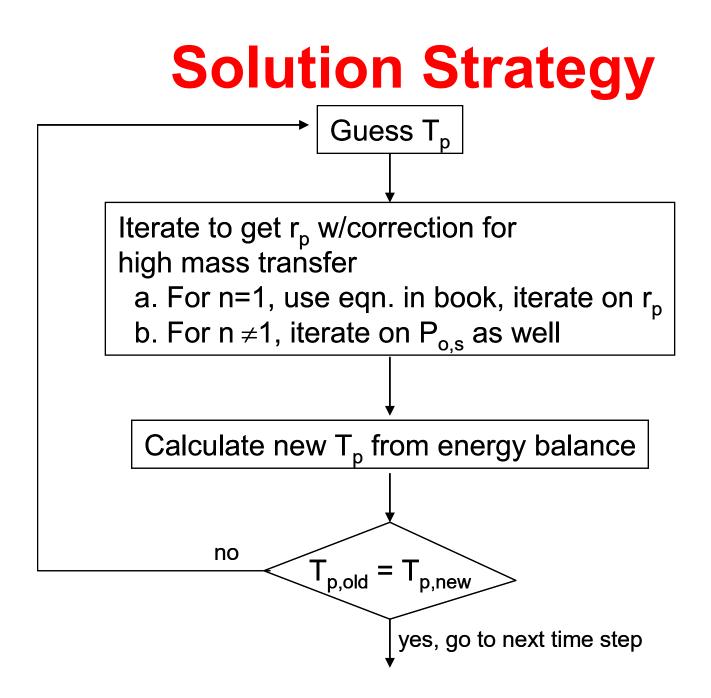
$$\dot{r}_{02}^{\prime\prime} = k_m \rho_{02,g} = \frac{2D_{02}}{d_p} \rho_{02,g}$$


$$D_{02} \sim T^{1.67}$$

$$\rho_{02,g} \sim \frac{1}{T}$$

Char Combustion Zones


- As $\chi \rightarrow 1$, Zone III
- As $\chi \rightarrow 0$, Zone I
- Everywhere else, Zone II



Particle Energy Balance

$$m_p C_p \frac{dT_p}{dt} = hA_p \left(T_g - T_p\right) + \sigma \varepsilon_p A_p \left(T_w^4 - T_p^4\right) + \sum r_{p,i} \Delta H_{rxn,i}$$

• We usually assume steady-state for simple problems, so $\frac{dT_p}{dt} = 0$

Shortcuts

Diffusion coefficients

 $-Sh = k_{diff} d_p / \mathcal{D}_{ox}$ (= 2.0 for small particles)

- How do you get \mathscr{D}_{ox} ?
 - Chapman-Enskog
 - Really $\mathscr{D}_{ox,m}$, but perhaps $\mathscr{D}_{ox,N2}$ might work

	TABLE T	.6 VISCOS	ITY, THERM	AL COMOUCTIV	ITY AND DIF	FUSION COEF	FICIENT PA	RAMETERS	
$\mu = bT^{0.6756}, gm/cc-sec \lambda = cT^{d}, cal/cm-sec-^{\circ}K D_{i,N_2} = f_{i,N_2}T^{1.67}/P, cm^{2}/sec$									
Species i	bx10 ⁶	cx10 ⁷	d	f _{i,N2} x10 ⁵	Species	bx10 ⁶	cx10 ⁷	d	f _{i,N2} ×10 ⁵
С	3.5360	25.799	0.6507	2.310	C2H6	2.3031	0.3522	1.3129	1.132
CH	3.2224	14.067	0.7749	2.106	C ₃ H ₄	1.9712	1.8986	0.9891	0.6163
CN	3.4268	7.5857	0.7761	1.488	н	1.5426	137.20	0.6484	8.171
CO	3.7486	7.3710	0.7820	1.500	H2	1.8405	51.840	0.7681	5.525
CH2	2.9280	3.9953	0.9793	1.928	HIN	3.6149	12.567	0.7837	2.050
CHN	2.7605	0.7191	1.1179	1.317	HO	4.1150	14.804	0.7601	2.030
CHO	3.3357	3.9372	0.8992	1.393	H ₂ N	3.2281	4.7781	0.9370	1.865
C02	3.6078	2.3291	0.9386	1.191	H ₂ 0	0,5083	0.8304	1.1748	1.905
CH3	2.6982	1.9829	0.9998	1.781	HO2	3.2964	4.2967	0.8862	1.301
CII20	3.2320	1.7205	1.0485	1.350	н _з м	3.4436	0.5748	1.2642	1.849
CH4	2.5100	1.1111	1.1778	1.658	N	3.4672	2.0981	0.6581	2.089
C2	3.1695	24.056	0.6264	1.491	N ₂	3.6974	7.6893	0.7722	1.488
C2112	2.5695	1.8791	1.0265	1.291	NO	4.1530	7.5012	0.7870	1.550
C2H3	2.5436	0.5798	1.2231	1.260	NO2	3.7247	3.9255	0.8565	1.187
C ₂ H ₄	2.5163	0.5798	1.2231	1.229	0	4.0387	22.219	0.6547	2.076
C2H5	2.4062	0.3522	1.3129	1.179	02	4.4203	7.1352	0.7968	1.523
					-				

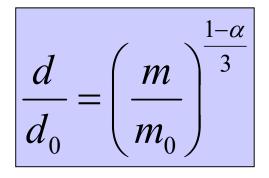
Diameter & Density Changes

$$\frac{m}{m_0} = \frac{\rho}{\rho_0} \left(\frac{d}{d_0}\right)^3$$

- We get *m/m₀* from the rate equation, but this does not tell us whether we have:
 - constant density burning
 - constant diameter burning
 - some combination
- Let's define a variable called α as follows:

$$\frac{\rho}{\rho_0} = \left(\frac{m}{m_0}\right)^{\alpha}$$

Diameter vs Density (cont)


- $\boldsymbol{\alpha}$ is the burning mode parameter
 - For constant density, α = 0
 - For constant diameter, α = 1
- Combining definitions,

$$\frac{m}{m_0} = \left(\frac{m}{m_0}\right)^{\alpha} \left(\frac{d}{d_0}\right)^{\beta}$$

which simplifies to:

$$\left(\frac{m}{m_0}\right)^{1-\alpha} = \left(\frac{d}{d_0}\right)^3$$

and then

Bob Hurt Model (CBK)

(Question 7)

CO/CO_2 ratio

Table 2.2 Char Combustion Parameters and Selected Properties for the Suite of Coals Investigated

Seam Name; PETC Designation	Reported Rank (ASTM)	%Vol. Matter (dmmf)	Calorific Val., mmf eq. moist (kJ/gm)	Elemen. Carbon Content (wt-%)	Preexp. Factor, A (g-carb./cm ² -s-atm ^{0.5})	Activation Energy E (kcal.mol)	Product [†] Ratio Correlation	mode of	swelling	on Parameters initial carbon density (g/cc) ρ _c	Standard ^{††} burning rate q (g/cm ² -s)	Characteristic ^{†††} burnout time ^T 30 (sec)
Pocal-ontas #3 PSOC-1508D	low vol. bitum.	16.21	35.74	89.0	114	30.0	1	0.3	1.21	0.63	1.2 x10 ⁻³	.0.63
- PSOC-1516D	g low vol. bitum.	18.55	34.84	82.8	10.5	20.5	2	0.0	1.27	.48	2.1 x10-3	0.29
Pittsburgh #8 PSOC-1451D	hvA bitum.	38.81	34.18	82.6	29	24	3	0.1	1.1	0.40	2.4 x10 ⁻³	.0.19
Hiawatha PSOC-1502D	hvC bitum.	44.24	29.39	79.6	*	*	1 .	0.1	1.16	0.44	6.5 x10 ⁻³	0.070
Illinois #6 PSOC-1493D	hvC bitum.	42.91	29.18	78.2	22.4	22.5	4	0.45*	1.06*	0.39*	3.3 x10 ⁻³	0.11
Blue #1 PSOC-1445D	hvC bitum.	47.86	27.81	77.9	3.8	15.3	1	0.25	1.16	0.26	4.5 x10 ⁻³	0.064
Dietz PSOC-1488D	Subbit.	43.88	23.13	74.4	*	_*	5	0.25	1.04	0.41	6.7 x10 ⁻³	0.061
Smith-Roland PSOC-1520D	Subbit.	61.96	21.48	66.4	*	*	2	0.3	0.85	0.62	7.2 x10-3	0.069
Lower Wilcox PSOC-1443D	Lignite A	78.22	17.88	67.9	44	21.9	5	0.12	0.92	0.68	5.6 x10 ⁻³	0.11
Beulah PSOC-1507D	Lignite A	45.73	17.26	63.0	_*	*	2	0.2	0.92	0.63	7.2 x10 ⁻³	0.078

Combustion rates of chars from these coals are limited by the rate of diffusion of oxygen from the bulk gas to the particle surface (Zone 3 combustion) under the experimental conditions.


** Values for 75 - 106 µm size fraction. (All others are for 106 - 125 µm size fraction.)

CO/CO₂ product ratio under the experimental conditions correlated by the empirical relation: (moles-CO)/(moles-CO₂) = $A_c \exp(-E_c/RT_p)$. Correlation type 1: $A_c = 3 \cdot 10^8$, $E_c = 60$ kcal/mol.; 2: CO only; 3: $A_c = 4 \cdot 10^4$, $E_c = 30$ kcal/mol.; 4: $A_c = 2.5 \cdot 10^8$, $E_c = 60$ kcal/mol.; 5: $A_c = 5 \cdot 10^8$, $E_c = 60$ kcal/mol.; 5: $A_c = 5 \cdot 10^8$, $E_c = 60$ kcal/mol.; 5: $A_c = 5 \cdot 10^8$, $E_c = 60$ kcal/mol.; 7: $A_c = 10^6$, $E_c = 10^6$ kcal/mol.; 5: $A_c = 5 \cdot 10^8$, $E_c = 60$ kcal/mol.; 7: $A_c = 10^6$ kc 1

11 Burning rates in 6 mole-% oxygen at 1500 K gas temperature with radiation to cold walls (g-carbon/s-cm2-external surface)

tit Characteristic time for 50 wt-% carbon conversion of char (volatile matter free basis) in 6 mole-% oxygen at 1500 K gas temperature with radiation to cold walls. Values computed for each coal from A, E, n, Ac, Ec, a, w, and pco.

From Hurt and Mitchell, 1992

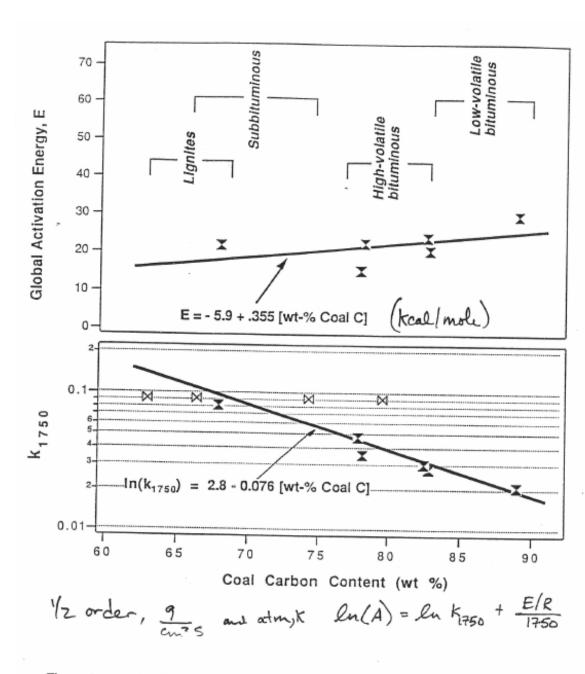


Figure 2. The Sandia Coal Char Reactivity Correlation. Closed symbols: measured values of k₁₇₅₀ and E; Open symbols: lower limits on k₁₇₅₀ determined for those chars reacting at diffusion-limited rates during kinetic experiments.

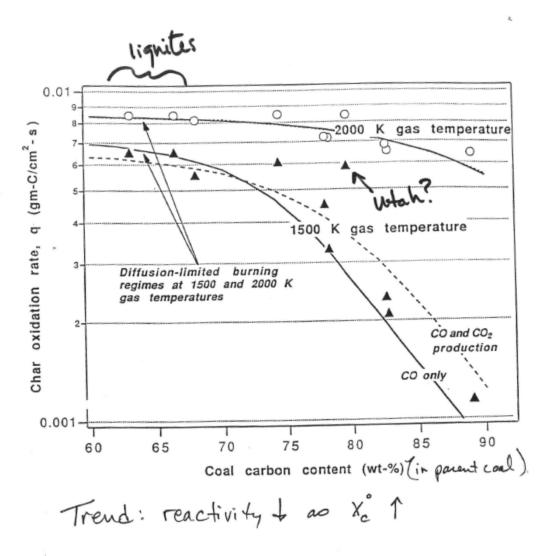
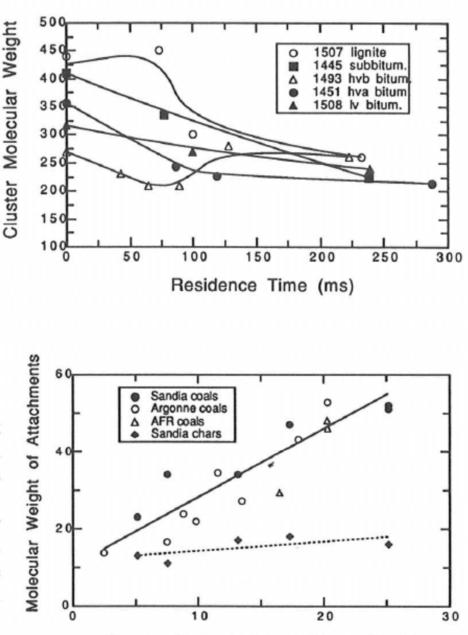
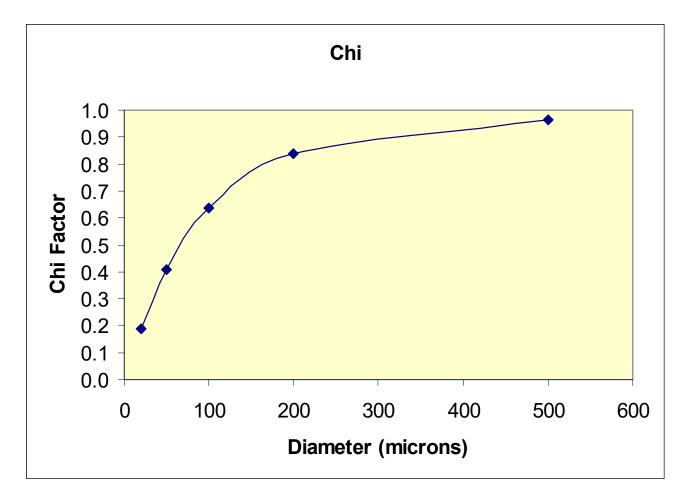



Figure 1. Char combustion rates in selected gas environments as a function of parent coal carbon content. *Points:* rates calculated from global kinetic parameters reported in Table 1, Δ – 1500 K gas temperature, O - 2000 K gas temperature. *Curves:* rates calculated from the correlation proposed in Eq. 6. Solid curve: CO assumed to be sole heterogeneous product, Dashed curve: limited CO₂ production assumed in accordance with Eq. 3 with A_c = 3 ·10⁸ and E_c = 60 kcal/mol.


Figure 113. Average cluster molecular weights in coals and chars collected in the 1250 K gas condition in the Sandia Coal Devolatilization Laboratory (CDL), determined from ¹³C NMR analyses. Parent coals are represented at 0-ms residence time (Fletcher *et al.*, 1992b; Fletcher and Hardesty, 1992). Fourdigit numbers refer to PSOC number (Penn State Data Base) (Fletcher *et al.*, 1992b).

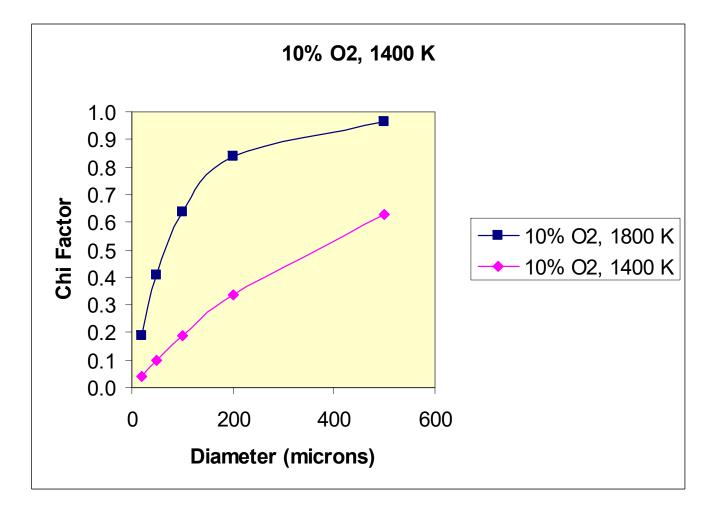
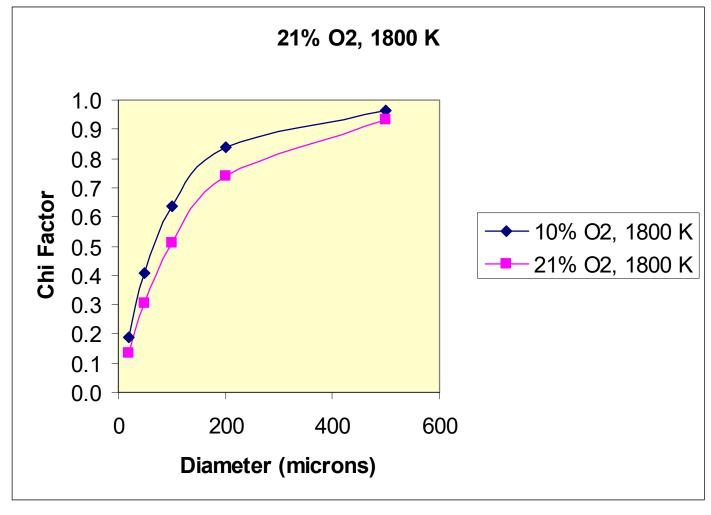
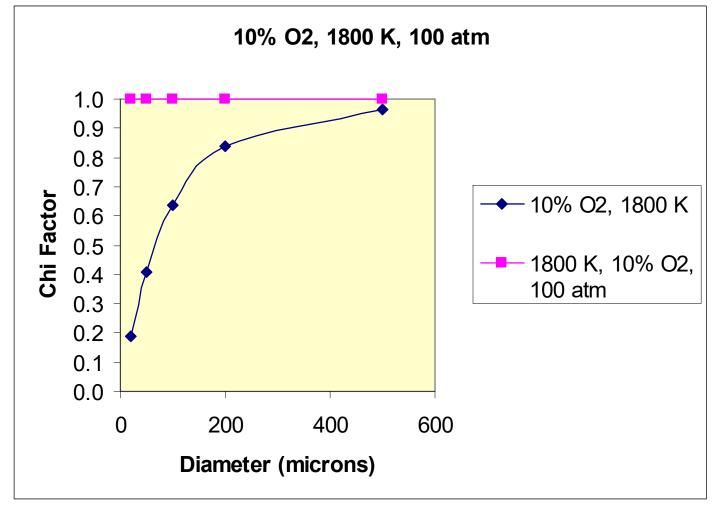
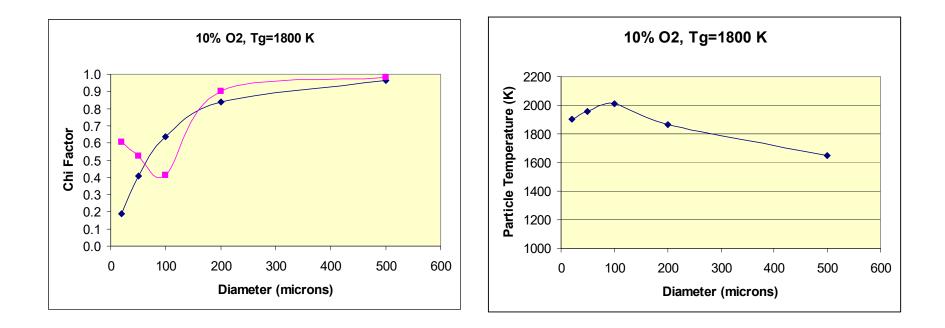

Oxygen Content of Parent Coal (% daf)

Figure 114. Average molecular weight of attachments to aromatic clusters in unreacted and fully devolatilized coals as a function of coal type. Data for non-Sandia coals are taken from Solum *et al.* (1989a). Fully devolatilized chars are from the longest residence time (\sim 250 ms) in the 1250 K gas condition in the Sandia CDL (Fletcher *et al.*, 1992b; Fletcher and Hardesty, 1992).


Question 8 (1800 K, 10 mol% O₂)


Question 9a


Question 9a

Question 9a

Problem 10

