Schedule

- Mineral matter occurrence in coal (today)
- Ash transformation and deposition (Monday, July 9)
- Nitrogen/NO_x (Wednesday, July 11)
- Industrial Scale (Monday, July 16)
- Final oral exam on Wednesday, July 18

Mineral Matter Occurrence in Coal

- Mineral matter greatly affects boiler design
 Analytical Methods
 - A. Chemical Fractionation
 - B. SEM and related techniques
 - Principles of operation
 - Potential problems
 - Examples

- 3. General Occurrence
 - A. Discrete minerals• Types
 - Examples
 - B. Organically-
 - Associated Cations
 - Types
 - C. Cations dissolved in pore water
 - D. Organic Sulfur
 - E. Other

Why Study the Inorganic Contents of Coal

- A major component of coal – 6-23 wt%
- · Behavior drives furnace design
 - "Of all the coal properties, coal mineral matter generally has the greatest effect on boiler design and operation"
- Deposition affects plant operation – Heat transfer reduced
 - Erosion and corrosion of equipment
 - Removal and disposal of residue

Occurrence of Inorganics

- Discrete Minerals
- · Organically-associated cations
- · Cations dissolved in pore water
- Sulfur
 - Inorganic
 - Organic
- Other

Analysis Techniques

Chemical Analysis Methods

- High temperature ashing
- Low temperature ashing
- Chemical fractionation
- Scanning electron microscopy/ microprobe analysis
- ICP (inductively coupled plasma)

ASTM Ashing

High Temperature

- Oxidation at 750°C
 - Alters some
 - inorganics •
- Empirical correlations
- Average composition

 AA (ICP)
 - X-Ray (XRF)

Low Temperature

- Oxidation in O₂ plasma
 Good for low rank
- coals
- Too slow for high rank coals
- Average composition

Scanning Electron Microscopy

- CCSEM Identify and size discrete minerals
- EDAX elemental analysis used to infer mineral species
- Can give included/excluded and association data
- Large number of analysis points required for statistically valid results

ICP

- Fully ash the sample (no carbon)
- Dissolve sample in acid with lithium borate flux (Li_2B_4O_7)
 - Need sample to be totally dissolved
- Inject liquid spray through plasma (10,000 K)
 - Ash reverts to elements
- During rapid cool down, look at atomic adsorption spectra

Question 1

• Please describe the CCSEM technique for mineral characterization.

makin set per	initions of Inorganic Particle Types. Values	
TADIO 5-5. Det	Percents of the Total X-ray Counts for the	
=10	retents of Interest.	
ETe	sents of interest	
Quartz	A1<5, 51280	
Iron Oxide	51+10, <u>5+5</u> , Mg+5, A1+5, Fm200	
Aluminosilicate	K <s, ca<s,="" fe<s,="" si="">15, A1>15, Si+A1280</s,>	
Ca Al-Silicate	5<10, Ca>K, Ca>Fe, Ca>S, A1>10, S1>10, Ca+A1+S1280	
Fe AT-Silicate	5<5, Fe>Ca, Fe>K, Fe>S, Si>10, A1>10, Fe+A1+Si280	
K A1-S111cate	K2C4, K2Fe, K25, 51210, A1210, K+51+A1280	
Ankerite	Sil5, Mg <fe, ca="" fez20,="">20, Ca=Fe=Mgz80</fe,>	
Pyrite	Cas10, 10:Fe=40, 5:10, Fe=5:80	
Gypsum	T1+8a<12, S1<10, S>20, Cax20, Ca+5x80	
Barite	Fe<10, Cas5, Sa20, Ba+5+T1a80	
Gypsum/Barite	Fe<5, Car5, Bar5, Tir5, Sr20, Ca+Be+T1+Sr80	
Apatite	P220, Ca220, Ca+P280	
Ca Silicate	A1s10, Ss10, S1a20, Caal4, Ca+S1a80	
Gyp/Al Silicate	A125, 5125, 525, Ca>5, Ca+5+A1+51280	
Ca Aluminate	5s10, 51s10, A1z15, Caz20, Ca+A1z80	
Spinel	Ca<5, 51<5, A125, A1+Hg+Fe280	
Alumina	A1280	
Calcite	5<10, Mg<5, 51<5, P<15, T1<5, Ba<5, Ca>80	
Rutile	5<5, T1 + Baz80	
Dolomite	Hg>10, Ca>10, Ca+Hg280	
Pyrrhotite/FeS	0. 10±5<40, Fe-5280	
⇒ KC1	Ka30, C1a30, K+C1a80	
Ca Rich	65sCa=80 -	· · · · · · · · ·
S1 R1ch	65±51<80	from Hurley's dissertation
Unknown	All other compositions	

Question 3

• What is the chemical fractionation technique for analyzing mineral matter, and why is it useful to industry? Please explain Table 4.1.

Chemical Fractionation

- Determines quantity of organically-bound inorganics
- Successive washing technique
 - Water water solubles (e.g., salts)
 - Ammonium acetate ion exchangeable
 - HCI coordination complexes and acid solubles (e.g. carbonates)

Organically-Associated Cations

- Salts of carboxylic acids
- Na, Mg, Ca, K, Sr, Ba (Fe, Al)
- Up to 60% of total inorganics in some low rank coals

Question 4

• Explain what is meant by excluded versus included mineral grains, and why this may be important.

Discrete Minerals

- Small rocks in coal
- Included or excluded
- Major inorganic constituent
- Associations may play role in ash composition

• Ca (C ha • In di	alci aSave pra	um i O4 i the ictic	s on s for high e, or hcy h	e o me est nly f	f the d). I low he	e sp Bas ter low	ecie ed o npe ran	es th on b ratu k co	at i ulk re f	may Ca ouli ten	r cau ana ing p id to
Cuil	500,	ALO,	Fe _i O ₂	n of	P/O,	CaO	nmend MgO	Na/O	в. (V	50,	7 Total ath ⁴
A Darry Descent											
0000	44.8	24.1	17.3	1.3	0.1	4.2	1.6	0.0	2.7	3.9	12.0
	46.6	25.1	18.0	1.4	0.1	4.4	1.7	0.0	2.8	0.0	
2. Wyodak (SabC)	28.7	15.5	10.2	1.2	1.2	15.1	3.6	1.5	0.8	22.0	9.8
a start M. COVER	25.9	19.9	15.1	1.5	1.5	7.0	1.7	1.7	10	4.8	16.6
3. planes #6 (FIVC.B)	46.9	19.6	19.3	11	6.2	8.5	1.3		3.1		10.0
4. Pimburgh (HVAB)	45.9	25.2	19.5	1.2	0.0	2.6	1.3	0.0	2.1	2.0	9.3
	45.8	25.7	19.9	1.2	0.0	2.7	1.3	0.0	2.1	0.0	
5. Pscahowias #3											
(LVB)	32.0	20.1	15.8	1.9	- 14	12.8	20	2.0	0.5	12.4	5.8
4 Bial Canon		-2.9	-6.0	-	-4.0	-48	- 10				
(IVBR)	45.9	16.6	10.0	1.2	0.3	9.9	1.5	3.6	1.2	9.8	6.1
	50.9	18.4	11.1	1.3	0.3	11.0	1.7	4.0	1.3	0.0	
7. Lewiston-Stockton											
(MVB)	60.5	26.1	4.7	1.9	0.0	1.0	1.5		3.7	0.5	29.6
a Barbh Zar	-0.8	26.2	4.7	1.9		1.0	1.5		3.7		
(Linh)	21.5	13.5	10.8	1.0		16.1	4.0	6.2	0.2	25.7	6.9
	28.9	18.2	14.6	13	1.2	21.8	5.4	83	0.3	0.0	
9. Lower Wilcox											
(LigA)	44.1	21.2	3.8	2.0	0.3	15.3	3.2	0.0	0.5	9.6	22.9
	48.8	23.5	4.2	2.2	0.3	16.9	3.5		0.6	0.0	
n. men (nobili)		10.8		11	- 27	11.4	- 13	- 22	13	14.7	
Back Montain	-0.3			-28		-58					
(An)	45.9	35.8	9.6	2.5	0.1	1.1	1.5		2.0	0.6	6.6
	47.2	36.0	9.7	2.5	0.1	1.1	1.5	0.0	2.0	0.0	
 Lowina - Stacking (AVW) Bashch - Zay' (Japk) Lower Wilcos (Japk) Lower Wilcos Bashch Mountain (Japk) Bashch Alsountain (Japk) Bashch Alsountain (Japk) Bashch Alsountain (Japk) Bashch Alsountain (Japk) Bashch Alsountain (Japk) Bashch Alsountain (Japk) 	40.5 60.8 21.5 28.9 44.1 45.0 42.3 42.3 47.2 47.2 47.2 47.2 47.2 47.2 47.2	26.1 26.2 13.5 18.2 21.2 23.5 26.8 24.4 35.8 36.0 ms of the s are also ord units	4.7 4.7 10.8 14.6 3.8 4.2 4.9 5.8 9.6 9.7 e prosing prosing	1.9 1.9 1.9 1.0 1.3 2.0 2.2 2.2 2.5 2.5 2.5 1.0 1.0 1.3 2.0 2.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	0.0 0.0 0.9 1.2 0.3 0.3 0.7 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	1.0 1.0 16.1 21.8 15.3 15.6 1.3 15.6 1.3 15.6 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.5 1.5 4.0 5.4 3.2 3.5 4.5 5.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	8.0 8.0 8.2 8.3 0.0 2.2 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1.3 3.7 0.2 0.3 0.5 0.6 0.3 0.4 2.0 2.0	0.5 0.0 25.7 0.0 9.6 0.0 14.9 0.0 0.5 0.0 14.9 0.0 14.9 0.0 14.9 0.0 14.9 0.0	29.6 6.9 4.6 6.6 billiy of

Question 6

• Please explain the differences between the top and bottom figures in Figure 4.3.

512E (µm)	2.2	2.2-4.6	4.6-10	10-22	22-46	>46	Total wt% (minerals)	Total be wt% (coal)(
Dearts Iron Gitte Alwsinosilicate Alwsinosilicate Ca-luminosilicate Anterite Dyrite Oprim Ca-Silicate Alwinosilicate Alwinosilicate Alwinosilicate Butile Dolamite Ca-Silicate Alwite Butile Dolamite Ca-Silicate Alwite Dolamite Ca-Silicate Dolamite Dolamite Ca-Silicate Dolamite Dolam	17.73 22.37 14.658 9.2000 0.475 0.605 13.011 14.658 9.2000 0.475 0.605 13.013 13.011 14.658 9.1200 0.605 13.013 13.012 0.605 0.605 0.605 0.605 0.605 0.605 0.701	15.18 3.79 27.000 14.756 14.756 12.44 0.000 0.352 3.830 0.352 3.830 0.1722 0.000 1.1224 0.000 0.352 3.830 0.1220 0.352 3.830 0.1220 0.255 1.2200 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.20000 1.20000 1.20000000000	17.27 0.00 21.24 0.01 2.16 16.67 0.00 22.94 3.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00	12.19 3.67 21.990 0.075 13.54 0.007 13.54 0.007 13.54 0.007 0.011 0.025 0.025 1.002 0.025 1.002 0.025 1.002 0.025 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.0000 0.000000	10-55 14-87 99 14-57 0-81 14-0188 14-0188 14-0188 14-0188 14-0188 14-0188 14-0188 14-0188 157 0-0.0000 0-0.0000 0-0.000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.0000 0-0.00000000	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	9105094084160078670110786 442001101490000700011008	0.5157020810000110000117000011700001170000117000011700000117000000
TOTAL & MINERAL Mineral Basis Coal Basis	9.86	26.53	31.99	18.14	13.22	0.26	100.00	6.09
PARTICLE-SIZE D	ISTRII	NUTION OF	TABLE INDIVID Bineral	11 UAL MIN basis)	DALS P	OR UTAH	BLIND CANYO	л
SIZE (um)	<	.2 2	2-4.6	4.6-1	10 3	10-22	22-45	>46
Quartz Iron Institute Ca-aluminosiicate Acaluminosiicate Anierite Dyrite Barite Ca-Siica	10017874880428822748	7.8864.83667.081.8069.60	*#800171000000000000000000000000000000000	20000000000000000000000000000000000000		46575195090080304700 11077032280010902470	94899011114000004001110	001000000000000000000000000000000000000

Question 8

- Please find the range of melting points for the following compounds, and comment on how Na and Ca modify glass behavior in coal ash (look in CRC):
 - Sodium silicate (Na₂Si₂O₅)
 - Sodium sulfate (Na₂SO₄)
 - Silica (SiO₂)
 - Alumina (Al₂O₃)
 - Aluminum silicates
 - Calcium sulfate
 - Calcium aluminosilicates
 - Sodium aluminosilicates

Species	Chemical formula	Specific" gravity (kg m ^{- s})	Melting point (K)
	Silica and silicates-common occurre	nce	
Ouartz	sio.	2650	1983
Lucifinite	AL. 025i02H. 0		2083
Euscovite	K, O+3AL, O, +6SIO, +2H, O	2900	(Mullite)
Lite	As muscovite with Fe, Ca, and Fe		
Montmorillonite	(1-x)Al, 0, -x(Mg0,Na, 0)-4Si0, -nH, 0		
hiorite	Al, O, -5(FeO,MgO)-3.5SiO, -7.5H, O		
Orthoclase	K ₁ O · Al ₁ O ₃ · 65iO ₁	2500	
Magioclase	Na, O-AL, O, -6SIO, -Albite		
	CaO-AI ₂ O ₃ -2SiO ₂ -Anorthite		
	Silicates-less common occurrence		
ugite	AL, O, -Ca(Mg,Fe,ALTI)-0.25iO,		
alodid and	Augite + Na,F,P	3100	
diotite	AI, O, -6(MgO-FeO)-6SIO, -4H, O	3100	
Scanite	AL, O, -3(CaO,MgO,FeO,MnO)-35iO,		
Epidote	4CaO-3(AL,Fc)O, -6SiO, -H, O	3350	
Kyanite	A1, 0, -SiO,	3550	2083 (Mullite)
Sanidine	K ₂ O ₃ · Al ₂ O ₃ · 6SIO ₂	2570	
Straiarolite	AI, 0, · FeO·2500, ·H, 0		
Courmaline	Na(Fe,Mn), -JAI, O, -6SiO, -JBO-2H, O	3100	
Zircon	Zr0, •SIO,	4500	28.25
	Oxides and hydrated oxides		
-	TO *	4200	2100
Managerite	Et O	5140	1865
Memorine	Fr. O.	5200	1840
imonite	Fe. O H. O	4300	675°
Diaspore	AL O. H. O	3400	425°

Species	Chemical formula	Specific gravity (kg m ⁻³)	Melting/decomposition temperature (K)
Carbonates			
Calcite	CaCO,	2710	1200
Aragonite	CaCO,	2710	1150
Dolomite	CaCO, MgCO,	2850	1050
Ankerite	CaCO, ·FeCO,		1000
Siderite	FeCO.	3830	800*
Sulfides			
Pyrite	FeS.	5000	1075
Marcasite	FeS.	4870	1075 ^b
Pyrrhotite	FeS	4600	1300
Chalconvrite	CuFeS	4100	1300
Melnikovite	FeS. + (As. FeS. H. O)	~5000	1075 ^b
Calena	PhS	7500	1370
Missiskal	FeS. FeAs.	~5000	1075 ^b
Sphalerite	7.5	2000	
Cultures	210		
Bunter	B-SO	4500	1855
Cumeum	C150 - 2H O	2120	1725
Visconia	MrSO H O	2450	1395
Thenardite	Na SO	2680	1157
Mimbilite	No. 50, 10H, 0	1460	1157
Malassant	E+60 -74 0	1900	7550
Neumolise	A1 (80) 164 0	1600	945
Keramoute	K, (50,), 16h, 0	2690	9000
Jarosine	K2304 XF62(304)3	2300	200
Phosphates	C E(10))	1100	>1500
Apacine		3100	>1775
Evansite	3A1,0, P10, 18B,0	12.00	21113
Chlorides	N-0	3150	1074
Halite	NBCI	2170	10/4
Sylvite	KCI	1980	097
Bischofite	MgCi ₁ -6H ₂ O	1370	367

	Alfalfa stems	Wheat straw	Race hulls	Rice straw	Switch- grass	Sugar came bagasse	Willow wood	Hybrid poplar
Prosimate analysis	(% dry fuel)		200000	10000				10000
Fixed carbon	15.81	17.71	16.22	15.86	14.34	11.95	16.07	12.49
Volatile matter	78.92	75.27	63.52	65.47	76.69	\$5.61	\$2.22	84.81
Ash	5.27	7.02	20.26	18.67	8.97	2.44	1.71	2.70
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Ultimate analysis (% dry fuel)							
Carbon	47.17	44.92	38.83	38.24	46.68	48.64	49.90	50.18
Hydrogen	5.99	5.46	4.75	5.20	5.82	5.87	5.90	6.06
Oxygen (diff.)	38.19	41.77	35.47	36.26	37.38	42.82	41.80	40.43
Nitrogen	2.68	0.44	0.52	0.87	0.77	0.16	0.61	0.60
Solfie	0.20	0.16	0.05	0.18	0.19	0.04	0.07	0.02
Chlorine	0.50	0.23	0.12	0.58	0.19	0.03	< 0.01	0.01
Ash	5.27	7.02	20.26	18.67	8.97	2.44	1.71	2.70
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Elemental composi	tton of ash (%)							
SiO ₂	5.79	55.32	91.42	74.67	65.18	-46.61	2.35	5.90
ALO,	0.07	1.88	0.78	1.04	4.51	17.69	1.41	0.84
TiO ₂	0.02	0.08	0.02	0.09	0.24	2.63	0.05	0.30
Fe,O,	0.30	0.73	0.14	0.85	2.03	14.14	0.73	1.40
CaO	18.32	6.14	3.21	3.04	5.60	4.47	41.20	49.92
MgO	10.38	1.06	< 0.01	1.75	3.00	3.33	2.47	18.40
Na ₂ O	1.10	1.71	0.21	0.96	0.58	0.79	0.94	0.13
K,O	28.10	25.60	3.71	12.30	11.60	0.15	15.00	9.64
SO1	1.93	4.40	0.72	1.24	0.44	2.08	1.83	2.04
P.O.	7.64	1.26	0.43	1.41	4.50	2.72	7.40	1.34
CO ₂ /other	14.80						18.24	8.18
Total	100.00	100.00	100.64	100.00	100.00	100.00	100.00	100.00
Undetermined	11.55	1.82	-0.64	2.68	2.32	1.39	8.38	1.91

MJ/kg Bru/lb	18.67 8025	17.94 7714	15.84 6811	15.09 6486	18.06 7766	18.99 8166	19.59 8424	19.02 8178	
Alkali index fas anid	0								
(kg alkali/GJ)	0.82	1.07	0.50	1.64	0.60	0.06	0.14	0.14	
(Ib alkali/MM Bra)	1.92	2.49	1.17	3.82	1.41	0.15	0.32	0.32	
	Almond shells	Almond builty	Pist shells	Olive pitts	Demol. wood	Yard wante	Fir mill	Mixed paper	RDF
Proximate analysis (h dry fael)								
Fixed carbon	20.71	20.07	16.95	16.28	12.32	13.59	17.48	7.42	0.4
Volatile matter	76.00	73.80	81/64	82.00	74.56	66.04	82.11	84.25	73.4
Ash	3.29	6.13	1.41	1.72	13.12	20.37	0.41	8.33	26.1
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
Ultimate analysis (%)	dry fuel								
Carbon	49.30	47.53	50.20	52.80	46.30	41.54	51.23	47.99	39.5
Hydrogen	5.97	5.97	6.32	6.69	5.39	4.79	5.98	6.63	5.1
Oxygen (diff.)	40.63	39.16	41.15	38.25	34,45	31.91	42.10	36.84	27.3
Nitoigen	0.76	1.13	0.69	0.45	0.57	0.85	0.06	0.14	0.1
Salfia	0.04	0.06	0.22	0.05	0.12	0.24	0.03	0.07	0.1
Chlorine	< 0.01	0.02	< 0.01	0.04	0.05	0.30	0.19		
Ash	3.29	6.13	1.41	1.72	13.12	20.37	0.41	8.33	26.1
Total	100.00	109.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0
Elemental compositio	m of ash (14								
SiO ₂	8.71	9.28	8.22	30.82	45.91	\$9.65	15.17	25.10	33.8
ALO,	2.72	2.09	2.17	8.54	15.55	3.06	3.96	\$2.56	12.3
TiO ₂	0.09	0.05	0.20	0.34	2.09	0.32	0.27	4.29	1.6
Fe ₂ O ₃	2.30	0.76	35.37	6.58	12.02	1.97	6.58	0.81	5.
CiO	10.50	8.07	10.01	14.66	13.51	23.75	11.90	7.49	23.4
MgO	3.19	3.31	3.26	4.24	2.55	2.15	4.59	2.36	5.0
Na-O	1.60	0.87	4.50	27.80	1.13	1.00	23.50	0.53	1.1

