Class 15

Practical Combustion

Modified from Table 5.2 in Smoot & Smith, 1985

1a. Comparison of Combustors

Low grinding costs

Low slagging
Multi-fuel
Low corrosion

Fixed Bed Fluidized Bed Entrained Flow
Particle Size 10-50 mm 1.5-6 mm 1-100 pm
Operating T (K) <2000 1000-1400 1900-2000
Residence Time (s) 500-50,000 10-500 1-2
Coal Feed Rate < 40,000 < 40,000 < 450,000
(kg/hr) (BYU is at 5000)
Advantages Simple Low SO, & NO, High efficiency

High capacity
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+ Subcritical (38% efficiency, new)
— 2400 psi (steam pressure)

-T

steam

= 1000°F

+ Supercritical (42% efficiency, new)
— 3500 psi

-T

steam

= 1000°F

* Ultrasupercritical (44% efficiency, new)
— 4400 psi

~1150°F

Gasifiers

— Air separation unit required?

— Reduces size of gasifier
— Adds complexity

« Disposing of ash
* Lower volatiles

Pretty much the same story as combustors
Challenges:
— Getting heat to where gasification happens

1b. Comparison of Gasifiers

Modified from Table 6.1 in Smoot & Smith, 1985

Fixed Bed Fluidized Bed Entrained Flow
Particle Size 6-50 mm 0.52.5 mm 10-150 pm
Operating T (K) 1150-1300 600-1470 1150-2500
Residence Time (s) 1-3 hrs 20-150 min 04-125
Pressure (atm) 012 1-100 1-300
0,/Coal ratio (mass) 0.14-0.81 0.25-0.97 028-1.17
CO+H, (mol%) 39-66 2-80 35-91
CH, (mol%) 215 368 0.1-17
High Heating Value 250-320 300-800 115-550
(Btw/SCF)
Advantages Established technology | Multi-fuel, multi-size Small, simple design

(Lurgi)
Low thermal losses
High turndown ratio

Moderate heat losses

High capacity per volume

Disadvantages

Low capacity

Softening coal
Low capacity
Risk (not established)

Down time due to wear of
refractory and
injectors




455 MW Radiant Boiler

From Steam, by Babcock & Wilcox
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Fig.4 Arrangement of corner windbox for tangential firing of coal

From Combustion: Fossil Power Systems, by Combustion Engineering

2. Wall-Fired vs. Tangential

Tangential Wall-Fired

» Lower NO, due to * Less complex
Iarge swirl zone « Easier to tune
« More difficult to tune individual burners

3. Figures of Equipment
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Fig. 1.10 Tangentially fired boiler (published with permission from ref. 36)




From Steam, by Babcock & Wilcox
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From a presentation by Gary Stiegel, DOE NETL, at the 2006 ACERC Conference




Natural Gas Combined Cycle
(NGCC)
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4. Where Does The Ash Go?

5. Co-firing Biomass

Lower fuel costs « Changes deposit properties
More CO, friendly — Perhaps vaporization of Na, K,
HCI

« Size of biomass?

« Supply of biomass

+ Ash disposal regulations

* Risk

« Separate biomass handling
system

— Spontaneous ignition of
biomass pile

* Lower heating value of
biomass

+ Possible increase in PM




Interesting Stuff

Heat Transfer

Tante 11, Eflect of ash absorption area on heat absorbed iy
furnace™

Ash cloud Heat absorbed
absorption area Mean particle in furnace
im*kg) absorption efficiency MW}
584 07 3625
a1 05 3389
104 0128 ms

from Wall et al., PECS, 5, 1-29 (1979)
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What is Gasification?

Extreme Conditions:

= 1,000 psig or more

= 2,600 Deg F

= Corrosive slag and H2S gas

Products (syngas)
CO (Carbon Monoxide)

Hz (Hyd ) Gas
2 (Hydrogen
[CO/M2 ratio can be adjusted] Clean-Up
Before
By-products Product
H2S (Hydrogen Sulfide) Use

CO2 (Carbon Dioxide)
Slag (Minerals from Coal)

courtesy Gary Stiegel, DOE NETL, talk at ACERC cont. (2006)

So what can you do with CO and H2 ?
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courtesy Gary Stiegel, talk at ACERC conf. (2006)




Gasification by Region
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Higman, Pittsburgh Coal Conference, Beijing, China (Sept., 2013)

Gasification-Based Energy Production
System Concepts
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From Wikipedia
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Figure 2. Net Generation of Electricity in Utah by Energy
Source (2009) Source: Utah Geological Survey
40,000
3 30,000
]
g
z
2
= 20,000
10,000
0
1960 1965 1970 1975 1980 1585 1990 1995 3000 2008
Wcod @ Petoleum QMstursl Gas B Hydroelectric 8 Other®
s inihucdes pocthermmal, wind, Lindll gas, musicipal sobd waste, and othes g
Eron “Encrgy Injlalives and Imperaiives; Ulah's 10-Year Stralegic Enerqy Plan” Governor Gary R, Herber (March 2,2011)

Sae Mask ©  rawai Gas Power Piant
Surtace CoalMine @ Nudsx Power Punt
UndrFanaCoMne @ Coner Power Pt
BomassPowerPlant O Petrcleum Power Pt

Coal Powss Plard @ Pumced Storage Pouet Pant
Coomema PoserPant  #  SoaPower Pant
Hyosieckic Powet Prrt @ 1Wind Powes Ptart

Fym erre & Mo Gan Manet b [
Sy toat Crue Of Postns
Bl e Petmseum Proaa Pomir]
Moot Gm Procmssrg P 2] . 1y Prowine (2

Eiiere Canchar — Kot G vt
HOL Matt b 4 B Tnson Lnsf

" Cruse Of Rad Terminsl

60
PFBC: Pressurized fluidized-bed combustion AGMCFC,
IGCC: Integrated gasification-combined cycle
0 IGHAT: Integrated gasification-humid-air turbine
ﬁs'fcffc u::?ra!ed gasification-molten carbonate fuel cell
- anced gasification-molten carbanate
nate fuel cell IGMCFC
g e Supercritical boiler
=
g Rankine parrer
5
]
30
w
=
£
z
Z 20 ;;nal:sﬂzed
1o
First
station
0
1880 1800 1920 1940 19860 1980 2000 2020

J. Douglas, “Breaking Through the Performance Limits and Beyond Steam,” EPRI Journal, pp. 4-11 (Dec. 1990)

Utah Energy Consumption Estimates, 2013
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New York Energy Consumption Estimates, 2013
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Figure 3. Estimated Costs of Energy Generation.
Source: D. Gruenemeyer, Sawvel and Associates.”

Erom “Energy Initialives and Imperalives: Utah's 10-Year Strateqic Energy Plan” Governor Gary R, Herbert (March 2,2011)

Levelized Cost of Power

(with carbon capture and sequestration)
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Uses data from DOE, 2007
Cases modern 10 year out developing technology), integrated gasification

combined cycle, and these technologjies with amine-based absorption, cryogenic air-separation unit (ASU), ion transport membrane (ITM),
and two new processes.
Categories are fuel, vari ing

ing & mai capital, and storage & monitoring.




