Class 4

Physical Properties of Coal

Reading Assignment:

- a. Lee Smith Book, 154-168
- b. Article by Merrick (*Fuel*, 62, 540-546, 1983)
- 1. Discuss Figure 4.50 in the Lee Smith book.
- 2. What is meant by porosity, true density, apparent density, and internal surface area? Why are these quantities important in coal combustion? How do they vary as a function of coal rank? How do the these properties vary between chars and coals?
- 3. Please use your group to find and discuss the model proposed by Merrick for heat capacity.
- 4. Please show the transient particle energy equation in terms of particle temperature, with appropriate terms for a single coal particle injected into a hot inert gas. Be prepared to describe all of the terms, including thermal radiation.
- 5. Please compute the number distribution (# vs. diameter in microns) for the following mass distribution:

Mesh Size (passing)	400	325	270	250	200	170	150
Weight (%)	5	10	20	30	20	10	5

6. Please compute the heat capacity in J/kg/K of the dried Argonne Premium Wyodak coal at temperatures from 300 K to 700 K.

Figure 50. Comparison of solvent-swelling ratios for some Argonne premium coals at a series of pyrolysis final temperatures. Effects of oxidation and minerals on cross-linking behavior are shown for the Pittsburgh coal. The Beulah–Zap and Wyodak coals were pyrolyzed with a heating rate of 30 K/min while the Pittsburgh coal sample were pyrolyzed with a heating rate of 0.5 K/ s (Solomon *et al.*, 1990).

Particle Densities

 True Density (He pyncnometry)

mass of solid volume of solid

2. Apparent Density

mass of solid

volume of solid + volume of voids in solid

3. Bulk Density

mass of solid volume of bed

$$V_{bed} = V_{solid} + V_{voids in solid} + V_{voids between particles}$$

True Particle Densities

From Gan et al. Fuel, Vol. 51 (1972)

Apparent Densities

- Hg porosimetry
 - Measure change in Hg volume as pressure increases
 - Interpret volume change
- Tap density
 - Weigh particles
 - Place in graduated cylinder
 - Tap to settle particles
 - Assume packing factor
 - Ratio of bulk densities (ρ_b / $\rho_{b,0}$) equals ratio of apparent densities (ρ_a / $\rho_{a,0}$)

MICROMERITICS AUTO-PORE 9200 V2.03 New Mexico Blue Subbituminous

PAGE 2

T.FI	ETCHER				IP 11.19	.50 5/10/00
REDE	88423 CDAL	T103 PSOC 1445	HICH TEMP		UP 15.4	EA E/10/00
PNTE	NIMBER	+882 1264	30		HF 15:6:	54 5/18/88
,	ROHDER	1250 KI	TOMM			
F	PRESSURE	PORE	TNTRUSTON	POPE	MEAN	
	PSTA	DIAMETER	UNLUKE	CUDEACE	DIAMETED	
	Poin	MICRO-M	VOLUNE	SORFHUE SO-K/C	DIANETER	DQ
		hicko-h	00/6	SQ-n/G	MICRO-M	
	+1 4	+120 4450	+0 0000		1100 // 54	
	+1 7	+167 5030	+0.0000	+0.0000	+129.0000	+9.9969
	+2 0	+107.3030	10.0137	+0.0005	+118.6249	+0.0139
	+2.0	+ 47 4075	T0.0010	+0.0020	+99.2459	+0.0371
	+4 6	+45 4547	+0.1200	+0.0000	+/9.2931	+0.0695
	+5 2	+94 9464	+9.0437	+0.0425	+36.4/38	+0.5234
	+2.0	+34.3004	+1.2/37	+9.195/	+37.90/5	+0.6300
	+0.4	+10 0705	+1.5955	+9.1381	+28.5543	+0.2316
0	+11 0	+15 1051	+1 57420	TØ.1403	+29.8134	+0.0371
5	+12.0	+14 6400	+1.5/04	+0.1518	+16.9918	+0.0278
Ê	+12.0	+12 0724	11.0043	+0.1556	+14.58/5	+0.0139
-	114 A	+11 0220	+1.0730	+9.1084	+13.5218	+0.0093
2	+20.0	+0 (000	+1.0027	TØ.1010	+12.0000	+0.0093
ď	+22.0	+7 5499	11.0210	+0.1070	+9.8695	+0.0185
\$.	+25.7	+7 6222	+1.0304	+9.1709	+8.1182	+0.0139
21	120.0	+4 2484	T1.0354	+0.1759	+/.2883	+0.0000
+	+20.7	+0.2484	+1.6300	+0.1759	+6.6499	+0.0000
181	+46 1	+3.3661	+1.0492	+9.1791	+5.8183	+9.9947
17	+40.1	+4.5020	+1.0492	+9.1792	+4.9450	+0.0001
	151 4	+3.7370	+1.6400	+9.1836	+4.2308	+0.0047
	446 0	+3.4740	11.0082	+9.2986	+3./2/1	+0.0232
2	+74 7	+2.7073	+1.7007	+0.2487	+3.2320	+0.0325
1	403 0	+1 0222	+1./012	+0.3397	+2.6619	+0.0604
4	+110 2	+1 5244	11.0124	+0.4355	+2.13/5	+0.0512
5	+146 4	+1 2024	+1.0000	+0.0002	+1.7243	+0.0/44
3. 3	+192 0	+0 0040	+1.7334	+9./409	+1.4949	+0.0466
1	+222 4	+6 7746	12.0001	+1 2222	+1.1347	+0.0/4/
220	+247 7	+6 4749	10 1044	+1 4770	+0.0012	+0.0/01
3	+334 2	+0 5466	+2.1904	11.4//7	+0./251	+0.0282
i	+420 0	+6 4267	+2.102/	+1.0472	+0.00/1	+0.0564
13	4536 5	+0 3463	+2.214/	12.2023	+0.4894	+0.0520
	+637.9	+0 2829	+2 2021	+2.7600	+0.3895	+0.04/4
	+866.1	+0.2254	10 0005	+3.2104	+0.3110	TØ.0333
	+988.4	+0.1924	10 0405	+4 4105	+0.2343	+0.0337
	+1214.2	+0.1484	+2.3033	+5 1000	+0.2041	+0.0340
	+1516.0	+6,1191	+2 4228	+4 6124	+0.1000	+0.0270
	+1963 8	+6 6949	12.1220	+4 7000	+0.1337	+0.0293
	+2354.1	+0.0740	+2 4400	+7 0744	+0.1907	+9.929/
	+2968.6	+0.0421	12 4007	+0 0000	+0.060/	+0.0203
	+3603 0	+0.0501	12.4000	+16 2707	+0.0074	+0.0161
	+4562.9	+0.0394	+2.5220	+11 8222	+6 6440	+0.0208
	+5576.2	+0.0324	+2.5379	+13.5014	+0.0340	+0.0163
	+6857 8	+0.0243	+2 5524	+15.0714	+0.0000	+0.0108
	+8646.0	+0.0200	+2.5600	+18 4642	+0.0273	+0.0157
	+10613.1	+0.0170	+2.5847	+21 6424	+0.0230	+0.015/
	+13174 2	+0.0127	+2 5000	+25 40400	+0.0187	+0.0153
	+16494 5	+0.0137	+2.0778	+20.0000	+0.0104	+0.0152
	+26402 1	+0.0107	12.0148	+30,4013	+0.0123	+0.0150
			72.0342	+30.2799		+0.0193

Figure 2. Incremental penetration volume from mercury porosimetry analysis of (a) Spherocarb particles (125 - 149 μ m), and (b) PSOC 1415d Pittsburgh #8 high volatile bituminous coal particles (106-125 μ m size fraction).

from Sandia Report SAND88-8240, Coal Combustion Science Quarterly Progress Report, January – March, 1988

Apparent Particle Densities

From Fletcher Sandia Milestone Report

$$h = \int_{T_{ref}}^{T} C_p dT$$

C_p (particle) = x_{moist} C_{p, moist} + x_{org} C_{p, org} + x_{ash} C_{p, ash}

Note: C_p is a function of T_{particle}

Einstein's Formulation for C_p (from Merrick, 1983):

A. Simple

$$C_{p} = (3R/a) g_{1} \{1200/T\} J / kg / K$$
$$a = \left[\sum y_{n} / \mu_{n}\right]^{-1}$$

where a = mean coal atomic weight, y_n = mass fraction of element n, and μ = atomic weight of element n

g₁ is a function:

$$g_1\{z\} = \frac{\exp(z)}{\left[(\exp(z) - 1)/z\right]^2}$$
R = universal gas constant (8314.3 N-m/K/kg-mol

B. 2-stage (along bedding plane and perpendicular to bedding plane)

$$C_{p} = (R / a) g_{1} \{380 / T\} + 2g_{1} \{1800 / T\} J / kg / K$$

Also note that enthalpy is calculated by Merrick as:

 $h = 3600(R/a) g_0 \{1200/T\} J/kg \text{ or}$ $h = (R/a) [380g_0 \{380/T\} + 3600g_0 \{1800/T\}] J/kg$

Where
$$g_0\{z\} = \frac{1}{\exp(z) - 1}$$

C. C_p for Ash

 $\begin{array}{l} C_{p, \ ash} = 754 + 0.586 \ T \ (J/kg/K \ where \ T \ is \ in \ ^C) \ or \\ C_{p, \ ash} = 593 + 0.586 \ T \ (J/kg/K \ where \ T \ is \ in \ K) \end{array}$

Figure 2 Variation of *ca/3R* with temperature. ——, Simple Einstein model; —, Einstein model with two characteristic temperatures. ●, Graphite; ○, coke; □, 35 wt% VM; △, 25 wt% VM; ×, 15 wt% VM

Computed Heat Capacities

(Wyodak Coal)

Heat Capacities (Conclusions)

Cautions about the Merrick model:

- Good for graphite and char (coke)
- Coal heat capacity data are limited
- Model does not fit data from different coal ranks very well!
- Coal data only extends to 200°C (573 K)
 In other words, keep a look out for better heat capacity data!

Thermal Conductivities

• Atkinson and Merrick (1983) report that the thermal conductivities *k* of coal, semi-cokes and cokes (W m-1 K-1) can be correlated as follows:

 $k = (\rho_t/4511)^{3.5} T^{0.5}$

where ρ_t is the true density of the material (2260 kg m³ for amorphous carbon, 1279 kg m³ for coal)

• The temperature dependence of this correlation does not agree well with the findings of Badzioch, et al. (1964), which are approximately correlated by the following expression:

k = 0.23	300 K < T < 773 K
k = (T/255) – 2.8	773 K < T < 1173 K

• The two expressions agree at temperatures below 800 K, but the data and correlation from Badzioch and coworkers indicate significantly higher thermal conductivities at temperatures greater than 800 K.

Recommendation

• Set the thermal conductivity to 0.25, which agrees with all of the data at temperatures below 800 K, and agrees somewhat with the correlation of Atkinson and Merrick at even higher temperatures.

Comparison of thermal conductivity correlations from Atkinson and Merrick (1983) and Badzioch et al. (1964).

Single Particle Energy Equation

- Temperature form $m_p C_p \frac{dT_p}{dt} = \theta h A_p (T_g - T_p) + \varepsilon \sigma A_p (T_w^4 - T_p^4) + \sum_i r_{pi} \Delta H_{rxn,i}$
- Enthalpy form $\frac{d(m_p h_p)}{dt} = Q_{rp} + Q_{cp} r_p h_{pg}$
- where

$$h_{pg} = \frac{\sum r_{vol,i} h_{vol,i} + h_{char} \sum r_{char,i}}{r_{tot}}$$

Particle Size Distribution

• In general, means are defined as:

$$x_{m} = \frac{\int_{a}^{b} x \, df}{\int_{a}^{b} df} = \frac{\sum_{i=1}^{n} x_{i} f_{i}}{\sum_{i=1}^{n} f_{i}}$$

• Mass mean:

$$d_m = \sum_{i=1}^n d_i w_i, \quad where \quad \sum_{i=1}^n w_i = 1$$

Particle Size Distributions (cont.)

- Mass per particle: $m_p = \rho \frac{4}{3} \pi r^3$
- Number of particles = mass/(mass per particle)
- Number mean becomes:

$$d_n = \frac{\sum_{i=1}^n d_i \left(\frac{6w_i}{\rho \pi d_i^3}\right)}{\sum_{i=1}^n \left(\frac{6w_i}{\rho \pi d_i^3}\right)_i} = \frac{\sum_{i=1}^n d_i \left(\frac{w_i}{d_i^3}\right)}{\sum_{i=1}^n \left(\frac{w_i}{\sigma \pi d_i^3}\right)_i}$$

Please compute the number distribution (# vs. diameter in microns) for the following mass distribution

Mass mean = 64.6 μm

Table 21-12. U.S. Sieve Series and Tyler Equivalents

(A.S.T.M.-E-11-61)

Sieve designation		Sieve opening		Nominal wire diam.		
Standard	Alternate	mm.	in. (approx. equiva- lents)	mm.	in. (approx. equiva- lents)	Tyler equivalent designation
107.6 mm.	4.24 in.	107.6	4.24	6.40	0.2520	
101.6 mm.	4 in.†	101.6	4.00	6.30	.2480	
90.5 mm.	3½ in.	90.5	3.50	6.08	.2394	
76.1 mm.	3 in.	76.1	3.00	5.80	.2283	
64.0 mm.	2½ in.	64.0	2.50	5.50	.2165	
53.8 mm.	2.12 in.	53.8	2.12	5.15	.2028	
50.8 mm.	2 in.†	50.8	2.00	5.05	.1988	
45.3 mm.	134 in.	45.3	1.75	4.85	.1909	
38.1 mm.	116 in.	38.1	1.50	4.59	.1807	
32.0 mm.	114 in.	32.0	1.25	4.23	.1665	
26.9 mm. 25.4 mm. 22.6 mm.* 19.0 mm. 16.0 mm.*	1.06 in. 1 in.† 3% in. 3% in. 5% in.	26.9 25.4 22.6 19.0 16.0	1.06 1.00 0.875 .750 .625	3.90 3.80 3.50 3.30 3.00	.1535 .1496 .1378 .1299 .1181	1.050 in. 0.883 in. .742 in. .624 in.
13.5 mm. 12.7 mm. 11.2 mm.* 9.51 mm. 8.00 mm.*	0.530 in. ½ in.† ½ in.† % in. % in. % in.	13.5 12.7 11.2 9.51 8.00	.530 .500 .438 .375 .312	2.75 2.67 2.45 2.27 2.07	.1083 .1051 .0965 .0894 .0815	.525 in. .441 in. .371 in. 2½ mesl
6.73 mm. 6.35 mm. 5.66 mm.* 4.76 mm. 4.00 mm.*	0.265 in. 34 in.† No. 332 No. 4 No. 5	6.73 6.35 5.66 4.76 4.00	.265 .250 .223 .187 .157	1.87 1.82 1.68 1.54 1.37	.0736 .0717 .0661 .0606 .0539	3 mesi 3½ mesi 4 mesi 5 mesi
3.36 mm.	No. 6	3.36	.132	1.23	.0484	6 mesl
2.83 mm.*	No. 7	2.83	.111	1.10	.0430	7 mesl
2.38 mm.	No. 8	2.38	.0937	1.00	.0394	8 mesl
2.00 mm.*	No. 10	2.00	.0787	0.900	.0354	9 mesl
1.68 mm.	No. 12	1.68	.0661	.810	.0319	10 mesl
1.41 mm.*	No. 14	1.41	.0555	.725	.0285	12 mesl
1.19 mm.	No. 16	1.19	.0469	.650	.0256	14 mesl
1.00 mm.*	No. 18	1.00	.0394	.580	.0228	16 mesl
841 micron	No. 20	0.841	.0331	.510	.0201	20 mesl
707 micron*	No. 25	.707	.0278	.450	.0177	24 mesl
595 micron	No. 30	.595	.0234	.390	.0154	28 mesl
500 micron*	No. 35	.500	.0197	.340	.0134	32 mesl
420 micron	No. 40	.420	.0165	.290	.0114	35 mesl
354 micron*	No. 45	.354	.0139	.247	.0097	42 mesl
297 micron	No. 50	.297	.0117	.215	.0085	48 mesl
250 micron*	No. 60	.250	.0098	.180	.0071	60 mes
210 micron	No. 70	.210	.0083	.152	.0060	65 mes
177 micron*	No. 80	.177	.0070	.131	.0052	80 mes
149 micron	No. 100	.149	.0059	.110	.0043	100 mes
125 micron*	No. 120	.125	.0049	.091	.0036	115 mes
105 micron	No. 140	. 105	.0041	.076	.0030	150 mesl
88 micron*	No. 170	.088	.0035	.064	.0025	170 mesl
74 micron	No. 200	.074	.0029	.053	.0021	200 mesl
63 micron*	No. 230	.063	.0025	.044	.0017	250 mesl
53 micron	No. 270	.053	.0021	.037	.0015	270 mesl
44 micron* 37 micron	No. 325 No. 400	.044	.0017	.030	.0012	325 mesh 400 mesh

From Perry's Chemical Engineers' Handbook

follow some distribution, such as the Rosin-Rammler-Bennett [Rosin and Rammler, J. Inst. Fuel, 7, 29-36 (1933); Bennett, *ibid.*, 10, 22-39 (1936)]:

$$Y = 1 - \left[\exp \left(-\frac{X}{X'} \right)^n \right]$$
(8-1)

or the Gates-Gaudin-Schumann distribution [Schumann, A.I.M.E. Tech. Paper 1189, Mining Tech. (1940)]:

$$Y = \left(\frac{X}{k}\right)^m \tag{8-2}$$

or the logarithmic-probability distribution [Hatch and Choate, J. Franklin Inst., 207, 369 (1929)]:

$$Y = \operatorname{erf}\left(\frac{\ln X/X'}{\sigma}\right) \tag{8-3}$$

or the Gaudin-Meloy distribution [Gaudin and Meloy, Trans. A.I.M.E., 223, 40-50 (1962)]:

$$Y = 1 - \left(1 - \frac{X}{X'}\right)^r$$
 (8-4)

where Y = cumulative fraction by weight undersize; X = size; k, X' = parameters with dimension of size; m, n, r = dimensionless

Fig. 8-1. Particle-size distribution curves for simple powders.

From Perry's Chemical Engineers' Handbook

Rosin-Rammler Distribution

(similar to a Weibull distribution)

$$f = 1 - e^{-\left(\frac{d}{a}\right)^n}$$

where *f* is the cumulative weight fraction under size *d*, and *a* and *n* are fitting parameters.

Internal Surface Areas

- Internal surface areas are measured by adsorption of some gas (N₂, CO₂, O₂, Ar)
- Units are generally m²/g
- Raw coal generally has less surface area than char (after devolatilization)
- CO₂ method generally gives larger internal surface area than N₂ method
- No method is accepted as standard

Internal Surface Area Data

From Gan et al. Fuel, Vol. 51 (1972)

N₂ Internal Surface Area Data

Internal surface areas of char particles from different coals as a function of residence time, as measured by the N_2 BET method. From Fletcher Sandia Milestone Report

Heating Value

- A common terminology has been adopted in the United States regarding the heating value of coal. The term "high heating value" is defined to be the calorific value of coal, computed as if the water (H₂O) products of coal combustion end up in the liquid form.
- In other words,
- C ==> CO_2 (gas)
- H ==> H_2O (liquid)
- O ==> O_2 (gas), which helps burn the C, H, and S
- N ==> N_2^{-} (gas)
- S ==> SO_2 (gas)
- $Q_h = 145.44 (\%C) + 620 [(\%H) (\%O)/8] + 41(\%S)$ (Btu/lb) (DuLong formula)
- $Q_l = Q_h 92.7$ (%H) (Btu/lb)

(daf compositions)

(Q_I and Q_h are positive when exothermic)

(from Perry's Chem. Eng. Handbook)

Heating Value (cont.)

Note:

- If the high heating value of the coal is defined to have the hydrogen products end up as H₂O (liq.), then the latent heat of moisture evaporation is automatically removed from the problem.
- % moisture = %H2O (liq.) ==> H2O (liq.) $\Delta H_{react} = 0.0$
- So:

$$\frac{Q_h (Btu/lb of wet, ash-included coal)}{(1 - x_{ash} - x_{moist})} = Q_h (Btu/lb of daf coal)$$

Other Heating Value Correlations

$$Q_s = 338.3C + 1443 \left(H - \frac{O}{8} \right) + 94.2S$$
 (1)

$$Q_s = 340.6\text{C} + 14324\text{H} - 153.2\text{O} + 104.7\text{S}$$
(2)

$$Q_s = 339.1 \left(C - \frac{3}{8}O \right) + 238.6 \left(\frac{3}{8}O \right) + 1444 \left(H - \frac{1}{16}O \right) + 104.7S$$
 (3)

$$Q_s = 339.1C + 1433.7H + 93.1S - 127.3O$$
(4)

$$Q_{\rm s} = 519\rm{C} + 1625\rm{H} + \rm{O}^2 - 17870$$
(5)

$$Q_s = 340.3C + 1243.2H + 62.8N + 190.9S - 98.4O$$
(6)

$$Q_s = 351.7C + 1162.6H + 104.7S - 111O$$
(7)

$$Q_s = 341.4\text{C} + 1444.5\text{H} - \frac{1000(\text{N} + \text{O} - 1)}{8} + 93\text{S}$$
 (8)

$$Q_s = 341C + 1323H + 68.5 - 119.4(O + N)$$
(9)

$$Q_s = 349.1C + 1178,3H + 100.5S - 103.4O - 15N$$
 (10)

$$Q_s = 339C + 1214 \left(H - \frac{O}{8}\right) + 104S + 226H$$
 (11)

[7] Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051-63.

[8] Selvig WA, Gibson FH. Calorific value of coal. In: Lowry HH, editor. Chemistry of coal utilization , vol. 1, New York: Wiley; 1945, p. 139.

[9] Strache H, Lant R. Kohlenchemie. Leipzig: Akademische Verlagsgesellschaft; 1924.

[10] Steuer W.: Brennstoff-Chem, vol. 7, 1926, p. 344 according: Channiwala S.A., Parikh P.P.: A

unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[11] D'Huart K.: Die Warme, vol. 53, 1930, p. 313 Chem Abstr., vol. 24, 1930, p. 5966 according:

Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[12] Seylor A.C.: Proc S Wales Inst Engrs., vol. 53, 1938, p. 254 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[13] Gumz W.: Feuerungstech, vol. 26, 1938, p. 322. Chem Abstr., vol. 33, 1939, p. 6556 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[14] Boie W.: Energietechnik, vol. 3, 1953, p. 309 according: Channiwala S.A., Parikh P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002;81:1051.

[15] Grabosky M, Bain R. Properties of biomass relevant to gasification. In: Reed TB, editor. Biomass gasification – principles and technology, New Jersey: Noyes Data Corporation; 1981, p. 41.

[16] IGT. Coal Coversion Systems Technical Data Book, DOE Contract EX 76-C-01-2286.

Springfield, VA: NTIS; 1978.

[17] Ocheduszko S. Termodynamika stosowana (in Polish). WNT Warszawa; 1967.

(from Sciazko, M., 2012)