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Reading Questions

1. Please discuss the merits of the following methods for conducting devolatilization
experiments: (a) thermogravimetric analyzers, (b) heated grids, (c) drop tubes, (d) flat
flame burners, and (e) laser-heating of suspended particles. You may have to postulate
what these reactors do if they are unfamiliar.

2. The Lee Smith book states that particle temperature is important for determining
devolatilization kinetics, and that this has generally been a problem (especially at high
heating rates). Please discuss why this is so important yet so difficult to measure. You
may want to refer to the two most common types of rapid devolatilization experiments:
drop tube reactors and heated grid reactors.

3. On p. 225, Lee Smith alludes to the fact that increases in pressure lead to decreases
in tar and total volatiles yields. This can also be seen in Figure 5.110. Please explain why
this happens.

4. Tom Gale (Comb. & Flame, 100, 94-100, 1995) showed how swelling decreased as
heating rate increased between 10,000 K/s and 100,000 K/s for swelling coals. Please
explain why swelling (a) increases with heating rate up to ~10,000 K/s and (b) decreases
with heating rate after 10,000 Ki/s.

5. Please review the influence of the following variables on total volatiles and tar yield: (a)
heating rate; (b) ambient pressure; (c) temperature; (d) coal rank; (e) particle size. Show
the effect and give a brief explanation why each variable has the exhibited effect.
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Figure 5. Stainless-steel screen: (top) screen at 315X; (bottom)
thermocouple bead on screen at 245X.



Heated Grid
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Heated Grid
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Drop Tube
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Pluses and Minuses of
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Ash Tracer Handout



Heated Tube Reactor
(Solomon et al., Fuel, 65, 182-194, 1986)
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Devolatilization Rates
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Reaction Rates

From  Flekhe (1982)
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Sandia Coal Devolatilization Work

Goal: Measure particle
temperature during devolatilization
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Particle Temperature Measurements During
Devolatilization Improve Rate Measurements
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Yields



Definitions

Tar = volatiles that condense at room
temperature (& pressure)

Light gas = volatiles that do not condense
at room temperature (& pressure)

Evaporation — phase change only

Pyrolysis — bonds must break, followed by
phase change
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Total Volatile Yield Increases with
Increasing Heating Rate
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Reaction Temperature Increases with
Increasing Heating Rate

60 I T I T I T I

@ 1000K/s, 30 s hold
B 1000 K/s, 0s hold
1 K/s, 0 s hold

Total Volatiles Yield (% daf)

600 800 1000 1200

Temperature (K)

Pittsburgh No. 8 hv bituminous coal in Helium (Gibbins
and Kandiyoti, E&F, 1989). Lines are CPD model
predictions (Fletcher, et al., E&F 1992)



Particle Size Affects Yield Above ~200 um
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Total Volatile and Tar Yields Decrease with
Increasing Pressure for hv Bituminous Coals

70

Total Volatiles
60 i

50

Tar

40

30

Yield (% daf)

® Tar (Suuberg)
Total Volatiles (Antho

- - - CPD model
—— CPDwP_..=0.01 atm

min

20
y)

10

A Total Volatiles (Suubgr'lg)

4 3 2 1

P
S
W

10 10 10 10

Pressure (atm)

Pittsburgh hv bituminous coal data from heated grid
experiments, Anthony (1974) and Suuberg (1977), 1000 K/s to
1000 °C. CPD model predictions from Fletcher, et al. (1992)



Effect of Pressure on Low Rank Coal
Devolatilization is Small
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Analysis of Argonne Premium Coal Samples Energy & Fuels, Vol. 4, No. 3, 1990 325
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Figure 9. TG-FTIR analysis of raw and demineralized Illinois No. 6 coal during the pyrolysis cycle. (a) Weight loss (solid), sum of
evolved products (dashed), and temperature profile. (b) H,O evolution rate and integrated amount evolved. (¢) Tar evolution rate
and integrated amount evolved (raw coal (solid line); demineralized coal (dashed line)). (d) CO, evolution rate and integrated amount
evolved (raw coal (solid line); demineralized coal (dashed line)). (e) Methane evolution rate and integrated amount evolved. (f) CO
evolution rate and integrated amount evolved. (g) SO, evolution rate and integrated amount evolved. (h) NH, evolution rate and
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evolved. All weight losses are on an as received basis.
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Swelling during Pyrolysis



Concept of Metaplast

Heat “t + tar
ar + light gas
+ light gas

extractable portion

extractable portion extractable portion

A large pool of “liquid” material forms.
* Low molecular weight metaplast — tar
* High molecular weight metaplast — char
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Steam Gasification of Wyodak Coal
(2.5 atm)

90 ms char fully pyrolyzed
— CPD predicts ~62% MR,

90 ms
Little change in structure from 208-868 ms
— Linear gas temperature decrease of ~300 K from
peak over 14 inches
Highly porous chars 208 ms

— N, surface area of 360 m?/g at 208 ms

Zone |l behavior near burner
— Both d; and p, changing in first 200 ms

— Zone lll calculations predict 100% conversion in

~60 ms 868 ms




Pittsburgh #8 Swelling during Pyrolysis

pea@ 18,8l SHLL
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Figure 5.31 Scanning elactron micrbgraphs of 108-125 pm PSOC 1451d hva
4 Pittsburgh bituminous coal particles collected at 30 mm, 70 mm and
90 mm from the injector for the 1050 K gas temperature condition.



Cross-Sections of Pitt 8 Coal during Pyrolysis
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Figure 5.32 Cross-section micrographs of 106-125 um PSOC 1451d hva
Pittsburgh bituminous coal icles collected at different position
in the flow reactor at the 1050 K gas temperature condition.



Effect of Heating Rate at 1 atm

(from Shurtz PhD Dissertation)
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Swelling Ratio d/d
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Changes in Sawdust Shape

Raw sawdust (believed to be
Pine, but definitely a
softwood)

A

Sawdust char turned
spherical during high
heating rate pyrolysis

Magnified char




Changes in Char Composition



H/C Ratio

Chemical Changes during Pyrolysis
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