Questions for Class 14

Char Oxidation 2

Chemical Engineering 733

Reading: Pages 378-408 in the Lee Smith book

1. Several correlations have been developed for the surface product ratio (CO/CO₂). The models have the form of:

$$\frac{moles\ CO_2}{moles\ CO_2} = A\ e^{-\frac{E}{RT}}$$

Please compare the % of carbon forming CO (i.e., (moles CO)/(moles CO + moles CO₂)) computed from the following correlations and comment:

Reference	A	E (kcal/mol)
Hurt-Mitchell #1	3.0×10^{8}	60
Hurt-Mitchell #3	4.0×10^4	30
Hurt-Mitchell #4	2.5×10 ⁸	60
Hurt-Mitchell #5	5.0×10 ⁸	60
Tognotti	1.02×10^2	5.921

- 2. What are the key features of intrinsic char oxidation models? (You may want to refer to Table 78).
- 3. Please discuss the effectiveness factor and how it is used.
- 4. What is the difference between the Thiele modulus approach to modeling intrinsic reactivities and the three approaches outlined in Table 78?
- 5. What are some of the complications that limit the use of intrinsic models in comprehensive engineering calculations?
- 6. Walter Reade and Dr. Hecker have developed a different kind of intrinsic model, using the following steps:
 - (1) generate a high temperature char experimentally,
 - (2) perform TGA experiments to obtain TGA rates as a function of burnout for that starting char, and
 - (3) use the TGA rates with an intrinsic model to calculate the high temperature rates as a function of burnout.

Please comment on potential advantages and disadvantages of this approach.

7. Please explain the empirical model of Charpenay (pp. 400-401) and comment on its usefulness.