THE CHESS PROCESS: Environment Friendly, Lowcost Shale Oil Recovery

Thomas H. Fletcher Brigham Young University, Provo, Utah Carlos Adams Energy Recovery Technology, American Fork, Utah

> 35th Oil Shale Symposium Salt Lake City, UT October 5-6, 2015

Need for Improved Oil Recovery

1. Size cost of current units

Alberta Taciuk Processor retort

Need for Improved Oil Recovery

2. Grade of ore that is economical

Comparative Oil Reserves

World Crude Oil Reserves+		1.000	
Total Green River Deposit *		4,000	
5 – 10	3 – 6	2,000	
10 – 25	6 – 15	1,400	
> 25	> 15	600	
Grade (gpt)	% Org. Matter	Billion Barrels Oil	

*Synthetic Fuels Data Handbook, Cameron Engineers †Worldwide Pet. Ind. Outlook, 15th Edition, 1999-2003

Challenges with Green River Oil Shale Processing

- For Green River Oil Shale 10% organic (17 gpt), results in 8% liquid, 90% inorganic mineral
- 20% of organic material converts to char or coke
- Inorganic mineral is 33% dolomite, calcines above 1000°F
 - $CaMg(CO_3)_2 → CaCO_3 + MgO + CO_2$
 - Energy cost of 380 Btu/lb (880 J/g)

Develop efficient process to

- Maximize oil yield
- Use residual char
- Keep ash temperature < 1000°F
- Minimize heat requirement & cost

Wanted: MODERATE HEATUP

- Minimum heating rate should be > 10 K/min
- High heating rate (1000K/min), as in ash recycle systems:
 - NOT NECESSARY
 - UNDESIRABLE

EFFECT OF HEATING RATE ON OIL YIELD LOW HEATING RATES RESULT IN OIL LOSS DUE TO COKING. DATA POINTS ARE FROM TWO DIFFERENT SOURCES. (After J. H. Campbell et al. IN Situ, 2(1), 1978).

MINIMIZE COKING REACTIONS

SURFACE COKING* 1200F, 0.2 SEC. = 14% LOSS 1200F, 1.2 SEC. = 40% LOSS 932F, 3 SEC. = 7% LOSS

METAL OXIDE SORBPTION[†] (OF OIL ON FINE ASH THEN THE SORBED OIL BURNS IN THE COMBUSTOR)

HYDROGEN ABSTRACTORS[‡], S, O (present in recycle ash as Sulfates and as O2 in fine particle interstices)

*Bissel, et al., Shale Oil Cracking Kinetics, Ind. Eng. Chem. Process Des. Dev., 1985, 24, 383. †Barney & Calson, US Patent #3,691,056 ‡Lewis, LLNL Oil Shale Qtr. Report, UCID-16986-85-2

NO OXYGEN!

ROBINSON & HUBBARD:

• When oil shale retorted after preheat in gas with > $0.1\% O_2$, oil yield reduced by up to 16%

- Equivalent increase in coke and water

(USBM RI-4787)

Oil shale pyrolysis and vapor formation occur at a relatively low temperature:

- 50% below 785°F
- 90% below 845°F
- 100% as T \rightarrow 950°F

Idea:

- Quickly withdraw at the formation temperature and cool the vapor immediately after it forms to avoid coking or cracking
- Heat residue to a relatively high T (950°F) thus providing the best of both effects
 - low temperature pyrolysis (minimal coking/cracking) and
 - high temperature (thorough) pyrolysis.

Challenge

- How do you efficiently heat the oil shale at ~ 10 K/min with no Sulfates or O₂ present?
 - Difficult when ash is recycled

• Most efficient heat exchange is countercurrent (vs co-current).

EFFICIENT OIL RECOVERY

- Numerous stages for countercurrent heat exchange
- Low T vapor removal to reduce coking
- Optimal heating rate
- Optimal gas/solid fluid bed contacting
- Countercurrent oxidation of char to provide heat

• Heat Transfer Problem!

IDEALIZED OIL SHALE RETORT FOR OPTIMAL HEAT RECOVERY AND PRODUCT YIELD

CHESS Process (Counterflow Heat Exchange Retort)

Counterflow Heat Exchange in Solid Streams

Process Diagram

THE CHESS PROCESS

Demonstration: Batch Retort Data

- Colorado Green River Oil Shale
- 10 K/min heating rate
 - Electric heaters
- Crushed to ~1/8 inch diameter
- Rotated in batch retort at rate similar to CHESS process
- 65% oil yield
 - (i.e., % of initial organic mass)
 - 103% of Fischer Assay

CHESS High Efficiency Features

- Recovers 80 to 90% of sensible heat
- Burns residual char for process heat
- Operates without recycling hot ash
- Burns coke at or below 1000°F to prevent calcination

Advantages to the CHESS Process

- High oil yield: 103% OF Fisher Assay 15% above that anticipated (90% of FA) for other processes, plus 13.5% saved by burning coke rather than oil = 25% more oil
- **Reactive coke** (Low temperature retorting of shale provides for reactive coke and optimal coke use)
- High Volume Specific Capacity (VSC, ton/ft³) achieved from the high heat exchange and high fill fraction of the CHESS system

Equipment Advantages

- Low vertical profile (saves \$\$)
- Compact single vessel multi-operation
 - 30% of kiln volume required by other processes
 - 30% of capital cost
- Simple design, easy scale-up
- 85% reduction in pollutant gases
- Minimal water use
- Ash is clean
 - Not leachable
 - Free of PAH
 - pH neutral

Comparative Size

Cost Estimate for Oil Production

- Cost estimates include
 - Mining & handling
 - Retorting
 - Refining of oil product
 - Environmental remediation
- Ore grades > 5 gallons/ton
- \$30/barrel
- Reviewed by DOE, NIST

Status

- Batch trials succesful
- 400 lb/hr continuous unit built and being debugged at BYU
 - Only 6 ft long

Thank you