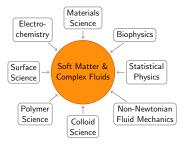



## Theory and Simulation of Soft Matter and Complex Fluids Douglas R. Tree


Faculty Candidate Interview Carnegie Mellon University 21 January 2016

## What is soft matter?



# Materials with degrees of freedom excited by thermal energy

## What is soft matter?



Materials with degrees of freedom excited by thermal energy

#### An important theme

Mesoscale ordering behavior independent of chemical detail (*universality*)



Pierre-Gilles de Gennes.

Nobel Prize in Physics, 1991.

www.nobelprize.org

## What is soft matter?

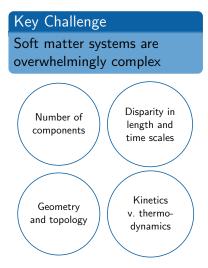


Materials with degrees of freedom excited by thermal energy

#### An important theme

Mesoscale ordering behavior independent of chemical detail (*universality*)



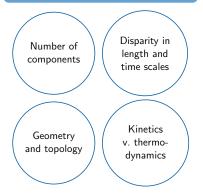

Pierre-Gilles de Gennes.

Nobel Prize in Physics, 1991. Image credit: www.nobelprize.org

#### Can we engineer soft materials on the nanoscale?

- Unique combinations of mechanical, electronic and optical properties
- Biomimetic properties: responsive, healable and hierarchical

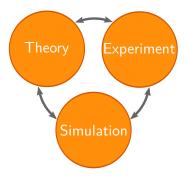
## Why theory? Challenges and opportunities




We need better theories and simulation tools.

## Why theory? Challenges and opportunities

#### Key Challenge

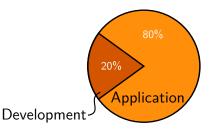

Soft matter systems are overwhelmingly complex

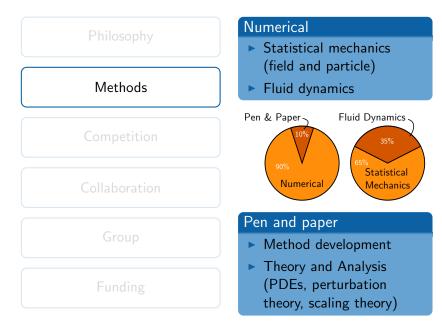


We need better theories and simulation tools.

#### Opportunties

- Scientific understanding
- Accelerate materials discovery
- Enable process design and control




#### Strategic Innovation

Develop new methods with the potential to make a lasting impact on

- the fundamentals of soft matter theory
- practical applications in energy, health and industry





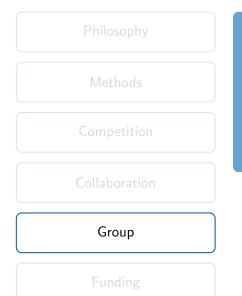
#### Philosophy

#### Methods

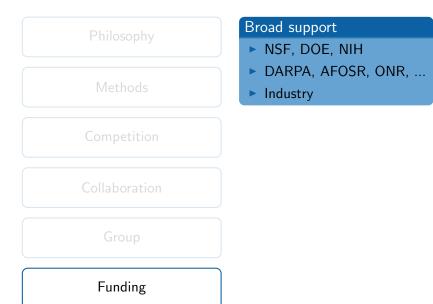
#### Competition

#### Collaboration

Group

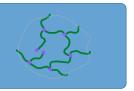

#### Funding

#### There are many excellent researchers doing soft matter theory


Alfredo Alexander-Katz, John Brady, Kevin Dorfman, Pat Doyle, Jack Douglas, Glenn Fredrickson, Venkat Ganesan, Sharon Glotzer, Mike Graham, Lisa Hall, Arthi Jayaraman, Aditya Khair, Kurt Kremer, Ron Larson, Reid van Lehn, Scott Milner, Corey O'Hern, Monica Olvera de la Cruz, Dave Morse, Athanassios Panagiotopoulos, Juan de Pablo, Jian Qin, Rob Riggleman, Ken Schweizer, Eric Shaqfeh, Charles Sing, Andrew Spakowitz, Zhen-Gang Wang, Jonathan Whitmer...

 Pick problems where (due to complexity) innovative methods are needed



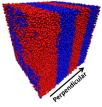



- Group size: 8-10 students and postdocs at steady state
- Students: analytical or programming skills
- Resources: offices, computers, moderate HPC resources (GPU cluster)



### Future directions

Reversible Network Materials




## Complexity - process history dependence

## Mesostructured fluids are difficult to model

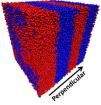
- multiple length scales
- multiple time scales
- emergent order

Coarse-grained particle based



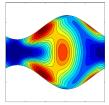
Ramírez-Hernández et al. Macromolecules (2013)

## Complexity - process history dependence


## Mesostructured fluids are difficult to model

- multiple length scales
- multiple time scales
- emergent order

## Advantages of a field-based approach


- no molecular degrees of freedom
- incorporation of mature CFD techniques

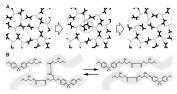
## Coarse-grained particle based



Ramírez-Hernández et al. Macromolecules (2013)

## Computational fluid dynamics




Teran et al. Phys. Fluid. (2008)

### Inhomogeneous reversible networks

Reversible networks have properties that are useful for

- Thermoplastic elastomers
- Self-healing materials
- Functionalized gels

Reversible chemical crosslinks (e.g. vitrimers)



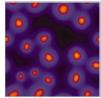
Montarnal et al. Science (2011)

Physical "crosslinks" (e.g. telechelic ionomers)

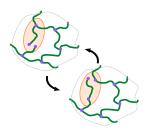


Leibler et al. J. Phys. Paris (1993)

#### The goal


Dynamic control of mechanical properties by reversible chemical and/or physical crosslinks.

## Reversible network projects



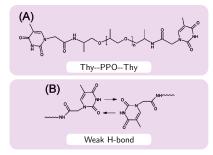

Go beyond transient network theory

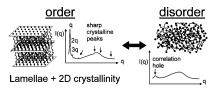
- characterize formation and structure
- predict mechanical/rheological properties
- explore large parameter space



Popov et al. (2007) J. Polym. Sci. Pol. Phys.



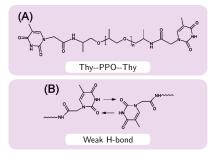

(2) Incorporating chain dynamics

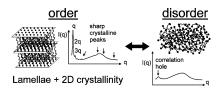

- Go beyond mixing rules
  - mean-field dynamics
  - topology in field theories

Potential funding: NSF, DMR (Condensed matter and materials theory)

## Example - ODT in supramolecular polymers

Cortese, Leibler et al. JACS (2011)




viscoelastic solid  $\leftrightarrow$  viscous liquid

## Example - ODT in supramolecular polymers

Cortese, Leibler et al. JACS (2011)





viscoelastic solid  $\leftrightarrow$  viscous liquid

#### Quote from Cortese, Leibler et al.

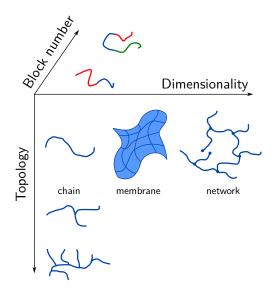
"Development of models ... should pave the way to better control of supramolecular polymers organization and properties."

#### Open questions

- What nanostructures are possible? How do they affect mechaical properties?
- Is crystallinity required to get microphase separation?

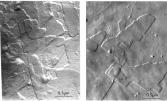
#### Future directions

Reversible Network Materials


Self-Assembly of Tethered Membranes



## Complexity - self-assembly

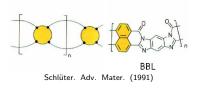

Modeling the self-assembly of complex macromolecules is a challenge

- Many-body problem
- Disparity of length/time scales
- Enormous design space

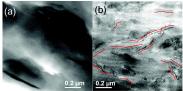


An emerging class of soft matter: tethered membranes

#### 2D polymers

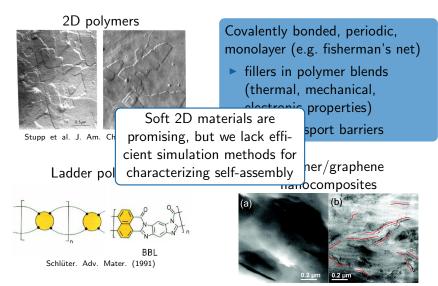



Stupp et al. J. Am. Chem. Soc. (1995)


Covalently bonded, periodic, monolayer (e.g. fisherman's net)

- fillers in polymer blends (thermal, mechanical, electronic properties)
- mass-transport barriers

#### Ladder polymers



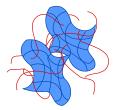

## Polymer/graphene nanocomposites



Kim, Abdala and Macosko. Macromolecules (2010)

An emerging class of soft matter: tethered membranes



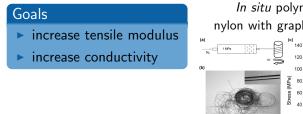

Kim, Abdala and Macosko. Macromolecules (2010)

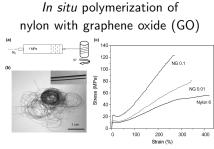
## Membrane self-assembly project

## Field-theoretic treatment of tethered membranes

- Efficiently solve the "single-membrane" problem
- Decouple the many-body problem

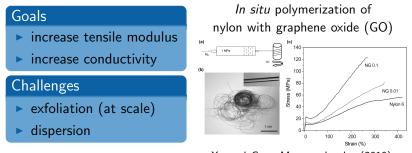


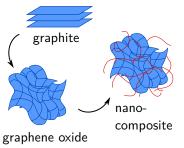




#### Applications

- polymer/graphene nanocomposites
- patchy membrane origami
- polymer strips

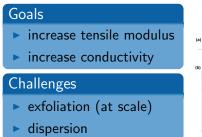
Potential funding sources: DOE (Computational theoretical chemistry), DARPA DSO (Materials with controlled microstructural architecture)

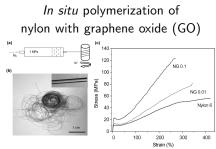

## Example - dispersion of graphene in nylon



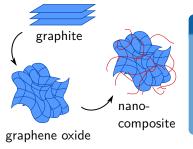



Xu and Gao. Macromolecules (2010).


## Example - dispersion of graphene in nylon







Xu and Gao. Macromolecules (2010).

## Example - dispersion of graphene in nylon





Xu and Gao. Macromolecules (2010).

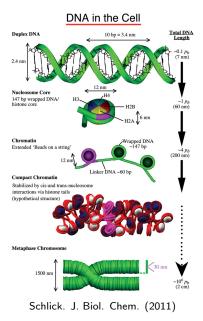


#### Questions

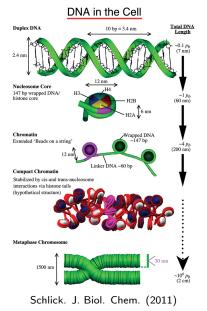
- How is the phase diagram altered by grafting nylon to GO?
- Are there important mesophases (e.g. nematic)?

#### Future directions

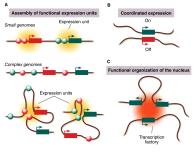
Reversible Network Materials


#### Self-Assembly of Tethered Membranes




#### Chromosomes



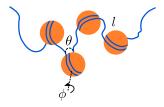

## Complexity – hierarchy



## Complexity – hierarchy



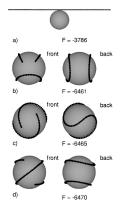
- Gene expression is partially regulated by chromosome structure and dynamics
- Chemical alterations of histones changes gene expression (epigenetics)




Dekker. Science (2008)

## Prevailing models are oversimplified

#### Small-scale models ...

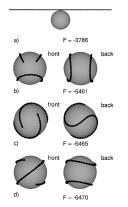

lack sufficient resolution to capture key phenomena



## Prevailing models are oversimplified

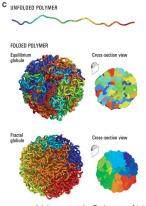
#### Small-scale models ...

lack sufficient resolution to capture key phenomena




Kunze and Netz. Phys. Rev. E. (2002)

## Prevailing models are oversimplified

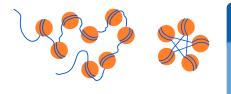

#### Small-scale models ...

lack sufficient resolution to capture key phenomena



Kunze and Netz. Phys. Rev. E. (2002)

#### Large-scale models ... are ad hoc and disconnected from microscopic details




Lieberman-Aiden et al. Science (2009)

## Chromosome project

#### Nature of the chromatin fiber

- Pruned-enriched Rosenbluth method for the long-chain problem
- Remove ad-hoc assumptions of prior fiber models
- Focus on non-equilibrium nature



Inhomogeneous crumpled globule

 Account for fiber inhomogeneities in chromosome structure

Potential funding sources: NIH, NIGMS, (Division of Cell Biology and Biophysics – Biophysical properties of nucleic acids), NSF, Physics (Physics of living systems)

## Teaching Interests

#### Teaching Philosophy

- Pragmatic, organized, prepared
- Goals
  - Rigorous technical training
  - Perspective, critical thinking

## **Teaching Interests**

#### Teaching Philosophy

- Pragmatic, organized, prepared
- Goals
  - Rigorous technical training
  - Perspective, critical thinking

#### Undergraduate

Flexible, but interested in teaching core courses:

- Thermodynamics
- Transport
- Numerical methods

#### Graduate

- Statistical Mechanics
- Fluid Dynamics
- Numerical and Analytical Methods
- Thermodynamics

## **Teaching Interests**

#### Teaching Philosophy

- Pragmatic, organized, prepared
- Goals
  - Rigorous technical training
  - Perspective, critical thinking

#### Undergraduate

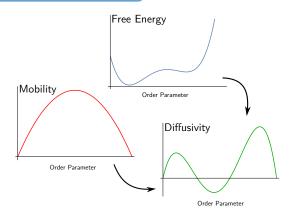
Flexible, but interested in teaching core courses:

- Thermodynamics
- Transport
- Numerical methods

#### Graduate

- Statistical Mechanics
- Fluid Dynamics
- Numerical and Analytical Methods
- Thermodynamics

#### Course Development


- Polymers and soft materials
- Chemical engineering and society

## Backup Slides

## Dynamics of inhomogeneous fluids

#### Origin of inhomogeneous dynamics

- Thermodynamics (free energy landscape)
- Dissipation (Onsager coefficients)



### Two approaches to dissipation

#### Approach (1): two-fluid model

- phenomenological
- constitutive equations
- mixing rules

$$\Phi = \frac{1}{2} \int d\boldsymbol{r} \left[ \sum_{i} \zeta_i(\{\phi_i\}) (\boldsymbol{v} - \boldsymbol{v}_i)^2 + 2\eta(\{\phi_i\}) \boldsymbol{D} : \boldsymbol{D} \right]$$

## Approach (2): rigorous model

- Field theory (MSR functional)
- Mean field dynamics?

$$Z(t|t_0) = \int D[\rho] D[\omega] D[\psi] D[\phi] e^{-L[\rho,\omega,\psi,\phi]}$$

Grzetic, Wickham, Shi. J. Chem. Phys. (2014) Fredrickson and Orland. J. Chem. Phys. (2014)