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Can we engineer soft materials on the nanoscale?
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Complexity — process history dependence

Mesostructured fluids are Advantages of a field-based
difficult to model approach

Coarse-grained Computational
particle based fluid dynamics
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Inhomogeneous reversible networks

Reversible chemical crosslinks
(e.g. vitrimers)
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Reversible network projects

(1) Designing inhomogeneous networks

Popov et al. (2007)
J. Polym. Sci. Pol. Phys.

(2) Incorporating chain dynamics

Potential funding: NSF, DMR (Condensed matter and materials theory)



Example — ODT in supramolecular polymers

Cortese, Leibler et al. JACS (2011)
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Example — ODT in supramolecular polymers

Cortese, Leibler et al. JACS (2011)
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Complexity — self-assembly

Dimensionality

Modeling the
self-assembly of complex

macromolecules is a
challenge

network

membrane

Topology
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An emerging class of soft matter: tethered membranes

2D polymers

Polymer/graphene

Ladder polymers .
nanocomposites

BBL
Schliiter. Adv. Mater. (1991)

Kim, Abdala and Macosko.
Macromolecules (2010)
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An emerging class of soft matter: tethered membranes

2D polymers

Soft 2D materials are
promising, but we lack effi-
cient simulation methods for
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Membrane self-assembly project

Field-theoretic treatment of tethered
MENENES

Applications

Potential funding sources: DOE (Computational theoretical chemistry),
DARPA DSO (Materials with controlled microstructural architecture)



Example — dispersion of graphene in nylon
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Future directions

Reversible Network
Materials

Self-Assembly of

Tethered Membranes

Chromosomes
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Complexity — hierarchy

DNA in the Cell
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Complexity — hierarchy
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Prevailing models are oversimplified

Small-scale models ...
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Large-scale models ...

F=-3786

‘lront ' back

F =-6461

' front . back

F = -6465

‘Iront . back

F = -6470

Kunze and Netz. Phys. Rev. E. (2002)

c UNFOLDED POLYMER

FOLDED POLYMER

Equilibrium
globule

Cross-section view

2

Fractal
globule

Cross-section view

Lieberman-Aiden et al. Science (2009)

17



Chromosome project

Nature of the chromatin fiber

Inhomogeneous crumpled
globule

Potential funding sources: NIH, NIGMS, (Division of Cell Biology and
Biophysics — Biophysical properties of nucleic acids), NSF, Physics
(Physics of living systems)
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Dynamics of inhomogeneous fluids

Origin of inhomogeneous dynamics

Free Energy

Mobility -

Order Parameter

Diffusivity
T Order Parameter \’ /\

Order Parameter
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Two approaches to dissipation

Approach (1): two-fluid model

o, [dr [Z G{0)) o = vi)? + 2((6:))D D]

Approach (2): rigorous

model Z(tlto) = /D[p]D[w]D[1/)]D[¢]€_L[p’w’¢’¢]

Grzetic, Wickham, Shi. J. Chem. Phys. (2014)
Fredrickson and Orland. J. Chem. Phys. (2014)
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