Milling of Utah, Sufco Coal with 15% Prepared Manti-La Sal Woody Biomass in a Raymond Bowl Mill

Andrew Fry, Seyedhassan Fakourian Brigham Young University

> Eric Eddings, Zsolt Dobó University of Utah

Clearwater Clean Energy Conference June 11 – 15, 2017 Sheraton Sand Key Resort, Clearwater FL

Introduction: Beetle Kill, Manti – La Sal National Forest

Introduction: Beetle Kill, Manti – La Sal National Forest

Map: US Department of Agriculture

- ~75,000 acres of beetle kill
 - Ponderosa, Douglas-fir, Spruce and Pinyon
- Indicator of unhealthy forest
- Increased potential wildland fires and particulate matter emissions
- Releases greenhouse gases while deadfall decays
 - CO₂ & CH₄

Introduction: Coal / Biomass Co-firing

Introduction: Raw Woody Biomass

- Low energy density
- Too much moisture
- Non-uniform shape = difficult material handling
- Cannot use existing coal handling and milling equipment

We fix these by pre-processing the woody biomass

Introduction: Biomass Preparation

Facilities: Mill at the University of Utah

Facilities: Mill Operation

- 1. 2" minus coal is continuously loaded into the rotating bowl
- Coal is crushed between the 2. rotating bowl and the rolls
- Crushed coal is entrained by air 3. flowing around the outside of the bowl
- 4. Entrained coal is introduced into the top of the classifier (cyclone)
- 5. Small particles are carried out of the classifier
- 6. Large particles are returned to the bowl

WORM GEAR HOUSING

Experimental: Coal and Biomass Properties

		Sufco Coal	Torrefied 210 °C	Torrefied 248 °C	Torrefied 290 °C	Torrefied 325 °C	Steam Beneficiated
Ultimate, As Received (Wt, %)	Carbon	61.48	49.41	51.22	55.18	54.98	59.59
	Hydrogen	4.94	6.15	5.85	5.81	5.41	5.81
	Nitrogen	0.91	0.55	0.54	0.59	0.59	0.59
	Sulfur	0.58	BDL	BDL	BDL	BDL	BDL
	Oxygen	15.90	41.21	36.71	35.49	31.59	30.49
	Ash	16.20	2.68	5.67	2.94	7.44	3.52
Proximate (Wt, %)	Moisture	4.15	3.43	1.98	0.89	2.24	2.76
	FC	37.6	14.4	15.9	21.9	26	28.6
	VM	42	79.5	76.4	74.3	64.3	65.1
Btu/lb	HHV	10551	8924	8871	9494	9703	10246

Experimental: Measurements

Results: Mill Current

• Mill current is inversely proportional to the temperature at which biomass is torrefied

- An indicator of the degree to which the fibrous structure has deteriorated
- Pelletizing increases the power requirement
- 325 °C torrefaction and steam beneficiation both with pelletization do not increase the mill power requirements
- All testing was at approximately the same mass flow rate.

Results: Particle Size

Large Particles (> 300 micron)

- All torrefied material resulted in an increase in fraction of large particles when compared to pure coal
- Fraction of large particles is reduced from torrified materials when processing temperature is increased
- Large particle effect is minimized with a processing temperature of 325 °C
- Steam beneficiated biomass does not increase the fraction of large particles when compared to pure coal

Results: Particle Size

Small Particles (< 70 micron)

- The requirement of 70% through 200 mesh was achieved by biomass coal blends where the biomass was beneficiated or torrefied at 325 °C and pelletized
- Pelletizing appeared to have an added benefit to the millability of the torrefied material
- Pelletizing needed for long term storage, handling, and to minimize dust

Results: Mill Outlet Temperature

• Mill outlet temperatures were only slightly higher for the coal biomass blends, indicating no unwanted reaction in the mill

Results: Remaining Material in the Bowl Torrefied

FOUNDED THE FOUNDED BYU 1875 HROVO, UTAN

Results: Remaining Material in the Bowl Steam Beneficiated

Results: Remaining Material in the Bowl Torrefied and Pelletized

Summary

- Woody biomass was collected that is representative of the beetle kill material in the Manti-La Sal National Forest in Utah
- Woody biomass was prepared for milling tests using a torrefaction process at several torrefaction temperatures and using a steam beneficiation process
- Coal / biomass blends were prepared in an 85% / 15% (mass) mixture with Utah Sufco Coal
- Coal / Biomass lends were milled in a 1 ton per hour CE Raymond Bowl Mill
- The mill power requirement, outlet particle size distribution and outlet temperature were measured and compared to pure coal conditions

Conclusions

- 15% mixtures of both steam beneficiated biomass and torrefied biomass at 325 °C exhibited similar mill power requirements and outlet particle size distributions to the pure coal
- Torrefaction at temperatures below 325 °C resulted in an increase in mill power and an increase in the large particle fraction
- Pelletizing appeared to improve the performance of the torrefied biomass in the mill

Questions

