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Ch En 533 Exam 2 1 PIPELINE HEAT CONDUCTION

Problem 1. Pipeline Heat Conduction

Consider a steel pipeline (ρ = 7832 kg/m3, k = 63.9 W/m·K, α = 18.08 × 10−6 m2/s) that is 1
meter in diameter and has a wall thickness of 40 mm. The pipe is heavily insulated on the outside,
and before the initiation of flow, the walls of the pipe are at a uniform temperature of −20◦C. With
the initiation of flow, hot oil at 60◦C is pumped through the pipe, creating a convective condition
corresponding to h = 500 W/(m2K) at the inner surface of the pipe.

(a) Write and non-dimensionalize a transport equation (including initial and boundary condi-
tions) that describes the heat transfer in the walls of the pipe. Assume that the walls of the
pipe are thin relative to the radius of curvature, so that you may use Cartesian coordinates.
Your dimensional analysis should yield a Biot number. Calculate the Biot number and com-
ment on whether it is more appropriate to use a pseudo-steady/lumped capacitance analysis
or a transient analysis.

(b) Use the FFT method to solve the resulting PDE for the time-dependent profile of the tem-
perature distribution in the pipe wall. Hint 1: Orient your domain so that x = 0 is located on
the outside of the pipe and x = L is located on the inside. Hint 2: You may find the following
information helpful as a supplement to Table 5-2 on page 168 in Deen.

Case Boundary Conditions Basis Functions

V∗

dΦ

dx
(0) = 0

dΦ

dx
(1) + aΦ(1) = 0

Φn(x) = bn cos(λnx)

bn =

[
4λn

2λn + sin(2λn)

]1/2
λn tanλn = a

∗Note that there is no convenient closed form expression for the eigenvalues. They must be solved for numer-
ically.

(c) Use the first term of your Fourier series solution to estimate the temperature of the outer
pipeline wall at t = 8 minutes. In order to do this, you will need to numerically evaluate the
eigenvalue λ1. A Jupyter notebook has been provided to aid you in this calculation if you
would like to use it.
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Ch En 533 Exam 2 2 OSEEN VORTEX

Problem 2. Oseen Vortex

An ideal vortex is an irrotational and inviscid flow with circular streamlines of the form

vθ =
Γ

2πr
(1)

where Γ is the “circulation” constant with units of length squared per time (e.g. m2/s). Unfor-
tunately, like the other irrotational and inviscid flows we have learned about, the ideal vortex is
unphysical. In this case, as r → 0, vθ → ∞. Consequently, the ideal vortex does not satisfy
continuity!

Therefore, we seek a vortex flow that satisfies the Navier-Stokes equation, continuity and the
boundary conditions

vθ(r = 0) = 0 (2)

vθ(r →∞) =
Γ

2πr
(3)

In addition, there is one more wrinkle. It turns out that no steady flow can satisfy these conditions,
because viscous forces at the center gradually destroy a vortex. So, we need to look at a transient
problem where the initial condition is the ideal vortex

vθ(t = 0) =
Γ

2πr
(4)

(a) Simplify the Navier-Stokes equation for a cylindrical vortex assuming there is time-dependent
unidirectional flow in the θ-direction. You may also assume that there is no pressure gradient
in the θ-direction.

(b) Note that there is no natural length or time scale in this problem. Therefore, perform a
similarity transformation on the PDE you found in (a) and the initial and boundary conditions

above. Hint 1: Let f =
vθ

Γ/(2πr)
. Hint 2: Use what you know about the viscous penetration

depth to define the variable η.

(c) Solve the ODE you obtain in part (b) to obtain the velocity field for the “Oseen Vortex.”
Re-state your solution in terms of vθ, r, and t.
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Ch En 533 Exam 2 3 PULSATILE FLOW IN A TUBE

Problem 3. Pulsatile Flow in a Tube

Because of mechanism of the heart, blood flow is not steady, but varies periodically in time in what
is called “pulsatile flow.” In this problem you are going to derive the flow profile for the transient
part of pulsatile flow.

(a) Starting from the Navier-Stokes equation, derive a PDE (and initial/boundary conditions)
for pulsatile flow for a fluid with density ρ and viscosity µ in a cylindrical tube of radius R
assuming that the flow is unidirectional and that the pressure gradient is given by

∂P
∂z

= −a sin(wt) (5)

where a is an amplitude (in units of Pa/m) and w is a frequency (in units of 1/s). You may
assume that the fluid is initially stagnant and that no-slip applies at the tube walls.

(b) Use appropriate length and time scales to non-dimensionalize your expression to the form

∂θ

∂τ
= b sin(ετ) +

1

η

∂

∂η

(
η
∂θ

∂η

)
(6)

θ(η = 1) = 0,
∂θ

∂η
(η = 0) = 0, θ(τ = 0) = 0 (7)

Determine expressions for the dimensionless numbers b and ε in terms of the variables given
in part (a). For bonus points, determine the physical meaning of b and ε.

(c) The PDE in (b) can be solved using the FFT method. However, in this problem we are going
to solve it in the low-frequency limit of small ε using perturbation theory.

The challenge with doing so is that the pressure gradient can be out of phase with the velocity.
Because of this, it is easier to solve for a fictitious complex velocity that satisfies

∂Φ

∂τ
= beiετ +

1

η

∂

∂η

(
η
∂Φ

∂η

)
(8)

Φ(η = 1) = 0,
∂Φ

∂η
(η = 0) = 0, Φ(τ = 0) = 0 (9)

where the original velocity is the imaginary part∗ of the complex velocity

θ = Im(Φ) (10)

Φ has a product solution
Φ(η, τ) = f(η)beiετ (11)

Verify that this is true by substituting Eq. 11 into Eq. 8 to obtain an ODE for f(η). In
addition, determine expressions for the boundary conditions for f .

(d) Use perturbation theory (up to first-order in ε) to solve for f(η).

(e) Use your solution for f(η) to find an expression for θ(η, τ). For bonus points, interpret the
physical meaning of the solution you obtain for θ.

∗Recall that eiετ = cos(ετ) + i sin(ετ) and that Im(a+ bi) = b.
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