
 

DIFFUSION FLAMES 

Introduction 

The Authors S.P. Burke and T.E.W. Schumann first explained the two classes of flames which are 

first the Bunsen type in which the combustible gas and air are premixed before ignition occurs and 

flames in which the combustible gas and air meet. The later class of flames the authors applied the 

term diffusion flames. Diffusion flames have several applications, that is in industrial furnaces and 

in flares to name a few. In their paper they made an analysis of the diffusion flame and came up 

with a mathematical presentation of the theory and compared it to the experimental results they 

got. Types of diffusion flames include the flame of match, of a candle and of the familiar gas-jet 

burner. According to the authors in 1928 they found out that many investigations had been made 

on the premixed type of flames which included an adequate theory that has been advanced to 

account for the shape and general properties of the characteristic Bunsen cone however during that 

time diffusion flames had received a scant attention. The authors used the apparatus shown in 

Figure 1 which show two concentric tubes which were used to come up with the mathematical 

analysis. 

 

Figure 1-Diagram of Experimental Burner 

As shown from Figure 1 it consists of two concentric tubes and combustible gas flowing upward 

through the inner tube of radius L also having an opening A-A. The air flows upward again on the 

outer tube with the same velocity as the combustible gas due to keeping the rate of flow in the ratio 

of L2 to R2-L2.If the burner is ignited at A-A with a steady flame of definite shape therefore flames 

in cylindrical tubes are called cylindrical flames. The authors replaced the cylindrical tubes with 

two inner walls and two outer walls which they termed flat flames and the ratio of gas to air was 

kept at L to L-R for both velocities to be constant. An analytical solution was then generated. 

 

Method 

S.P. Burke and T.E.W. Schumann developed analytical solutions for both the cylindrical flames 

and the flat flames. The paper didn’t state which method they used to solve for the analytical 

solutions they got so I had to apply what we learned in class (ChEn 533) in order to solve for the 
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analytical solution reproducing what they got so I ended up just focusing on the flat flames. In my 

approach I used S.P. Burke and T.E.W. Schumann’s paper, Dr. Tree’s class notes and William 

Deen’s textbook as references. 

My method starts by stating the assumptions which were basically what the authors stated and 

adding mine that since it’s a solid therefore all 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 go to zero. I then stated the initial and 

boundary conditions which are the same as the ones the authors stated which included. After 

applying all the assumptions, the governing equation then simplified to: 

𝜕𝐶

𝜕𝑡
= 𝑘 (

𝜕2𝐶

𝜕𝑥2
) (1) 

Since v is constant, therefore v = yt and let x = r, the governing equation further simplifies to: 

𝑣
𝜕𝐶

𝜕𝑦
 =  𝑘

𝜕2𝐶

𝜕𝑟2
(2) 

I then figured that this a transient type of a problem that leads to a steady state condition thus I 

decided to solve for the concentration in two parts, first for the steady state term followed by the 

transient term then adding them together. For the steady state term, I first transformed the initial 

conditions and I managed to obtain θ1 =1 and θ2= - C2/ iC0 .After integrating twice and applying 

the transformed initial conditions which are basically constants, I obtained my steady state solution 

as equation (3): 

𝝏𝟐𝜽𝒔𝒔

𝝏𝒓𝟐  =  𝟎 → 𝜽𝒔𝒔 =
𝑳

𝑹
−

𝑪𝟐

𝒊𝑪𝒐

(3) 

Now for the transient part I then used the Finite Fourier Transform (FFT) method which I learned 

in class by first breaking my differential equation into two parts that is first the LHS and secondly 

the RHS and then solved each separately before combing the two. The boundary conditions used 

in the paper where 
𝑑𝐶

𝑑𝑟
= 0 𝑤ℎ𝑒𝑛 𝑟 = 0 𝑎𝑛𝑑 𝑟 = 𝑅, therefore I ended up using Case 4 from table 

5-2(William Deen’s textbook) in which ϕ𝑛 =  √
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
  𝑛 = 1,2, … … … … 

The LHS simplified easily because we could factor out the derivative and then we ended up with 

something that we had seen before: 

𝜕

𝜕𝑦
∫ 𝜃

1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 →

𝜕𝐶𝑛(𝑦)

𝜕𝑦
(4) 

However, we could not do the same for the RHS since we are integrating w.r.t r hence we cannot 

pull out of the integral any term with r.I then applied integration by parts twice inorder to simplify 

the RHS, from the first integration by parts I obtained: 

       

∫
𝑘

𝑣

𝜕2𝜃

𝜕𝑟2

1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 → √

2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅

𝜕𝜃

𝜕𝑟 

   1

│ 
  0

+ ∫
𝜕𝜃

𝜕𝑟 
 

1

0

√
2

𝑅

𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅
𝑑𝑟 (5) 



 

DIFFUSION FLAMES 

From the second integration by parts and evaluating equation (6) at r=0 and r=L, at this point I 

ended up getting something that I had seen before which then ended up getting rid of my integral 

sign therefore I obtained; 

∫
𝜕𝜃

𝜕𝑟 
 

1

0

√
2

𝑅

𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅
𝑑𝑟 → 𝜃√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅

   𝑟 = 𝐿

│ 
  𝑟 = 0

  − ∫  
1

0

𝜃√
2

𝑅
  

𝑛2𝜋2

𝑅2  𝑐𝑜𝑠
𝑛𝜋𝑟

𝑅
𝑑𝑟 (6) 

→
𝑘

𝑣
√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝐿

𝑅
−  

𝑘

𝑣
 
𝑛2𝜋2

𝑅2 𝐶𝑛(𝑦) 

After combining the RHS and LHS I then obtained a solvable PDE. 

𝜕𝐶𝑛(𝑦)

𝜕𝑦
=

𝑘

𝑣
√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝐿

𝑅
−  

𝑘

𝑣
 
𝑛2𝜋2

𝑅2 𝐶𝑛(𝑦) (7) 

The general solution for Homogeneous Differential Equations with constant coefficients is  

𝐶𝑛(𝑦) = 𝑆𝑒𝑟𝑥   According to table B-1(A), (William Deen’s textbook, page 641) Therefore after 

solving for constant S and  𝑒𝑟𝑥 we obtain: 

 

𝑆 = √
2

𝑅

𝑅

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
     ,      𝑒𝑟𝑥 = 𝑒−

𝜋2𝑛2𝑘𝑦

𝑣𝑅2 → 𝐶𝑛(𝑦) = √
2

𝑅

𝑅

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
√

2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒−

𝜋2𝑛2𝑘𝑦

𝑣𝑅2 (8) 

The solution of the transient term then simplifies to: 

𝜃𝑡 = ∑
2

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2

∞

𝑛=1

 

Recalling that 𝜃(𝑟, 𝑦) = 𝜃𝑠𝑠 + 𝜃𝑡 and dimensionalizing the final solution using 𝜃 =
𝐶

𝐶𝑜
 , I then 

reproduced the same analytical solution they got using what we learnt in class as shown in equation 

(9). 

𝐶 =
CoL

R
−

C2

i
+

Co2

π
∑

1

n
sin

πnL

R
cos

nπr

R
e

−
π2n2ky

vR2

∞

n=1

(9) 

As the authors did in the paper setting C =0 and r = x, I then lumped all the constants together 

forming a dimensionless number E, which is based on the concentrations of the combustible gas, 

𝐶2 and the ratio L/R as shown below. As the authors did , I then used the same equation to solve 

for E at different x and y values and ended up generating the same E-y curves they got using python 

at different x values  as shown in Figure 2. 

∑
1

𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑥

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2 =
𝜋

2
{

𝐶2

𝑖𝐶𝑜
−

𝐿

𝑅
}

∞

𝑛=1

= 𝐸 (10) 

Results and Discussion 

The authors considered a particular case supposing: 
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R 1 inch k 0.0763 inch^2/s 𝑪𝟐 0.21 V 1.33  inch^2/s 

L 1/6 inch Co 1 i 2 

Table 1 

Now based on case above the value of E = -0.113 and if the air is enriched containing 50% oxygen 

is used instead, E = 0. 052 which shows that 𝐶2 concentration is directly proportional to E. Figure 

2 shows the relationship between E, y and x which I generated using python matches what they 

produced back in 1928. 

 

Figure 2 E-y curves for flat flames. 

From Figure 2 the graph x=0 shows the height of an overventilated flame which is decreasing as 

E increases and the graph x=1.0 shows the height of an underventilated flame which increasing 

with increasing E. Given a scenario in which a portion of the combustible gas is substituted by an 

inert gas this will result in a decrease in 𝐶𝑜 which causes an increase in E as shown in equation 

(10) ,this will result in a taller underventilated flames and shorter overventilated flames. 

Conclusion 

Experiments were conducted as well, and it was concluded that substitution of an inert caused an 

elongation of the flame in all cases. The diffusion flame mathematical solution provided the same 

results with the experiments hence proving that transport phenomena can be applied to real life 

problems. The study of diffusion flames has assisted in ensuring safety in industry such as 

preventing backfiring and explosions in furnaces or flares. 
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APPENDIX 

Assumptions: 

• vgas and vair up the tube in the region of the flame is constant 

• The coefficient of interdiffusion of the two gas streams is constant  

• The interdiffusion is wholly flat 

• Mixture of the two gas streams occurs by diffusion only 

Definitions 

• r =  distance in the x-direction 

• y = vertical distance above orifice of inner parallel plates 

• k = coefficient of interdiffusion  

• C0 = initial concentration of combustible gas 

• C2 = - C2/i   concentration of oxygen ,negative combustible gas 

• i is the number of molecules of oxygen which combine with one molecule of combustible gas to 

effect complete combustion 

Initial and Boundary Conditions 

• C = C0 from r=0 to r=L at y=0    I.C 

• C =-C2 from r=L to r=R at y=0   I.C 

• 
𝑑𝐶

𝑑𝑟
= 0 when r=0 and r=R         B.C 

Governing Equation: Rectangular Coordinates 

Table 2-4 pg(42)   :         
𝜕𝐶

𝜕𝑡
+ 𝑣𝑥

𝜕𝐶

𝜕𝑥
+ 𝑣𝑦

𝜕𝐶

𝜕𝑦
+ 𝑣𝑧

𝜕𝐶

𝜕𝑧
= 𝑘 (

𝜕2𝐶

𝜕𝑥2 +
𝜕2𝐶

𝜕𝑦2 +
𝜕2𝐶

𝜕𝑧2) + 𝑅𝑣𝑖  

 

since v is constant, therefore v = yt and let x = r 

𝑣
𝜕𝐶

𝜕𝑦
 =  𝑘

𝜕2𝐶

𝜕𝑟2
 

𝜃 = 𝜃𝑠𝑠 + 𝜃𝑡 

 

Considering 𝜽𝒔𝒔 part 

Let r = 
𝐿

𝑅
   , θ = C/ C0 

Transforming BCs 

C0 θ1 = C0   ∴ θ1 =1  
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C0 θ2 = C2  ∴   θ2= - C2/ iC0 

𝜕2θss

𝜕𝑟2
 =  0 

Integrating twice : 

𝜃𝑠𝑠 = 𝐾1𝑟 + 𝐾2 ,   𝐾1 = 1 , 𝐾2 =  −
𝐶2

𝑖𝐶𝑜
 , the BC are also constants at steady state 

𝜃𝑠𝑠 =
𝐿

𝑅
−

𝐶2

𝑖𝐶𝑜
 

   

Considering θt part using the FFT Method 

Table 5-2  Case 4(page 168): ϕ𝑛 =  √
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
 , n = 1,2,……………… 

θ(r, y) = ∑ 𝐶𝑛(𝑦)ϕn(𝑟)𝑑𝑟

∞

𝑛=1

 

𝜕𝐶

𝜕𝑦
 =  

𝑘

𝑣

𝜕2𝐶

𝜕𝑟2
 

𝐶𝑛(𝑦) = ∫ θ(r, y)
1

0

 ϕn(𝑟)𝑑𝑟 

𝐶𝑛(𝑦) = ∫ θ
1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 

𝜕𝜃

𝜕𝑦
 =  

𝑘

𝑣

𝜕2𝜃

𝜕𝑟2
 

 

LHS :  

∫
𝜕𝜃

𝜕𝑦

1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 

𝜕

𝜕𝑦
∫ 𝜃

1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 

𝜕𝐶𝑛(𝑦)

𝜕𝑦
 

RHS: 
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∫
𝑘

𝑣

𝜕2𝜃

𝜕𝑟2

1

0

√
2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟 

𝑢 = √
2

𝑅
 𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
              𝑑𝑢 =  −√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅
 

𝑑𝑣 =
𝜕2𝜃

𝜕𝑟2 
                             𝑣 =

𝜕𝜃

𝜕𝑟 
                                         

 

𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐵𝑦 𝑃𝑎𝑟𝑡𝑠 ∶ ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 

√
2

𝑅
 𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅

𝜕𝜃

𝜕𝑟 
 
   1

│ 
  0

   + ∫
𝜕𝜃

𝜕𝑟 
 

1

0

√
2

𝑅
  

𝑛𝜋

𝑅
 𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅
𝑑𝑟            

𝑢 = 𝑠𝑖𝑛
𝑛𝜋𝑟

𝑅
            𝑑𝑢 =  

𝑛𝜋

𝑅
 𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
   

𝑑𝑣 =
𝜕𝜃

𝜕𝑟 
                                 𝑣 = 𝜃                                     

 

𝜃√
2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝑟

𝑅

   𝑟 = 𝐿

│ 
  𝑟 = 0

  − ∫  
1

0

𝜃√
2

𝑅
  

𝑛2𝜋2

𝑅2
 𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑑𝑟            

 

𝑘

𝑣
√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝐿

𝑅
−  

𝑘

𝑣
 
𝑛2𝜋2

𝑅2
𝐶𝑛(𝑦)   

Combining both LHS and RHS 

𝜕𝐶𝑛(𝑦)

𝜕𝑦
=

𝑘

𝑣
√

2

𝑅
 
𝑛𝜋

𝑅
𝑠𝑖𝑛

𝑛𝜋𝐿

𝑅
−  

𝑘

𝑣
 
𝑛2𝜋2

𝑅2
𝐶𝑛(𝑦)   

General solution for Homogeneous Differential Equations solution with constant coefficients 

𝐶𝑛(𝑦) = 𝐶𝑒𝑟𝑥   According to table B-1(A) page 641 

𝐶 = √
2

𝑅
 

𝑅

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
     ,     𝑒𝑟𝑥 = 𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2  

𝐶𝑛(𝑦) = √
2

𝑅

𝑅

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
√

2

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2  
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𝐶𝑛(𝑦) =
2

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2  

𝜃𝑡 = ∑
2

𝜋𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2

∞

𝑛=1

 

 

𝜃 = 𝜃𝑠𝑠 + 𝜃𝑡 

𝜃 =  
𝐿

𝑅
−

𝐶2

𝑖𝐶𝑜
+

2

𝜋
∑

1

𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2

∞

𝑛=1

 

𝐶 =  
𝐶𝑜𝐿

𝑅
−

𝐶2

𝑖
+

𝐶𝑜2

𝜋
∑

1

𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2

∞

𝑛=1

 

Putting C = O and r = x 

 

𝐸 =
𝜋

2
(

𝐶2

𝑖𝐶𝑜
−

𝐿

𝑅
) = ∑

1

𝑛
𝑠𝑖𝑛

𝜋𝑛𝐿

𝑅
𝑐𝑜𝑠

𝑛𝜋𝑟

𝑅
𝑒

−
𝜋2𝑛2𝑘𝑦

𝑣𝑅2

∞

𝑛=1

 

 

 



In [1]:

In [7]:

# %load "http://che.byu.edu/imports.py"
import numpy             as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize      import fsolve, curve_fit
from scipy.integrate     import odeint, quad
from scipy.interpolate   import interp1d
from scipy.misc          import derivative
import scipy.constants   as const
import sympy             as sp
sp.init_printing()
import glob
import time,math
from scipy.stats import t
#import pint; u = pint.UnitRegistry()

C1 = 1
R  = 1    #in
L  = 1/6  #in 
k = 0.0763#in**2/s
C2 = 0.21
i = 2
v = 1.33  #in/s
C0 = C1+C2/i

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2
3
4
5
6
7
8



In [3]: Nx = 101
x = np.linspace(1,0, Nx)
y = np.linspace(0,4,Nx)
Nmax = 1001
#E1 = np.linspace(-0.3,0.4,8)
def f(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0/R)*np.exp(-k*n**2*
    return f_sum
E =fsolve(f,np.ones(len(x)))
​
def f1(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.1/R)*np.exp(-k*n**
    return f_sum
E1 =fsolve(f1,np.ones(len(x)))
​
def f2(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.2/R)*np.exp(-k*n**
    return f_sum
E2 =fsolve(f2,np.ones(len(x)))
​
def f3(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.3/R)*np.exp(-k*n**
    return f_sum
E3 =fsolve(f3,np.ones(len(x)))
​
def f4(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.4/R)*np.exp(-k*n**
    return f_sum
E4 =fsolve(f4,np.ones(len(x)))
​
def f5(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.5/R)*np.exp(-k*n**
    return f_sum
E5 =fsolve(f5,np.ones(len(x)))
​
def f6(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.6/R)*np.exp(-k*n**
    return f_sum
E6 =fsolve(f6,np.ones(len(x)))
​
def f7(E):
    f_sum = np.zeros(Nx)
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    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.7/R)*np.exp(-k*n**
    return f_sum
E7 =fsolve(f7,np.ones(len(x)))
​
def f8(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.8/R)*np.exp(-k*n**
    return f_sum
E8 =fsolve(f8,np.ones(len(x)))
​
def f9(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.9/R)*np.exp(-k*n**
    return f_sum
E9 =fsolve(f9,np.ones(len(x)))
​
def f10(E):
    f_sum = np.zeros(Nx)
    for n in range(1, Nx):
        f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*1.0/R)*np.exp(-k*n**
    return f_sum
E10 =fsolve(f10,np.ones(len(x)))
​
plt.rc('font',size=18)
plt.figure(figsize=(12,10))
​
​
plt.plot(y,E*100,label='$ x=0$')
plt.plot(y,E1*100,label='$ x=0.1$')
plt.plot(y,E2*100,label='$ x=0.2$')
plt.plot(y,E3*100,label='$ x=0.3$')
plt.plot(y,E4*100,label='$ x=0.4$')
plt.plot(y,E5*100,label='$ x=0.5$')
plt.plot(y,E6*100,label='$ x=0.6$')
plt.plot(y,E7*100,label='$ x=0.7$')
plt.plot(y,E8*100,label='$ x=0.8$')
plt.plot(y,E9*100,label='$ x=0.9$')
plt.plot(y,E10*100,label='$ x=1.0$')
plt.legend()
plt.grid()
plt.title('E and y curves for Flat Flames when L/R = 1/6')
plt.xlabel('$y=Height (in)$')
plt.ylabel('$E$')
plt.show()
plt.tight_layout()
​
​

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106



<Figure size 432x288 with 0 Axes>



In [10]:

In [ ]:

In [ ]:

Out[10]: [<matplotlib.lines.Line2D at 0x217d767d6a0>]

#E = -0.113
​
x1 = np.array([1,0.9,0.8,0.7,0.6,0.5,0.4,0.3])
y1 = np.array([1.50,1.45,1.27,0.98,0.57,0.32,0.17,0.05])
#When E = 0.052
x2 = np.array([0,0.1,0.2,0.2,0.3,0.3,0.4,0.4])
y2 = np.array([2.32,2.24,2.07,0.02,1.76,0.13,0.96,0.80])
plt.figure(figsize=(12,10))
plt.plot(x1,y1,'o')
plt.plot(x2,y2,'o')
​

​

​

1
2
3
4
5
6
7
8
9

10
11

1

1




