DIFFUSION FLAMES

Introduction

The Authors S.P. Burke and T.E.W. Schumann first explained the two classes of flames which are
first the Bunsen type in which the combustible gas and air are premixed before ignition occurs and
flames in which the combustible gas and air meet. The later class of flames the authors applied the
term diffusion flames. Diffusion flames have several applications, that is in industrial furnaces and
in flares to name a few. In their paper they made an analysis of the diffusion flame and came up
with a mathematical presentation of the theory and compared it to the experimental results they
got. Types of diffusion flames include the flame of match, of a candle and of the familiar gas-jet
burner. According to the authors in 1928 they found out that many investigations had been made
on the premixed type of flames which included an adequate theory that has been advanced to
account for the shape and general properties of the characteristic Bunsen cone however during that
time diffusion flames had received a scant attention. The authors used the apparatus shown in
Figure 1 which show two concentric tubes which were used to come up with the mathematical
analysis.

Figure 1-Diagram of Experimental Burner

As shown from Figure 1 it consists of two concentric tubes and combustible gas flowing upward
through the inner tube of radius L also having an opening A-A. The air flows upward again on the
outer tube with the same velocity as the combustible gas due to keeping the rate of flow in the ratio
of L2to R?-L2.If the burner is ignited at A-A with a steady flame of definite shape therefore flames
in cylindrical tubes are called cylindrical flames. The authors replaced the cylindrical tubes with
two inner walls and two outer walls which they termed flat flames and the ratio of gas to air was
kept at L to L-R for both velocities to be constant. An analytical solution was then generated.

Method

S.P. Burke and T.E.W. Schumann developed analytical solutions for both the cylindrical flames
and the flat flames. The paper didn’t state which method they used to solve for the analytical
solutions they got so | had to apply what we learned in class (ChEn 533) in order to solve for the
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analytical solution reproducing what they got so | ended up just focusing on the flat flames. In my
approach I used S.P. Burke and T.E.W. Schumann’s paper, Dr. Tree’s class notes and William
Deen’s textbook as references.

My method starts by stating the assumptions which were basically what the authors stated and
adding mine that since it’s a solid therefore all v, , v, , v, go to zero. | then stated the initial and
boundary conditions which are the same as the ones the authors stated which included. After
applying all the assumptions, the governing equation then simplified to:
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Since v is constant, therefore v = yt and let x = r, the governing equation further simplifies to:
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| then figured that this a transient type of a problem that leads to a steady state condition thus I
decided to solve for the concentration in two parts, first for the steady state term followed by the
transient term then adding them together. For the steady state term, I first transformed the initial
conditions and | managed to obtain 61 =1 and 6,= - C2/ iCo .After integrating twice and applying
the transformed initial conditions which are basically constants, | obtained my steady state solution
as equation (3):
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Now for the transient part | then used the Finite Fourier Transform (FFT) method which I learned
in class by first breaking my differential equation into two parts that is first the LHS and secondly
the RHS and then solved each separately before combing the two. The boundary conditions used

in the paper where % = 0 whenr = 0 and r = R, therefore | ended up using Case 4 from table

5-2(William Deen’’s textbook) in which ¢,, = I cos™ n=12,.

The LHS simplified easily because we could factor out the derivative and then we ended up with
something that we had seen before:
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However, we could not do the same for the RHS since we are integrating w.r.t r hence we cannot
pull out of the integral any term with r.1 then applied integration by parts twice inorder to simplify
the RHS, from the first integration by parts | obtained:
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From the second integration by parts and evaluating equation (6) at r=0 and r=L, at this point |
ended up getting something that I had seen before which then ended up getting rid of my integral
sign therefore | obtained,;
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After combining the RHS and LHS I then obtained a solvable PDE.
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The general solution for Homogeneous Differential Equations with constant coefficients is
C,(y) = Se™ According to table B-1(A), (William Deen’s textbook, page 641) Therefore after
solving for constant S and e we obtain:

m2n2ky m2nZky

S= 2R gin™ er"ze_T—)Cn(y)—\/;—SL —= |=cos ﬂe_ vR? €)

Rmn R

The solution of the transient term then simplifies to:

e 2.2
P 2  mnL nnr _T T;?ZRY
= —sin——cos——e v
t ™ R R

n=1

Recalling that 8(r,y) = 6, + 6, and dimensionalizing the final solution using 6 = Ci , | then

reproduced the same analytical solution they got using what we learnt in class as shown in equation

9).
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As the authors did in the paper setting C =0 and r = x, | then lumped all the constants together
forming a dimensionless number E, which is based on the concentrations of the combustible gas,
C, and the ratio L/R as shown below. As the authors did , | then used the same equation to solve
for E at different x and y values and ended up generating the same E-y curves they got using python
at different x values as shown in Figure 2.

lemﬂcosﬂe 7rvnRZky 2{%—%}=E (10)
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Results and Discussion

The authors considered a particular case supposing:
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R linch k 0.0763 inch"2/s C, 0.21 \Y | 1.33 inch"2/s |
L 1/6 inch Co 1 i 2

Table 1

Now based on case above the value of E = -0.113 and if the air is enriched containing 50% oxygen
is used instead, E = 0. 052 which shows that C, concentration is directly proportional to E. Figure
2 shows the relationship between E, y and x which | generated using python matches what they
produced back in 1928.

14 E and y curves for Flat Flames when L/R = 1/6
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Figure 2 E-y curves for flat flames.

From Figure 2 the graph x=0 shows the height of an overventilated flame which is decreasing as
E increases and the graph x=1.0 shows the height of an underventilated flame which increasing
with increasing E. Given a scenario in which a portion of the combustible gas is substituted by an
inert gas this will result in a decrease in C, which causes an increase in E as shown in equation
(10) ,this will result in a taller underventilated flames and shorter overventilated flames.

Conclusion

Experiments were conducted as well, and it was concluded that substitution of an inert caused an
elongation of the flame in all cases. The diffusion flame mathematical solution provided the same
results with the experiments hence proving that transport phenomena can be applied to real life
problems. The study of diffusion flames has assisted in ensuring safety in industry such as
preventing backfiring and explosions in furnaces or flares.
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APPENDIX

Assumptions:
® Vg and vairup the tube in the region of the flame is constant
e The coefficient of interdiffusion of the two gas streams is constant
e The interdiffusion is wholly flat
e  Mixture of the two gas streams occurs by diffusion only
Definitions
e r= distance in the x-direction
e y=vertical distance above orifice of inner parallel plates
o k= coefficient of interdiffusion
e (o= initial concentration of combustible gas
e (C,=-GC/i concentration of oxygen ,negative combustible gas

e iisthe number of molecules of oxygen which combine with one molecule of combustible gas to
effect complete combustion

Initial and Boundary Conditions
o C=Cofromr=0tor=Laty=0 I.C

e C=-=Cyfromr=Ltor=Raty=0 I.C

) % = 0 when r=0 and r=R B.C

Governing Equation: Rectangular Coordinates
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since v is constant, thereforev=ytandletx=r
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L
Letr=E ,0=C/Co

Transforming BCs

Co 91 = Co 61 =1



APPENDIX

Co 62 = Cz 92= - Cz/ iCo
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Integrating twice :
O, =Kir+K,, K;=1,K, = — 1%2 , the BC are also constants at steady state
[
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Considering 9: part using the FFT Method

Table 5-2 Case 4(page 168): b, = \/%cos% ,N=1,2, i,
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Combining both LHS and RHS
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General solution for Homogeneous Differential Equations solution with constant coefficients

C,(y) = Ce™ According to table B-1(A) page 641
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In [1]: 1 # %load "http://che.byu.edu/imports.py"
2 import numpy as np
3 import matplotlib.pyplot as plt
4 Z%matplotlib inline
5 from scipy.optimize import fsolve, curve_fit
6 from scipy.integrate import odeint, quad
7 from scipy.interpolate  import interpld
8 from scipy.misc import derivative
9 import scipy.constants as const
10 import sympy as sp

11 sp.init_printing()

12 import glob

13 import time,math

14 from scipy.stats import t

15 #import pint; u = pint.UnitRegistry()

v = 1.33 #in/s
Co = C1+C2/1i

In [7]: 1 C1=1
2 R =1 #1in
3 L =1/6 #in
4 k = 0.0763#1n**2/s
5 C2 =0.21
6 1i=2
7
8



In [3]:

ONOUTDS WNE

Nx = 101

X = np.linspace(1,0, Nx)
y = np.linspace(0,4,Nx)
Nmax = 1001

#E1 = np.linspace(-0.3,0.4,8)

def f(E):
f_sum

for n in range(1l, Nx):
f _sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E =fsolve(f,np.ones(len(x)))

def f1(E):
f_sum

for n in range(1l, Nx):
f_sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

El =fsolve(fl,np.ones(len(x)))

def f2(E):
f _sum

for n in range(l, Nx):
f_sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E2 =fsolve(f2,np.ones(len(x)))

def f3(E):
f _sum

for n in range(1, Nx):
f_sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E3 =fsolve(f3,np.ones(len(x)))

def f4(E):
f _sum

for n in range(1, Nx):
f sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E4 =fsolve(f4,np.ones(len(x)))

def f5(E):
f_sum

for n in range(1l, Nx):
f sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E5 =fsolve(f5,np.ones(len(x)))

def f6(E):
f_sum

for n in range(1l, Nx):
f sum += 1/n*np.sin(np.

np.zeros(Nx)

return f_sum

E6 =fsolve(f6,np.ones(len(x)))

def f7(E):
f_sum

np.zeros(Nx)

pi*n*L/R)*np.

pi*n*L/R)*np.

pi*n*L/R)*np.

pi*n*L/R)*np.

pi*n*L/R)*np

pi*n*L/R)*np

pi*n*L/R)*np.

cos(np.

cos(np.

cos(np.

cos(np.

.cos(np.

.cos(np.

cos(np.

pi*n*@/R)*np.exp(-k¥*n**24

pi*n*0.1/R)*np.

pi*n*0.2/R)*np.

pi*n*0.3/R)*np.

pi*n*0.4/R)*np.

pi*n*0.5/R)*np.

pi*n*0.6/R)*np.

exp (-k*n*4

exp (-k*n*4

exp(-k*n*#

exp(-k¥*n**

exp(-k¥*n*

exp (-k*n*4



57 for n in range(1, Nx):

58 f sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.7/R)*np.exp(-k*n**
59 return f_sum

60 E7 =fsolve(f7,np.ones(len(x)))

61

62 def f8(E):

63 f_sum = np.zeros(Nx)

64 for n in range(1l, Nx):

65 f sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.8/R)*np.exp(-k*n**
66 return f_sum

67 E8 =fsolve(f8,np.ones(len(x)))

68

69 def f9(E):

70 f_sum = np.zeros(Nx)

71 for n in range(1l, Nx):

72 f_sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*0.9/R)*np.exp(-k*n**
73 return f_sum

74 E9 =fsolve(f9,np.ones(len(x)))

75

76 def f1o(E):

77 f_sum = np.zeros(Nx)

78 for n in range(1, Nx):

79 f _sum += 1/n*np.sin(np.pi*n*L/R)*np.cos(np.pi*n*1.0/R)*np.exp(-k*n*?
80 return f_sum

81 E10 =fsolve(flO,np.ones(len(x)))

82

83 plt.rc('font',size=18)

84 plt.figure(figsize=(12,10))

85

86

87 plt.plot(y,E*100,label="$ x=

88 plt.plot(y,E1*100,label="$ x

89 plt.plot(y,E2*100,label="% x

90 plt.plot(y,E3*100,label="% x

91 plt.plot(y,E4*100,label="% x

92 plt.plot(y,E5*100,label="% x
X
X
X
X

93 plt.plot(y,E6*100,label="%
94 plt.plot(y,E7*100,label="$
95 plt.plot(y,E8*%100,label="$%
96 plt.plot(y,E9*100,label="$
97 plt.plot(y,E10*100,label="% x
98 plt.legend()

99 plt.grid()

100 plt.title('E and y curves for Flat Flames when L/R = 1/6")
101 plt.xlabel('$y=Height (in)$")

102 plt.ylabel('$E$")

103 plt.show()

104 plt.tight layout()

105

106
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E and y curves for Flat Flames when L/R = 1/6
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In [10]:
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I
R o

#E = -0.113

x1 = np.array([1,0.9,0.8,0.7,0.6,0.5,0.4,0.3])

yl = np.array([1.50,1.45,1.27,0.98,0.57,0.32,0.17,0.05])
#iWhen E = 0.052

X2 = np.array([0,0.1,0.2,0.2,0.3,0.3,0.4,0.4])

y2 = np.array([2.32,2.24,2.07,0.02,1.76,0.13,0.96,0.80])
plt.figure(figsize=(12,10))

plt.plot(x1,yl,'o")

plt.plot(x2,y2,'0")

Out[10]: [<matplotlib.lines.Line2D at 0x217d767d6a@>]
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