


Introduction

 Important assumptions in solving transport problems with 

charged species:

 Electroneutrality

 Gibbs-Donnan equilibrium at the membrane surface

 Prior to 1968, these had been observed experimentally 

but lacked an analytical basis

 In his 1968 paper1, A. D. MacGillivray demonstrates how 

these assumptions may be derived



Introduction

 Electroneutrality

 Due to strong electrical forces 
between charged species in 
solution and their high mobilities, 
significant separation of charge 
does not occur2

 σ𝑖 𝑧𝑖𝐶𝑖 = 0

 Gibbs-Donnan Equilibrium

 A semipermeable membrane 
allows smaller ions to cross but not 
larger ones

 Results in varying equilibrium 
concentrations on either side of 
the membrane



𝐴

෪𝐶𝐴

𝑧𝐴
=

𝐵

෪𝐶𝐵

𝑧𝐵
= 𝑒−𝐷 Figure 1: Example of a system obeying both 

electroneutrality and Gibbs-Donnan Equilibrium



Methods – Governing Equations

 Nernst-Planck Equation:

 𝑁𝑖 = 𝐶𝑖𝑣 − 𝐷𝑖 ∇𝐶𝑖 +
𝑧𝑖𝐹

𝑅𝑇
𝐶𝑖∇ϕ

 Notice the addition of a migration term to our typical transport equation

 An additional equation is needed to solve for the potential gradient

 Poisson’s Equation:

 ∇2𝜙 = −
𝐹

𝜉
σ𝑖 𝑧𝑖𝐶𝑖



Methods – Singular Perturbation

 Similar to regular perturbation but when 𝜖 becomes large in certain 

limits of the system (for example close to the walls)

 May be identified by when setting 𝜖 = 0 reduces the order of the 

differential equation

 I will demonstrate singular perturbation by deriving Gibbs-Donnan

equilibrium in my results section



Problem Set 

Up

 The problem we will be 

considering is the 

transport of ions 

through a charged 

membrane

 𝑧1 = +1

 𝑧2 = −1

 𝑧3 = +1

 No convection



Results and Discussion –

Electroneutrality Derivation

 Poisson’s Equation:

 ∇2𝜙 = −
𝐹

𝜉
σ𝑖 𝑧𝑖𝐶𝑖

 Non-dimensionalized version:

 𝜖2
𝑑2෩𝜙

𝑑 ෤𝑥
= − ሚ𝐶1 − ሚ𝐶2 + ሚ𝐶𝑛

 where ϵ2 =
𝑅𝑇𝜉

𝐹2𝐿2Δ𝐶

 We get the electroneutrality equation if 𝜖 → 0:

 0= ሚ𝐶1 − ሚ𝐶2 + ሚ𝐶𝑛

 σ𝑖 𝑧𝑖𝐶𝑖 = 0



Results and Discussion –

Electroneutrality Derivation

 When is the assumption of electroneutrality valid?

 𝜖 → 0

 ϵ2 =
𝑅𝑇𝜉

𝐹2𝐿2Δ𝐶

 When 𝐿 is large compared to the Debye length

 Analogous to the thickness of the boundary layer for potential

 Or when Δ𝐶 is small compared to 𝐶0

 𝜖2
𝑑2෩𝜙

𝑑 ෤𝑥
= − ሚ𝐶1 − ሚ𝐶2 + ሚ𝐶𝑛

 ሚ𝐶𝑖 =
𝐶𝑖

Δ𝐶



Results and Discussion –

Gibbs-Donnan Equilibrium

 Non-dimensionalized Nernst-Planck and Poisson equations:

 ෩𝑁1 = − ሚ𝐶1
𝑑෩ϕ

𝑑 ෤𝑥
−

𝑑 ሚ𝐶1

𝑑 ෤𝑥

 ෩𝑁2 = ሚ𝐶2
𝑑෩ϕ

𝑑 ෤𝑥
−

𝑑 ሚ𝐶2

𝑑 ෤𝑥

 𝜖2
𝑑2෩𝜙

𝑑 ෤𝑥
= − ሚ𝐶1 − ሚ𝐶2 + ሚ𝐶𝑛

 Since 𝜖 is often small, this suggests using a perturbation scheme to 

solve.

 Zeroth-order in 𝜖:

 0 = − ሚ𝐶1
0
− ሚ𝐶2

0
+ ሚ𝐶𝑛

 Need to use singular perturbation



Singular Perturbation Steps

 Steps to solve:

1. Use regular perturbation to solve for the solution in the bulk (the outer 

solution)

2. Use a change of variables to make the small term ~1 when 𝜖 → 0, then 

solve for the solution close to the wall via perturbation (inner solution)

3. Match the two solutions via asymptotic matching



Using Singular Perturbation to 

Derive Gibbs-Donnan Equilibrium

1. Use regular perturbation to solve for the solution in the bulk (the 

outer solution)

 Solving ODE’s like we have done before

 We will skip this part and assume a solution exists and that the limits of 

that solution are as follows:

 𝑙𝑖𝑚
෤𝑥→0

෨𝐶1
0 ෤𝑥 = 𝐴

 𝑙𝑖𝑚
෤𝑥→0

෨𝐶2
0 ෤𝑥 = 𝐵

 𝑙𝑖𝑚
෤𝑥→0

෩ϕ ෤𝑥 = 𝐷



Using Singular Perturbation to 

Derive Gibbs-Donnan Equilibrium
2. Use a change of variables to make the small term ~1 when 𝜖→0, then solve for 

the solution close to the wall via perturbation (inner solution)

 𝜖2
𝑑2෩𝜙

𝑑 ෤𝑥
= − ሚ𝐶1 − ሚ𝐶2 + ሚ𝐶𝑛

 Let 𝑥𝜂 =
෤𝑥

𝜖

 Solving for zeroth order in 𝜖:

 0 = − መ𝐶1
0 𝑑 ෡ϕ 0

𝑥η
−

𝑑 መ𝐶1
0

𝑥η

 0 = መ𝐶2
0 𝑑 ෡𝜙 0

𝑥𝜂
−

𝑑 መ𝐶2
0

𝑥𝜂



𝑑2 ෡𝜙 0

𝑑𝑥𝜂
2 = − ෠𝐶1

0 − ෠𝐶2
0 + ෨𝐶𝑛

 Solution:


෠𝐶1
0 𝑥η = ෨𝐶0𝑒

−෡ϕ 0 𝑥η , ෠𝐶2
0 𝑥𝜂 = ෨𝐶0𝑒

෡𝜙 0 𝑥𝜂



Using Singular Perturbation to 

Derive Gibbs-Donnan Equilibrium

3. Match the two solutions via asymptotic matching

 The limit of the outer solution as ෤𝑥 approaches zero must equal the limit 

of the inner solution as 𝑥η approaches infinity

 Solution:

 𝐴 = ሚ𝐶0𝑒
−෡𝜙 0 ∞

 𝐵 = ሚ𝐶0𝑒
෡𝜙 0 ∞


෡ϕ 0 ∞ = 𝐷

 Rearranged this gives us:



𝐴

෪𝐶𝐴

𝑧𝐴
=

𝐵

෪𝐶𝐵

𝑧𝐵
= 𝑒−𝐷



Summary

 MacGillivray’s 1968 publication provides a sound analytical 

argument for the validity of the electroneutrality and Gibbs-Donnan 

equilibrium assumptions

 These derivations may be applied on a much larger scale

 Gibbs-Donnan equilibrium is valid in any system involving a 

membrane that obeys the Nernst-Planck and Poisson equations

 Electroneutrality is valid when the length scale of the system is large 

and the concentration gradient is small

 Understanding where these assumptions come from gives insight 
into their limits
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