
Introduction  
To gain analytical insight into the transport of ions across charged or uncharged media, simplifying must 
be made. One of the most important and commonly used assumptions is that of electroneutrality which 
states that due to the strong electrical forces between charged species in solution and their high 
mobilities, “significant separation of charge does not occur” [1]. Specifically in the transport of charged 
ions through a membrane, another important assumption is that of a Gibbs-Donnan equilibrium at the 
membrane surface. In 1968, A. D. MacGillivray demonstrates how these assumptions may be derived for 
the transport of ions across a charged membrane that obeys the Nernst-Planck and Poisson equations 
[2]. 
 
Up to 1968 electroneutrality had been observed as a very reasonable assumption but lacked an 
analytical basis as well as grounds for when this assumption is valid. For example, if one assumes 
electroneutrality while solving Poisson’s equation in one dimension they find the solution of the 
potential to be a straight line. This result is physically impossible because the solution for potential 
found by solving the Nernst-Planck transport equation under the same assumptions is non-linear. Before 
1968, the justification made in literature was that “if this nonlinear potential is substituted into 
Poisson’s equation, the charge distribution, although not zero, is small” [2, 3, 4]. 
 
The purpose of this paper is to demonstrate how the electroneutrality equation may be derived from 
Poisson’s equation and under what grounds it is valid by following MacGillivray’s technique, as well as to 
show how the Nernst-Planck equation in conjunction with Poisson’s equation implies the existence of a 
Gibbs-Donnan equilibrium at the membrane surface [2].   

Methods  
The problem we are considering is the transport of ions through a charged membrane. The governing 
equations for this type of problem are the Nernst-Planck equation and Poisson’s equation. The Nernst-
Planck equation describes the total flux (𝑁𝑖) of species 𝑖 in terms of its concentration (𝐶𝑖) and the 
potential distribution (ϕ): 

 
𝑁𝑖 = 𝐶𝑖𝑣 − 𝐷𝑖 (∇𝐶𝑖 +

𝑧𝑖𝐹

𝑅𝑇
𝐶𝑖∇ϕ) (1) 

In in this equation 𝑣 represents the bulk velocity, 𝐷𝑖 and 𝑧𝑖  are the diffusion coefficient and charge of 
species 𝑖 respectively, 𝐹 is Faraday’s constant, 𝑅 is the gas constant, and 𝑇 is the temperature. Poisson’s 
equation relates the Laplacian of the potential to the charge density and is given by the equation: 

 ∇2ϕ = −
ρ𝑒

𝜉
 (2) 

where 𝜉 is the constant dielectric permittivity and ρ𝑒 is the volumetric charge density given by: 

 ρ𝑒 = 𝐹 ∑ 𝑧𝑖𝐶𝑖

𝑖

 (3) 

To solve these equations, like all other transport problems, some sort of boundary condition is 
necessary. One such assumption is the existence of a Gibbs-Donnan equilibrium with the surface of the 
membrane. Gibbs-Donnan equilibrium occurs when a semipermeable membrane allows for the 
transport of smaller ions across its surface but not larger ones, thus resulting in varying equilibrium 
concentrations on each side of the membrane [5]. A Gibbs-Donnan equilibrium is characterized by the 
equation: 

 
(

𝐴

𝐶𝐴̃

)

𝑧𝐴

= (
𝐵

𝐶𝐵̃

)

𝑧𝐵

= 𝑒−𝐷 (4) 



where 𝐴 and 𝐵 are the dimensionless concentrations of species A and B inside the membrane that are 

“close” to the wall but not at the wall, 𝐶𝐴̃ and 𝐶𝐵̃ are their dimensionless concentrations outside of the 
membrane, and 𝐷 is some constant. 
 
To solve this problem, we will need to use a singular perturbation scheme. Singular perturbation is very 
similar to regular perturbation but is used in the case that the small dimensionless parameter ϵ that is 
otherwise small, becomes large in certain limits of the system (for example close to the walls as in our 
problem). A singular perturbation problem may be identified from a regular perturbation problem when 
ϵ approaching zero reduces the order of the differential equation, thus losing important information 
about the problem. Singular perturbation solves this problem by splitting the problem into two: 1) using 
perturbation to solve for the solution in the bulk (known commonly as the outer solution), and 2) using a 
change of variables followed by perturbation to solve for the solution close to the wall (known as the 
inner solution). The two solutions may then be woven together via asymptotic matching. For further 
discussion on singular perturbation beyond the example discussed in this paper please refer to Deen [6]. 
 
To derive the electroneutrality equation from Poisson’s equation and prove the existence of a Gibbs-
Donnan equilibrium at the membrane surface, we will consider the one-dimensional transport of 
charged species 1 and 2 through a charged membrane of length 𝐿. We will begin with the following 
assumptions: Let species 1 have a +1 charge and species 2 have a −1 charge and that both are able to 
cross the membrane wall, let species 3 have a +1 charge and be fixed within the membrane at a 
constant concentration of 𝐶𝑛, assume no convection and that the Nernst-Einstein relationship is true. 
We will provide the boundary conditions as: 

 𝐶1(0) = 𝐶0 𝐶1(𝐿) = 𝐶0 + Δ𝐶 (5) 
 𝐶2(0) = 𝐶0 𝐶2(𝐿) = 𝐶0 + Δ𝐶 (6) 
 𝜙(0) = 0 𝜙(𝐿) = Δ𝜙 (7) 

We first begin by non-dimensionalizing our balance equations. From an order-of-magnitude analysis we 

find that 𝑥 ~ 𝐿, 𝐶1~𝐶2~𝐶𝑛~Δ𝐶, and Δϕ~
𝑅𝑇

𝐹
. This suggests the following dimensionless variables: 

 𝑥̃ = 𝑥/𝐿 (8) 
 C̃1 = 𝐶1/Δ𝐶 (9) 
 𝐶̃2 = 𝐶2/Δ𝐶 (10) 
 𝐶̃𝑛 = 𝐶𝑛/Δ𝐶 (11) 
 𝜙̃ = 𝜙𝐹/𝑅𝑇 (12) 

Plugging these into equations (1) and (2) results in the following: 

 
𝑁̃1 = −𝐶̃1

𝑑ϕ̃

𝑑𝑥̃
−

𝑑𝐶̃1

𝑑𝑥̃
 (13) 

   

 
𝑁̃2 = 𝐶̃2

𝑑ϕ̃

𝑑𝑥̃
−

𝑑𝐶̃2

𝑑𝑥̃
 (14) 

   

 
(

𝑅𝑇ξ

𝐹2𝐿2Δ𝐶
)

𝑑2ϕ̃

𝑑𝑥̃
= −[𝐶̃1 − 𝐶̃2 + 𝐶̃𝑛] (15) 

Furthermore, if we let ϵ2 =
𝑅𝑇𝜉

𝐹2𝐿2Δ𝐶
 Equation (15) reduces to:  

 
𝜖2

𝑑2𝜙̃

𝑑𝑥̃
= −[𝐶̃1 − 𝐶̃2 + 𝐶̃𝑛] (16) 

If ϵ is small (which is often the case), this would suggest a perturbation scheme. ϵ becomes small either 
when 𝐿 is large compared to the Debye length (analogous to the thickness of the boundary layer for ϕ), 

or when Δ𝐶 is small compared to 𝐶0 (which would result in 𝐶̃1, 𝐶̃2, and 𝐶̃𝑛 being large).  
 



We can readily prove from Equation (16) that the electroneutrality equation can be derived from 

Poisson’s equation. Taking the limit of Equation (16) 𝜖 goes to zero and rearranging we have the 
following: 

 0 = 𝐶1 − 𝐶2 + 𝐶3 = ∑ 𝑧𝑖𝐶𝑖

𝑖

 (17) 

which is the definition of electroneutrality. 
 
We begin to solve these equations using singular perturbation by letting: 

 𝐶̃1 = 𝐶̃1
(0)

+ ϵ𝐶̃1
(1)

+ 𝑂(ϵ2) (18) 

 𝐶̃2 = 𝐶̃2
(0)

+ 𝜖𝐶̃2
(1)

+ 𝑂(𝜖2) (19) 

 𝜙̃ = 𝜙̃(0) + ϵ𝜙̃(1) + 𝑂(ϵ2) (20) 
 𝑁̃1 = 𝑁̃1

(0)
+ ϵ𝑁̃1

(1)
+ 𝑂(ϵ2) (21) 

 𝑁̃2 = 𝑁̃2
(0)

+ 𝜖𝑁̃2
(1)

+ 𝑂(𝜖2) (22) 

Plugging these expressions into equations (13), (14), and (16) and rearranging we get the following for 
zeroth order in ϵ: 

 
𝑁̃1

(0)
+ 𝑁̃2

(0)
= 𝐶̃𝑛

𝑑𝜙̃(0)

𝑑𝑥̃
−

𝑑

𝑑𝑥̃
[𝐶̃1

(0)
+ 𝐶̃2

(0)
] (23) 

   

 
𝑁̃1

(0)
− 𝑁̃2

(0)
= − [𝐶̃1

(0)
+ 𝐶̃2

(0)
]

𝑑𝜙̃(0)

𝑑𝑥̃
 (24) 

   

 0 = − [𝐶̃1
(0)

− 𝐶̃2
(0)

+ 𝐶̃𝑛] (25) 

These equations represent the outer solution, which could then be solved to give us the concentration 
and potential profiles in the bulk. To prove the existence of a Gibbs-Donnan equilibrium we don’t 
actually have to solve these, so we won’t. It will be sufficient to assume that a solution exists and that 
the limits of that solution are as follows: 

 𝑙𝑖𝑚
𝑥̃→0

𝐶̃1
(0) (𝑥̃) = 𝐴 (26) 

 𝑙𝑖𝑚
𝑥̃→0

𝐶̃2
(0) (𝑥̃) = 𝐵 (27) 

 𝑙𝑖𝑚
𝑥̃→0

ϕ̃ (𝑥̃) = 𝐷 (28) 

We then solve for the inner solution using a change of variables. Noticing that as 𝑥̃ approaches zero, the 

second derivative of potential becomes large enough that the entire left-hand side of Equation (16) 
must be on the order of one to become significant, we suggest a change of variable: 

 
𝑥η =

𝑥̃

ϵ
 (29) 

such that on substitution into Equation (16) the left-hand side becomes zeroth order in ϵ. Substituting 

this change of variable into equations (13), (14), and (16) along with the expansions in equations (18-
22) we get the following for zeroth order in ϵ: 

 
0 = −𝐶̂1

(0) 𝑑ϕ̂(0)

𝑥η
−

𝑑𝐶̂1
(0)

𝑥η
 (30) 

   

 
0 = 𝐶̂2

(0) 𝑑𝜙̂(0)

𝑥𝜂
−

𝑑𝐶̂2
(0)

𝑥𝜂
 (31) 

   

 𝑑2𝜙̂(0)

𝑑𝑥𝜂
2 = − [𝐶̂1

(0)
− 𝐶̂2

(0)
+ 𝐶̃𝑛] (32) 



Note the change in notation from 𝐶̃1
(0)

, 𝐶̃2
(0)

, and 𝜙̃(0) to 𝐶̂1
(0)

, 𝐶̂2
(0)

, and 𝜙̂(0) to represent the inner 
solution. Using integrating factors and applying boundary conditions we get the following solution for 
the concentration profiles near the wall of the membrane: 

 𝐶̂1
(0)

(𝑥η) = 𝐶̃0𝑒−ϕ̂(0)(𝑥η) (33) 

 𝐶̂2
(0)

(𝑥𝜂) = 𝐶̃0𝑒𝜙̂(0)(𝑥𝜂) (34) 

where 𝐶̃0 = 𝐶0/Δ𝐶.  
 
To connect the inner and outer solutions we use asymptotic matching, where the limit of the outer 
solution as 𝑥̃ approaches zero must equal the limit of the inner solution as 𝑥η approaches infinity. 

Matching equations (33) and (34) with equations (26), (27), and (28) under these limits results in: 

 𝐴 = 𝐶̃0𝑒−𝜙̂(0)(∞) (35) 

 𝐵 = 𝐶̃0𝑒𝜙̂(0)(∞) (36) 

 ϕ̂(0)(∞) = 𝐷 (37) 
Which satisfy Equation (4). 

Results and Discussion  
Using MacGillivray’s technique of applying perturbation to Poisson’s equation we were able to derive 

the electroneutrality equation. As shown in Equation (17), we found that in the limit as ϵ approaches 
zero Poisson’s equation becomes the electroneutrality equation. From this derivation we gain insight 
into what conditions validate the assumption of electroneutrality. We have shown that electroneutrality 
is valid when the length scale of the system is large compared to the Debye length of the charged 
particles in question or when the change in concentration across the system is small compared to the 
overall bulk concentration. 
 
Using singular perturbation MacGillivray proved that a 
system obeying the Nernst-Planck and Poisson equations 
results in Gibbs-Donnan equilibrium boundary conditions at 
the walls. Figure 1 shows an example system illustrating both 
electroneutrality and Gibbs-Donnan Equilibrium. In this 
system the orange ions cannot pass the membrane and thus 
create a concentration gradient across the membrane 
surface which affects the concentrations of both blue and 
green ions at equilibrium. Regardless of the concentrations 
of individual ions, the net charge on either side of the 
membrane is kept at zero, thus maintaining 
electroneutrality. 

Conclusion 
MacGillivray’s 1968 publication on the electroneutrality and Gibbs-Donnan equilibrium assumptions 
provides a sound analytical argument for how these assumptions work together with the Nernst-Planck 
and Poisson equations as well as give grounds for their validity other than solely experimental 
observation. While these equations were derived specifically in the case of ions moving across a charged 
membrane, they may be applied on a much larger scale. Electroneutrality is almost always a valid 
assumption in the bulk solution due to the strong attraction of electrical forces and the high mobility of 
small ions in solution. Gibbs-Donnan equilibrium refers to specifically the equilibrium across a 

Figure 1: Example of a system obeying both 
electroneutrality and Gibbs-Donnan Equilibrium 



membrane, but same principles may be applied to any phase boundary in an electrochemical system. In 
modern electrochemistry calculations the assumption of electroneutrality is nearly always assumed. 
Knowing the limits of this assumption is important in case they are ever approached in a future 
situation. 
 
In doing this report I learned several knew things that I think are valuable to my understanding of 
graduate-level transport phenomena. In order to solve this problem, I had to learn about singular 
perturbation, both how to solve problems using it and how to identify when it is needed. While reading 
MacGillivray’s paper and attempting to solve the problem I gained a greater understanding of what an 
order-of-magnitude analysis and why it is useful for defining dimensionless variable, something that I 
did not fully grasp the first time we covered it. To better understand the problem, I was solving I read 
both our textbook and sources online to learn about the governing equations for electrochemical 
transport. That has really helped me make the connection between what we have learned in our 
transport class to the field of research that I am studying.   
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