


Taylor developed several analytical solutions to the concentration profile of a tube with Taylor 

dispersion under several different conditions.  The case I derived is for when at time = 0, solute 

is injected into the tube with flowing solvent at a constant rate.  I used both Taylor’s paper and 

Bird, Stewart, and Lightfoot’s textbook as references.   

My method starts with applying Taylor’s simplifying assumptions to the diffusion equation that 

describes the mass fraction of the solute in the tube.  I then change some coordinates and 

integrate to get an expression for the mass fraction as a function of a shifted axial coordinate.  

From this, I derive an expression for the average mass flux, which introduces the axial dispersion 

coefficient.  I then substitute the average mass flux expression into the continuity expression, 

then use the Similarity Method to get an expression for the concentration profile across the tube. 

Equation 1 shows the diffusion equation for Poiseuille flow assuming constant μ,ρ, and DAB.  

The boundary conditions for this equation is that 
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Where 𝑤𝐴 is the mass fraction of the solute, t is the time, 𝑣𝑧,𝑚𝑎𝑥 is the maximum velocity of the 

solvent (at the center of the tube), r is a portion of the radius, R is the value of the radius, z is a 

length across the horizontal tube, and 𝐷𝐴𝐵 is the diffusion coefficient for the solute and solvent. 

Taylor showed that if the Peclet number > 70 and if L >170R where L is the length of the tube, 

then the terms 
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 can be neglected.  Taylor introduced a shifted axial coordinate, ź =

𝑧 − ⟨𝑣𝑧⟩𝑡,  and a dimensionless radial coordinate, ξ=
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𝑅
.  Making these substitutions to Equation 1 

results in Equation 2. 
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𝑤𝐴 can be expressed as 𝑤𝐴(ξ, ź,t) =⟨𝑤𝐴⟩(ź,t) + 𝑤𝐴′(ξ, ź,t).  Under the same conditions for the 

Peclet number and L, Taylor assumes that the 𝑤𝐴′ term is neglectable.  This results in Equation 

3, 

1

ξ

𝑑

𝑑ξ
(ξ

𝑑𝑤𝐴

𝑑ξ
) =

𝑅2𝑣𝑧,𝑚𝑎𝑥

𝐷𝐴𝐵

[0.5 − ξ2]
𝑑⟨𝑤𝐴⟩

𝑑ź
 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

which can then be integrated with the boundary conditions listed above to get an expression for 

the mass fraction of A as shown in Equation 4.  
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To get rid of the 𝑤𝐴(0,ź) term, we subtract 〈𝑤𝐴〉 from 𝑤𝐴.  〈𝑤𝐴〉 is calculated from Equation 5, 

and the resulting expression is shown as Equation 6. 
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The mass flow of the solute through a plane of constant ź can be found as shown in Equation 7. 

𝛱𝑅2ρ〈𝑤𝐴(𝑣𝑧 − 〈𝑣𝑧〉)〉 = −
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We assume that the solute and solvent are moving at the same axial speed.  Because the density 

is assumed to be constant, we can assume that 𝜌⟨𝑤𝐴⟨𝑣𝑧⟩⟩ = ⟨𝜌𝐴⟩⟨𝑣𝑧⟩ and that 

𝜌⟨𝑤𝐴𝑣𝑧⟩~⟨𝜌𝐴𝑣𝐴𝑧⟩ = ⟨𝑛𝐴𝑍⟩ where 𝑛𝐴𝑍 is the mass flux of the solute.  Using these assumptions, 

we divide Equation 7 by 𝛱𝑅2 to get an expression for the average mass flux as shown in 

Equation 8. 
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Where K is the axial dispersion coefficient, which essentially describes how strong the influence 

of Taylor dispersion is.  Equation 9 gives the expression for K 
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where Pe is the Peclet number.  The continuity equation averaged over the cross section of the 

tube is shown in Equation 10.  Substituting Equation 8 into Equation 10 gives Equation 11.  

Equation 11 can then be solved using the Similarity Method to give the final analytical solution 

shown in Equation 12.  Because this Similarity Method is nearly identical to what was done in 

class, this paper won’t discuss how to use this method.  Attached to this paper will be an 

appendix with my hand-written calculations if the reader is interested in seeing how the 

Similarity Method was used. 

𝑑

𝑑𝑡
⟨𝜌𝐴⟩ = −

𝑑

𝑑𝑧
⟨𝑛𝐴𝑍⟩ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 10 

𝑑

𝑑𝑡
〈𝜌𝐴〉 = 𝐾

𝑑2

𝑑𝑧2
⟨𝜌𝐴⟩ 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11 

𝜌𝐴

𝜌𝐴,0
 = 1 − 𝑒𝑟𝑓 (

𝑧

2√𝐾𝑡
) 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12 

 

Results and Discussion 



Table 1 shows the parameters given by Taylor that was used in Equation 12 to generate a plot of 

the concentration profile.  This plot is shown below as Figure 2. 

Table 1: Parameters used by Taylor 

t (seconds) 11000 

L (m) 1.52 

Maximum velocity (m/s) 0.002625 

R (m) 0.000252 

DAB (m^2/s) 7E-10 

 

Assuming that the same equipment is used and that the solute and solvent remain the same, the 

only variable we can adjust is the velocity of the solvent.  Figure 3 shows the impact the velocity 

has on the axial dispersion coefficient and Figure 4 shows how the velocity impacts the 

concentration profile.  It is readily seen that an increasing velocity increases the effect of Taylor 

dispersion, which also makes sense conceptually. 

While Taylor used a time of 11000 seconds in his paper, I wanted to see how time influences the 

concentration profile.  Figure 5 shows the concentration profile at different times.  It is 

interesting that even though 11000 seconds seems like a sufficiently large amount of time for this 

experiment, the concentration profile changes significantly at much larger times. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Concentration Profile using Taylor’s 
Parameters 

 

Figure 3: Influence of velocity on the axial 
dispersion coefficient 

Figure 4: Influence of velocity on the concentration 
profile 

Figure 5: Influence of time on the concentration 
profile. 



Conclusion 

Taylor’s work on Taylor dispersion shows how at high Peclet numbers and at large times, the 

shear flow of a solvent can has a significant impact on the concentration profile of a non-

molecular diffusing solute.  An understanding of Taylor dispersion has multiple applications, but 

one worth highlighting is the ability to quickly experimentally determine the diffusivity of 

liquids. 

While the PDE portion of this derivation was straight forward, working on the derivation and 

analysis of Taylor’s paper reinforced several key principles in transport phenomena.  I had to 

revisit dimensionless coordinates, shifted coordinates, applying the continuity equation, and the 

method of similarity and changing boundary conditions to a new set of variables.   

Most importantly, this analysis taught me about taylor dispersion and the strong impact it can 

have on mass and momentum transport of a substance we’d normally consider non-diffusing. 








