Derivation and Analysis of Taylor Dispersion

Introduction

This paper derives and analyses the analytical solution Taylor got in his paper Dispersion of
soluble matter in solvent flowing slowly through a tube. In his paper, Taylor injected a stream of
solute, in this case a dye, into a tube with water already flowing with a fully developed profile.
He used the apparatus shown in Figure 1 to measure the concentration profile of a solute across a
horizontal length of tubing.
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Figure 1: Experimental Apparatus

The phenomena that Taylor describes in his paper is that under certain conditions, the shear flow
of the water causes non-molecular dispersion of the solute. This phenomenon is now referred to
as Taylor dispersion. This work assumes that the solute has no molecular diffusion, and if
Taylor dispersion were not a factor, a pulse of solute would move down the tube with an
unchanging concentration profile. With Taylor dispersion, the parabolic velocity profile of the
water will disperse the solute until it reaches a rough parabolic concentration profile.

While Taylor dispersion is only applicable under certain conditions, the impact of Taylor
dispersion is significant in several areas. Taylor suggests that “The results may be useful to
physiologists who may wish to know how a soluble salt is dispersed in blood streams.”. In their
book Transport Phenomena Revised Second Edition, Bird, Stewart, and Lightfoot suggest that
using Taylor’s analytical solution can be used to quickly measure liquid diffusivities.

Methods



Taylor developed several analytical solutions to the concentration profile of a tube with Taylor
dispersion under several different conditions. The case | derived is for when at time = 0, solute
is injected into the tube with flowing solvent at a constant rate. | used both Taylor’s paper and
Bird, Stewart, and Lightfoot’s textbook as references.

My method starts with applying Taylor’s simplifying assumptions to the diffusion equation that
describes the mass fraction of the solute in the tube. | then change some coordinates and
integrate to get an expression for the mass fraction as a function of a shifted axial coordinate.
From this, | derive an expression for the average mass flux, which introduces the axial dispersion
coefficient. | then substitute the average mass flux expression into the continuity expression,
then use the Similarity Method to get an expression for the concentration profile across the tube.

Equation 1 shows the diffusion equation for Poiseuille flow assuming constant p,p, and Dag.
The boundary conditions for this equation is that % =0forr=0andr=R.

dw, r\21dwy 1d dwy dWAZ )
_dt + UV, max [1 — (E) _dz = Dyp <;E(r W) + 172 Equation 1

Where w, is the mass fraction of the solute, t is the time, v, .4, is the maximum velocity of the
solvent (at the center of the tube), r is a portion of the radius, R is the value of the radius, z is a
length across the horizontal tube, and D, is the diffusion coefficient for the solute and solvent.

Taylor showed that if the Peclet number > 70 and if L >170R where L is the length of the tube,
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then the terms % and can be neglected. Taylor introduced a shifted axial coordinate, z =

z — (v,)t, and a dimensionless radial coordinate, &= % Making these substitutions to Equation 1
results in Equation 2.
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w, can be expressed as w, (&, z,t) =(w,)(z,t) + w,' (€, z,t). Under the same conditions for the

Peclet number and L, Taylor assumes that the w,’ term is neglectable. This results in Equation
3,

Equation 2
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which can then be integrated with the boundary conditions listed above to get an expression for
the mass fraction of A as shown in Equation 4.
d(w,y)
dz

R?%v 1
wu(§ 2)=—222 [52 -5 924] +w,(0,2) Equation 4
8D,5 2

To get rid of the w4 (0,2) term, we subtract (w,) from w,. (w,) is calculated from Equation 5,
and the resulting expression is shown as Equation 6.
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The mass flow of the solute through a plane of constant Zcan be found as shown in Equation 7.

MR*p{v,)* d{w,)
48D,;  d7

IR?p{wy (v, — (v,))) = — Equation 7

We assume that the solute and solvent are moving at the same axial speed. Because the density
is assumed to be constant, we can assume that p(wA(vZ)) = (py){v,) and that
P(Wav,)~{PaV4,) = (nyz) Where ny, is the mass flux of the solute. Using these assumptions,
we divide Equation 7 by ITR? to get an expression for the average mass flux as shown in
Equation 8.

d d
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Where K is the axial dispersion coefficient, which essentially describes how strong the influence
of Taylor dispersion is. Equation 9 gives the expression for K

Equation 8

R*(v,)? 1 y .
= 48D, =EDA3Pe Equation 9

where Pe is the Peclet number. The continuity equation averaged over the cross section of the
tube is shown in Equation 10. Substituting Equation 8 into Equation 10 gives Equation 11.
Equation 11 can then be solved using the Similarity Method to give the final analytical solution
shown in Equation 12. Because this Similarity Method is nearly identical to what was done in
class, this paper won’t discuss how to use this method. Attached to this paper will be an
appendix with my hand-written calculations if the reader is interested in seeing how the
Similarity Method was used.
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Results and Discussion



Table 1 shows the parameters given by Taylor that was used in Equation 12 to generate a plot of
the concentration profile. This plot is shown below as Figure 2.

Table 1: Parameters used by Taylor

t (seconds) 11000

L (m) 1.52
Maximum velocity (m/s) 0.002625
R (m) 0.000252
Das (M"2/s) 7E-10

Assuming that the same equipment is used and that the solute and solvent remain the same, the
only variable we can adjust is the velocity of the solvent. Figure 3 shows the impact the velocity
has on the axial dispersion coefficient and Figure 4 shows how the velocity impacts the
concentration profile. It is readily seen that an increasing velocity increases the effect of Taylor
dispersion, which also makes sense conceptually.

While Taylor used a time of 11000 seconds in his paper, | wanted to see how time influences the
concentration profile. Figure 5 shows the concentration profile at different times. It is
interesting that even though 11000 seconds seems like a sufficiently large amount of time for this
experiment, the concentration profile changes significantly at much larger times.

Conditions Given in Taylor's Paper
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dispersion coefficient
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Figure 5: Influence of time on the concentration
profile.




Conclusion

Taylor’s work on Taylor dispersion shows how at high Peclet numbers and at large times, the
shear flow of a solvent can has a significant impact on the concentration profile of a non-
molecular diffusing solute. An understanding of Taylor dispersion has multiple applications, but
one worth highlighting is the ability to quickly experimentally determine the diffusivity of
liquids.

While the PDE portion of this derivation was straight forward, working on the derivation and
analysis of Taylor’s paper reinforced several key principles in transport phenomena. | had to
revisit dimensionless coordinates, shifted coordinates, applying the continuity equation, and the
method of similarity and changing boundary conditions to a new set of variables.

Most importantly, this analysis taught me about taylor dispersion and the strong impact it can
have on mass and momentum transport of a substance we’d normally consider non-diffusing.
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