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When a soluble substance is introduced into a fluid flowing slowly through a small-bore 
tube it spreads out under the combined action of molecular diffusion and the variation of 
velocity over the cross-section. It is shown analytically that the distribution of concentration 
produced in this way is centred on a point which moves with the mean speed of flow and is 
symmetrical about it in spite of the asymmetry of the flow. The dispersion along the tube is 
governed by a virtual coefficient of diffusivity which can be calculated from observed 
distributions of concentration. Since the analysis relates the longitudinal diffusivity to the 
coefficient of molecular diffusion, observations of concentration along a tube provide a new 
method for measuring diffusion coefficients. The coefficient so obtained was found, with 
potassium permanganate, to agree with that measured in other ways.

The results may be useful to physiologists who may wish to know how a soluble salt is 
dispersed in blood streams.

1. I n tr o d u c tio n

If  a conducting solution (e.g. brine) is injected into a tube through which water is 
flowing, the region in which it is concentrated moves downstream. At a fixed point 
the conductivity will rise as the solution reaches it, and if the conductivity is 
measured there the conductivity-time curve can be used as a means of measuring 
the stream velocity. I f  the injected material would remain concentrated in a small 
volume the method would be simple, but the stream velocity varies over the cross- 
section of a pipe. A part of the injected material which was initially near the centre 
of the tube would be carried to the measuring point faster than parts which were 
near the walls. To use the method as a means of measuring the mean speed of flow 
therefore it is necessary to know which point on the conductivity-time curve 
corresponds to this mean speed. This method has been used to measure the flow in 
large water mains where it is turbulent (Allen & Taylor 1923) and in small blood 
vessels where it may be non-turbulent (Stewart 1894; White 1947).

A similar method was used by Griffiths (1911) in experiments designed to measure 
viscosity of water a t very low speeds of flow. A drop of fluorescent solution was 
inserted as a marker or index in a stream of water flowing slowly through a capillary 
tube. Griffiths found experimentally that the colouring m atter spreads out in 
a symmetrical manner from a point which moves with the mean velocity of the water 
in the tube. Since the present paper contains an analysis of the situation observed 
by Griffiths it is worth quoting his theoretical reasoning on the subject. He wrote 
( i9i i ,p .  190):

‘In this paper the full mathematical treatment is not attempted; but an ele­
mentary consideration, although not complete, will be of advantage in dealing with 
the experiments. I t  can easily be shown that if the intensity of colour were constant 
over a cross-section of the tube the colour would diffuse along the tube exactly as if 
the water travelled in a solid column. The intensity of the colour cannot be absolutely
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constant over a cross-section except in the theoretical case of a capillary tube of 
infinitely small bore but the experiments show that when the rate of flow is small the 
error involved in this assumption is not great. By stopping the supply of fluorescent 
solution and replacing it by water an approximately symmetrical column of colour 
of slowly increasing length can be obtained and when the slowly moving column is 
a t a relatively long distance from the ends of the fine capillary it is obvious tha t the 
movement of the centre of the column must measure the mean speed of flow.’

The foregoing extract shows th a t Dr Griffiths had formed a good qualitative 
picture of the situation. The only parts of his statement tha t do not seem clear are 
those which follow the words ‘I t  can easily be shown th a t...’ and ‘it is obvious 
th a t.. .’. The statement describes two experimental results which seem most 
remarkable though their discoverer does not comment on them in this sense. The 
first is tha t since water moves a t twice the mean speed near the centre of the pipe 
and the patch of colour a t the mean speed, the clear water in the middle must 
approach the colour patch, absorb colour as it passes into it and then lose colour as 
it passes out, finally leaving the patch as perfectly clear water. The second remark­
able feature is tha t the colour patch spreads out symmetrically from a point which 
moves with the mean speed of the fluid in spite of the fact that the distribution of 
velocity over the section, which gives rise to this dispersion, is highly unsymmetrical.

All the authors cited calibrated their apparatus, using other methods for measuring 
the flow, and thus determined empirically the point on the conductivity-time curve 
which corresponded with the mean speed of flow. In the present communication the 
way in which salts are dispersed along a tube through which fluid flows in steady 
motion will be discussed. Ina la ter paper dispersion by turbulent flowinapipe will be 
treated. The dispersion in steady flow is due to the combined action of convection 
parallel to the axis and molecular diffusion in the radial direction. I t  is of interest 
to consider, first, dispersion by convection alone, and then to introduce the effect 
of molecular diffusion. The results may be useful to physiologists who may wish to 
know how a soluble salt is dispersed in a blood vessel, but they may also be useful to 
physicists who wish to measure molecular diffusion coefficients.

2 . D isp e r sio n  b y  co nvectio n  alo n e

In  a circular pipe of radius a the velocity u a t distance r from the central line is
u = u0( l - r 2/a2),(1) 

where u0is the maximum velocity a t the axis. I f  the solute at time t = 0 is distributed 
symmetrically so tha t the concentration C is

C = f(x,r),
after time t the concentration will be

C = f ( x - u t , r )  (2)

In  the experiments to be described later the mean value, , of the concentration
over a cross-section of a tube was measured; Cm is defined by

2 f«
„ 2 Crdr. (3)
o JO
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188 Sir Geoffrey Taylor

Some calculated distributions of Cm along a tube are given below. They will be 
needed later for comparison with experiments.
Case A 1

Initially the space between two planes = 0 and = (X/a being small) is 
filled with solute of concentration C0. From (2) it will be seen th a t the amount which 
lies between r and r + 8ris constant during the flow and equal to The
solute will be distorted in time into the paraboloid

x — u0t ( l— r2/a2).(4) 
cl/*The total amount of the solute between x and x + 8x is therefore 2-nrCnX^r-ax

drand from (4) 2 u0t , so that 
1C = na28x ZttCqX  8x 2 u0t

CpX
Uqt

0 contains only

Cm therefore has the constant value C0X lu0t in the interval 0 and is zero
when x <0 and when x> u 0t.
Case A  2

Solute of constant concentration enters a tube which at time t 
solvent.

Here C = C0, x  <0 j
0  = 0, * > 0/

This case can be solved by imagining tha t the constant initial concentration for 
x <0 consists of a number of thin sections of the type imagined in case A 1. In this 

way it is found that

0 < x< u0t,

at time t

p II p x< 0,

IId
5 u0t/

II O x> u 0t.
Case A  3

Solute confined initially to a length X  so that
<7 =  0, 0

C
C

C0, 0 < x < X  
0, x> X

at time 0.

This case can be obtained by superposing two examples of case A 2, namely 
<7 =  <70, x <A) , <7 =  — <70, 0,)
0  = 0* x > X j  and 0  = 0, «>0.J

If  t <X /uq the distribution is described by (7)
Cm = 0, x  <0,
Cm = C0xlu0t, <x< u0t,
Cm = <70, u^t <x <. X ,

C,» =  C„(

Cm = 0, x > X  + u0t.

(V
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I f  t >X /uq, it is given by (8)

Om = 0, x< 0,
Gm = C0(xlu0t), 0 < x < X ,

Cm = C0(X/u0t), X < x < u 0t, 
~ r-i fX  + Unt ~ X \  _
Gm ~yTt J  * ^  t <x < Uq t + X ,

G  —  0, x > X  + u0t.

(8)

These three cases are illustrated in figure 1. I t  will be noticed tha t A 1 is a limiting 
case of A 3 when X  is small.

1 X ^ f S / / / / / / / / / / / / ,

Fioube 1. Distribution of mean concentration in three cases in absence of
molecular diffusion.

3. E ffe c t  of  m olecular  d if f u s io n  o n  t h e  d is p e r s io n

I t  will be assumed that the concentration is symmetrical about the central line 
of the pipe so tha t Cis a function of r, x  and t only. The equation for diffusion is

n /020  100 d2G\ 00 /_ r2\ 00
\  dr2 r dr**"0a;2/  dt W°\ a2/  dx * ( 9 )

Here D, the coefficient of molecular diffusion, will be assumed independent of O. 
This is not a strictly accurate assumption when the formulae are to be applied to 
soluble salts, but the error introduced by it is not large, and if thM assumption is not 
made the analysis of problems of diffusion becomes difficult. In  all the cases which 
will be considered d2Cjdx2 is much less than d2C/dr2 + r~x dC/dr.

Writing z = rja, (10)

(9) becomes
02O 100
dz2 + zd z

a2dC ahi0 00
= D S t + D  <1-2 W (11)
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190 Sir Geoffrey Taylor

The boundary condition which expresses the fact tha t the wall of the tube is

I t  would be difficult to find a complete solution of (11) giving the value of for all 
values of r, x  and t when the distribution of G a t time 0 is known; on the other 
hand, approximate solutions can be found which are valid in the following limiting 
conditions:

(A) The changes in G due to convective transport along the tube take place in 
a time which is so short th a t the effect of molecular diffusion may be neglected. The 
solutions already given in § 2 are of this type.

(B) The time necessary for appreciable effects to appear, owing to convective 
transport, is long compared with the ‘ time of decay’ during which radial variations 
of concentration are reduced to a fraction of their initial value through the action 
of molecular diffusion.

To find the conditions under which B may be expected to be valid it is necessary 
to  calculate how rapidly a concentration which varies with r degenerates into 
a uniform concentration. The solutions of (11) for which = 0 and the variables
z and t are separated are of the form

where J0(aza*D_i) is the Bessel function of zero order. The boundary condition (12)

The root of (14) corresponding with the lowest value of a  is aa*D~* = 3*8, so tha t the 
time necessary for the radial variation of C represented by (13) to die down to 1/e

I f  a t any time the dispersing material is spread over a length of tube of order L, 
the time necessary for convection to make an appreciable change in is of order 
Lju0, so tha t in order th a t the limiting condition B  may be applicable

Since molecular diffusion in the longitudinal direction has been neglected (the 
justification for this will be given later) the whole of the longitudinal transfer of 
C is due to convection. We shall consider the convection across a plane which moves 
a t constant speed i.e. with the mean speed of flow. Writing

impermeable is
( 12)

G =  e~at J^azcdD-*) (13)

ensures th a t J^aaW-i) =  0. (14)

of its initial value is

1 (3-8)2 D*
(15)

L
W„ S'S2/ ) ' (16)

4. E ffe c t  o f  u s in g  c o n d itio n  (B) in  ( 11)

xi =  x - (17)

02(7 1 dCa2 dC a 2̂  . 00
¥ + * ¥  =  5 ¥ + T ( i ^ S ; '  (11) becomes (18)
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Since the mean velocity across planes for which x1 is constant is zero, the transfer 
of C across such planes depends only on the radial variation of C. I f  C were inde­
pendent of x  and condition (B) satisfied, it has been seen th a t any radial variation 
in G very rapidly disappears. The small radial variation in C can therefore be
calculated from the equation

& C 1 W  2.dC

and in th a t calculation dC/dx1 may be taken as independent of z.
A solution of (19) which satisfies the condition dCjdz = 0 at = 1 is

(19)

C = CXl+ A (z*-iz*)t

where CXi is the value of Gat z =  0 and A is a constant. 
Substituting (20) in (19) it is found tha t

. a2uQ dC

The rate of transfer of G across the section at xx is

— z2) Czdz.

( 20)

(21)

( 22)

Inserting the value of G from (20) and (21), (22) becomes

ireful
V 192 Ddxx * (23)

Since condition (B) is assumed to hold the radial variations in G are small com­
pared with those in the longitudinal direction, and if Gm is the mean concentration 
over a section dCxJdx1 is indistinguishable from dCmloxv  so that (23) may be written

7ra%g dCm 
19 2D dxx *

(24)

I t  will be seen therefore tha t Cm is dispersed relative to a plane which moves with 
velocity \u 0 exactly as though it were being diffused by a process which obeys the 
same law as molecular diffusion but with a diffusion coefficient where

192
(25)

The fact that no material is lost in the process is expressed by the continuity 
equation for Cm, namely ~n  ^

g = — <26>
where the symbol d/dt here represents differentiation with respect to time at a 
point where x1 is constant. Substituting for Q from (24) the equation governing 
longitudinal dispersion is

k-32CL
dx\

Mu
dt (27)
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5. Spec ia l  cases

Two well-known solutions of (27) describe dispersion in cases which can con­
veniently be subjected to experimental verification. These are:

(B 1) Material of mass M  concentrated at a point = 0 a t time 2 =  0.
(B 2) Dissolved material of uniform concentration C0 allowed to enter the pipe 

a t uniform rate at x = 0 starting at time 2 = 0. Initially the pipe is filled with 
solvent, only ( C = 0).

Cases B 1 and B 2 correspond to cases A 1 and A 2 in § 2, except that the molecular 
diffusion in the latter case was assumed to have only a negligible effect.

The solutions of (27) are:

Case (B 1): (28)
Case (B2):

GIG0 = \  + \erf {\xx k*) < 0),) 
C/C0 = \  \erf ( f k~H~*) {xx >0),} (29)

where erf 2 = 2zr- * J  e-s2dz.

In case (B 1) the length L x which contains 90 % of the material is given by 
erf {\Lxkr*t~*) = 0-9 and using tables this gives

1^ =  4-65W . (30)

I f  Cmax is the maximum concentration at x  =  \u 0t the concentration at the ends of 
the length L  is M 1M C U .. (31)

Similarly, in case (B 2), if L2 is the length of the zone of transition in which 
G changes from 0-9<70 to 0-l<70 erf (\L 2k~H~*) = 0*8, and from tables

L2 = 3-62 W . (32)

I t  will be noticed that as 2 increases both L x and L2 increase proportionally to 2*, 
whereas the distance traversed by the particles of fluid are proportional to 2. 
Eventually as 2 increases Lx and L 2 will become small compared with %u0t. In  case 
(B 1) this means tha t in the central part of the pipe fluid which is free of the dissolved 
substance passes into the zone where the concentration is rising. The dissolved 
substance is then absorbed till C reaches its maximum value a t = \u Qt. The fluid 
then passes through the region where G decreases with x  and finally leaves this zone, 
having yielded up the whole of the dissolved substance which it had acquired. 
Analogous considerations apply to case B 2.

This theoretical conclusion seemed so remarkable tha t I  decided to set up 
apparatus to find out whether the predictions of the analysis could be verified 
experimentally. Since making these experiments Professor G. Temple, F.R.S., has 
called my attention to those of Griffiths (1911), in which it was shown, incidentally, 
tha t the phenomenon predicted does occur. Griffiths however was not concerned 
with describing it, but with the fact that it could be used for measuring slow flow.
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6. E x p e r im e n t a l  t e c h n iq u e

In  order to satisfy the condition (B) of § 3 it was necessary to use a tube of small 
bore. Two methods seemed suitable for determining C. I f  the dissolved substance 
is a good electrical conductor and the solvent (water) a bad one the conductivity 
can be determined as a function of time a t the exit end of the pipe. This method had 
been used by several workers for determining the velocity of the blood stre am in the 
arteries or veins of a living animal. I t  has also been used by engineers for deter­
mining the velocity in the large pipes which convey water to hydro-electric stations. 
I t  could not be used to determine Cm as a function of x  a t a fixed time. For this 
reason a colorometric method was devised which made it possible to do this without 
disturbing the fluid. The dissolved substance was potassium permanganate which is 
very strongly coloured. The pipe was a glass tube of approximately 0* 05 cm internal 
diameter and 152 cm long. The initial concentration of the solution was 1 % by weight

F igure 2. Apparatus set up with experimental tube horizontal.

of potassium permanganate and 99 % of slightly acidulated water. This is so dark 
that it looks almost black when seen in a bottle, but in a pipe of 0-05 cm bore it is 
a transparent dark purple. A number of solutions of known concentrations were 
made by mixing the 1 % solution with various proportions of distilled water. A glass 
comparison tube of the same external and internal bore as the flow tube was pre­
pared and filled successively with fluid of varying known concentrations. The 
comparison tube was placed in a light frame which could slide along the pipe and 
the position where the colours of the comparison tube and pipe were identical was 
found. Thus x was determined as a function of G. This method had the advantage 
that comparisons were made only between colours whose spectrum and intensity 
were both identical a t the determined position. No question arose as to how the 
intensity of colour varies with concentration.

The apparatus is shown diagrammatically in figure 2. A  is the pipe, B  is the 
comparison tube. Cis a ground-glass plate illuminated as uniformly as possible by 
means of a mirror which reflects either daylight or light from an electric bulb. D is 
a line ruled on C.To make a measurement B  is filled with solution of known con­
centration and moved till the colour intensity is about the same as that in the pipe



near its mid-point. The ground-glass plate C is then moved till the line D appears to 
cross the two tubes A  and B  a t the point where their colours are identical. The 
distance x  of the line D from the entry end of the pipe is then measured with a scale.

The flow through the pipe is controlled by a needle valve N  or with a small bore 
capillary used as a leak at the exit end. The entry end projects into a glass chamber 
E  out of which lead three tubes with glass taps F, H. F  is connected with a vessel
Q by means of which pressure or suction can be applied. G is connected by a flexible 
tube to a funnel K  filled with distilled water. H  leads to a small tube which dips into 
a vessel, L, containing 1 % solution of KMn04.

The flow tube and chamber E  are first washed with distilled water. Then leaving 
the pipe full and the valve N  closed, the water is drained out through H  and the 
chamber refilled with 1 % solution of KMn04. A pressure is then applied to the liquid 
in E. The valve N  is then opened slightly and a stop-watch started. When the front 
of the coloured column is approaching the exit end of the pipe the needle valve is 
closed. I t  was found, as had been expected, that the molecular diffusion in the 
longitudinal direction was so small tha t no appreciable change in colour at a fixed 
spot occurs in several hours after the closing of N. The values of x  corresponding 
with all the prepared comparison samples were then determined in the manner 
already described.

This procedure was used for comparison with case (B2), §5. For case (B 1) the 
needle valve was opened for a short time to allow a little of the KMn04 solution to 
enter. I t  was then closed and the chamber E  washed out and filled with water. The 
experiment was then performed in the same way as in case (B2).

To measure the mean speed of the fluid and also to know at what moment the 
valve should be closed the water which flowed through the needle valve entered 
a second pipe T  in which the motion of the meniscus M  in front of the water column 
could be observed and measured.

A 1 % solution of KMn04 was prepared and parts of it were diluted so as to form 
solutions with the following proportions by weight of KMn04, 10-4 x 1, 2, 3, 4, 6, 8, 
10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100. The last is simply the 1 % solution.

7. E x pe r im e n t a l  r e su l t s

The first experiments were designed to verify the conclusions of §2 when the 
effect of molecular diffusion is negligible. For this purpose it was necessary to carry 
them out so that the flow started and finished in a time small compared with 
a2/3-82D. Since, for KMn04 in water, D is of order 0*7 x 10-5, a2/3-82D is 6*2 s for 
a tube 0*5 mm bore and 25 s for a tube 1 mm bore. For the first experiments a tube 
of approximately 1 mm bore was chosen.

Case A  2
To verify experimentally the distribution of Cm predicted in equation (6) and 

illustrated in A 2, figure 1, the reservoir E  (figure 2) was filled with the 1 % solution 
and the experimental tube with water. The valve N  was opened for about l | s  and 
then closed. In this time the colour had travelled 65 cm along the tube. The com­
parison tube was filled successively with the standard solutions and the corre-
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sponding distances x  were measured. The results are given in table 1. These are 
plotted as A 2 in figure 3. I t  will be seen tha t the experimental points lie very well 
on the line which was predicted in equation (6).

x (cm)

Figure 3. Measurements of concentration when dispersion occurred in s.

Cases A  1 and A  3
To verify the distributions calculated in equations (5) and (7), the flow tube was 

filled with water and the reservoir with 1 % KMn04. The valve was opened for an 
instant and a few centimetres of the tube thus filled with the solution. The reservoir 
was then washed out several times with water. The valve N  was then again opened 
and closed after about l£s. The coloured column thus formed appeared to be of

T a b l e  1

type of A 2 (figure 3) A 3 (figure 3)
experiment t =  1£ s t =  1 £ s

a =  0-05 cm a =  0*05 cm
concentration, C0 =  001

10 *C(g/ml.) x  (cm) x (cm)
1 71-2 15-5 and 109-2
2 69-7 19-3 and 100-3
3 68-5 22-0 and 93-4
4 67*5 —

6 6 60 —

8 64-7 —

10 62-5 —

15 — —

20 54-5 —

30 51 0 —

40 41-7 —

50 33-5 —

60 26-5 —

70 21-5 —

80 140 —

90 __ _



un iform intensity over most of its length. The colorometric measurements given in 
table 1 were then made. They are shown as A 3 in figure 3. I t  will be seen tha t the 
concentration rises between x — 10 to x  = 22 cm from 0 to 0*0003. From
x  — 22 to x  = 93 cm its colour was so nearly uniform that it was not possible to 
detect any variation in C. In  this range C was between 0*0003 and 0*0004. This is 
represented in figure 3 by the broken line a t = 0*00035. This experimental result 
is in good agreement with the prediction of equation (7) which is illustrated as A3 
in figure 1.

I t  will be noticed that the calculation for the case A3 assumed that a section of 
length X  is filled initially with solution of uniform concentration. The time which 
elapsed between the introduction of the permanganate and turning of the valve 
N  was long enough to ensure that the concentration over every section was uniform 
when the flow started. I t  was not uniform along the tube as is assumed in the 
calculation, but this lack of uniformity would make no difference to the uniformity 
of the concentration of the long middle portion of the curve A 3 in figure 3. I t  would 
merely make the sloping ends CD, EF  figure 3 curved instead of straight as they 
would be if the initial distribution of concentration were uniform (see A3 figure 1).
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8. E ffec t  of m olecular  d if f u s io n

Case B 2
In  order that condition B of § 3 may be satisfied it is necessary tha t the time of the 

flow shall be long compared with a2/3*82D. To attain this the 1mm tube was 
replaced by one of diameter 0*0504 cm and the needle valve was opened so little tha t 
the flow was only a small fraction of a centimetre per second. In  the first experiments 
of this type the conditions were those of case A 2, §2, except for the reduction in 
flow. In  one case the flow was so slow that it took over 3 h to carry the colour 30 cm. 
The results of four experiments which ran for 4, 12, 240 and 11220 s are given in

T a b l e  2. E x pe r im e n t s  of t y p e  B 2

time of flow (sec) ... about 4 12 240 11220
%u0t (cm) 33 80 63-2 31*9

concentration,
104 C (g/ml.) x  (cm)

1 63-5 134 80*4 34*75
2 62-4 129 79-,5 34-4
4 58-5 120-4 77-0 34-0
6 56-4 117 76-0 33-85
8 55-0 114-5 75-0 33-70

10 53-1 111 74-0 33-65
20 47-8 101 71-1 33-0
30 44*4 93 68-0 32-55
40 40-0 89 66-7 32-4
50 33-8 82 63-8 31-7
60 29-5 73 60-5 31*4
70 24-0 63 58-0 31-3
80 17-4 56 53-7 30-8
90 11-6 41-0 45-0 30-0

100 — _ _ —
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table 2. To compare the observed distribution of C with that calculated theoretically 
the values of G/G0 for the case when t —11220 s are plotted in figure 4. Taking 
\u Qt = 31*9 cm, the value of xx in (29) is £ — 31*9. The value of ( * which gives
best agreement with observations is (4 kt)~* = 0*552. The curve

n
77 = \± erf{0*552(a; -  31*9)} (33)

is shown in figure 4. I t  will be seen th a t the observed points fall very closely on 
the curve.

Figure 4. Comparison between measured and theoretical distribution 
of concentration, t =  11220 s.

Figure 5. Distributions of concentration about point x =z%u0t.

symbol • ■ +  •  A
*(sec) 11220 240 12 4 1£



To demonstrate the effect of molecular diffusion on the distribution of con­
centration in the transition zone between clear water and the solution the observed 
values of C/C0 are plotted against x l\u Qt in figure 5. The strong tendency for mole­
cular diffusion to prevent dispersion along the tube is shown very clearly. The 
limiting distribution as t tends to 0 is shown and the observed points for t — l£s 
have been transferred from figure 3.

Case B \ .  Dispersion of material initially concentrated in a small volume.
The initial experimental conditions were those described for case A3 and the 

experiments were performed in the same way except that the duration of the flow 
was long compared with a2/3-82Z). In  the first experiment, 1 % solution was admitted 
and after filling the vessel E  (figure 2) with water the flow was run for 5 min during 
which time the point of maximum concentration moved to = 52*5 cm. The
measured positions of the standard concentrations are given in table 3 and shown
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T a b l e  3. E x p e r im e n t s  of  t y p e  B 1

figure 6 figure 7
figure 8

duration, t (sec) 300 660 1740 2160 330
%u0t (cm) 52*5 110 58 9 4 - 58 =  36 122-5- 94 =  28-5
middle of colour (cm) 52-5 110 58i 94 122-5

104(7 (g/ml.) Xi x2 x% Xi x2 x2
1 39*2 72-4 91-2 131-1 50-7 66-8 83-9 104-2 109-8 135-0
2 39-7 70-9 92-1 128-3 51-0 66-2 84-6 103-1 111-2 134-0
4 41 0 69-5 94-7 125-9 51-6 65-2 85-2 102-6 112-3 132-4
6 42 0 68-1 95-3 124-7 52-2 64-7 85-8 101-8 113-2 131-6
8 42*5 68-1 960 124-3 52-4 64-1 86-3 101-2 113-7 130-9

10 43*2 67-1 96-5 122-7 52-7 63-7 87-2 100-8 114-5 129-9
20 44-2 65-2 99*8 120-1 53-5 62-6 88-0 99-2 116-6 127-3
30 4 6 0 63 0 104-4 115-6 54-6 62-0 85-5 98-7 118-2 124-0
40 48-0 59-8 107 to 113 54-9 60-9 89-9 97-0 120 to 123
50 47-0 57-0 — — 55-1 59-6 — 94-3 — —

60 50*5 54-5 — — 56-2 59-2 — — — —

in figure 6. I t  will be seen tha t the (C, x) curve is not symmetrical. I t  seemed 
probable that this was due to the asymmetry of the initial distribution. Since the 
1 % solution of KMn04 was introduced rapidly the initial distribution of Cm must 
have been triangular starting with Cm — 0-01 at 0 and decreasing linearly (as 
in case A 2, figure 1). By measuring the area of the curve of figure 6 the total amount 
of KMn04 was found to be 7ra2(0‘01) (10*5). The initial length of the column must 
therefore have been 2 x 10*5 = 21cm. The initial distribution deduced in this way 
is shown in figure 6. I t  will be seen tha t the molecular diffusion has had the effect of 
clearing the KMn04 out of the first 39 cm, but the dispersion has not been great 
enough to eliminate the asymmetrical shape of the initial distribution which covered 
nearly two-thirds of the length of the dispersed distribution.

Since one of the remarkable predictions of the analysis of § 5 was that an initially 
concentrated mass would be dispersed symmetrically about the point x = \u 0t in 
spite of the great asymmetry of the distribution of velocity over cross-sections, the 
experiment was repeated, introducing a small volume of more concentrated solution



and increasing \u 9t to 110 cm. The results are given in table 3 and are plotted in 
figure 7. I t  will be seen th a t the distribution of concentration about x — 110 cm is 
very symmetrical.

To compare these experimental results with the theoretical prediction of equation 
(28), the error curve ^  _  q.qq41 e-<*-no)*/i2i (34)

is shown in figure (7). The constants in (34) have been chosen so that the error curve 
is as near to the experimental points as possible.
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x (cm)

Figure 6. Initially asymmetrical distribution of concentration which has not
yet become symmetrical.

x  (cm)

Figure 7. Initially asymmetrical distribution which has become symmetrical owing to 
dispersion, o, C — 0*0041 exp { — (110 — a?)*/121}; •, experiment; time =  11 min.



Another set of measurements is shown in figure 8. The apparatus was set going 
first for 29 min when the needle-valve was shut and the measurements shown in 
curve I  were obtained. The valve was then opened, unfortunately a little too far, 
the column of colour was seen to be moving rather rapidly along the tube so it was 
shut down till a slow movement was obtained. After 36 min it was again closed and 
the measurements shown in curve II  were made. I t  was then opened again and 
closed down after a further period of 5 | min. The measurements shown in curve II I  
were then obtained.
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x  (cm)

Figure 8. Distributions of concentration at three stages of dispersion. Broken line shows 
distribution in the absence of molecular diffusion for comparison with curve III.

The very great effect of molecular diffusion in preventing a dissolved substance 
from being dispersed can be appreciated by comparing the concentration shown in 
curve III, figure 8, with what it would have been if there had been no diffusion and 
the dissolved substance had been dispersed convectively and therefore uniformly 
(see (5)) through 2 x 122 = 244 cm ofthe tube. The total amount of dispersed material 
can be found by measuring the area of curve III. I f  this were distributed uniformly 
along 244 cm the concentration would have been only 0-018 This may be com­
pared with the observed maximum concentration shown in curve III, namely, 
0-4 C0.

9. Calculation  of m olecular  d if f u s io n  c o effic ien t  from

MEASUREMENTS OF LONGITUDINAL DIFFUSIVITY

The work was undertaken to find out how a soluble substance is dispersed when 
injected into a stream of solvent flowing through a tube. The idea that it might form 
a basis for a simple method of measuring coefficients of molecular diffusion was not 
in my mind when the experiments were carried out. For that reason, the conditions
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necessary for tha t purpose were not in all cases satisfied. For instance, in the 
experiments illustrated in figure 8, in the first two runs which carried the mean 
position of the colour to x  = 94 cm, no precautions were taken to ensure the con­
stancy of the flow. The last run which carried the colour to =  122*5 cm in 5£ min 
was checked for constancy so th a t it can be used. The experiment illustrated in 
figure 7 can be used because the spread is large compared with the length of column 
which would contain the whole of the dispersing salt a t its initial concentration. 
Of the experiments given in table 2 only the one taking 240 s can be used. The first 
two must be rejected because the duration of flow (4 and 12 s) was too short for the 
theory to be applicable. The last experiment taking 11220 s can hardly be expected 
to give an accurate result because when the tube is horizontal the effect of gravity 
acting on the slight difference in density between the 1 % solution and pure water 
is to increase the rate of longitudinal dispersion. This effect will be discussed in 
a subsequent paper on the combined effect of gravity and diffusion in which it will 
be shown that errors are to be expected when the time of diffusion is of order 104 s 
but are small when t is of order 103s under the conditions of the experiments here 
described.

To use the experiments of type B 2 to measure the diffusion coefficient it is 
necessary to choose the parameter (4kt)~* in equation (29) so tha t the theoretical 
curve passes as nearly as possible through the observed points. This has been done 
for the case where t = 11220 s (figure 4). Applying the same method to the case 
given in column 4 of table 2 where t = 240 s, the expression which gives the best fit is

^  |  ± erf{0*0828(cc -  63)}, (35)

so tha t 4 let = 960 k = (0*0828)~2 and k = 0*152. The mean velocity is
\ uq = 63cm/240s,

so that uQ = 0*524 cm/s. Using (25) and remembering that a 0*0252 cm,

D -  H I W I 6.'i°52)2)2 -  060 x I0 -°c .g ,. unit. (36)

To use experiments of type B 1 the most accurate method would be to produce an
error law distribution of concentration by running the apparatus for a time and
then stopping it and making measurements. The flow would then be started again,
run for a measured time and stopped again. I f  the curve fitted to the first set of
observations is «  , /0_,A1e“« (a,~x »F (37)

and the second is

C

C-- i 2e-W *-V , (38)

the fact that the same amount of the dispersed substance is present on both occasions 
leads to the condition that (37) and (38) have the same area, so that

(39)

I f  the flow had been running at the constant speed which it had between the two 
sets of measurements and the solution were initially very highly concentrated the
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first distribution would have been attained at time and the second at time t2 
where t2 — t1 = actual time of running and

and

Hence, H h ~ h ) = (40)

The error curves (28) which fit the observations of table 3 which are shown in 
figure 8 have the following parameters:

I: A x = 0-65(70, 0 X = 5-86 x 10-3,
II: A 2 = 0-51C0, fi2 =  3-72 x lO-2,

III: A 3 = 0-41C0, /?3 = 2-30 x lO-2.

These do not exactly satisfy conditions (39) owing to experimental errors. 
Applying (40) to I I  and I I I  and inserting t2 — t1 330 s (table 3)

*  ___ L _  (m  _  x 10-2 (41)
* 4x330 \,2-30 3-72/ ~  (41)

From table 3 i uo(h~~h) — 122-5 — 94 =  28*5cm, so tha t u0 = 0-173cm/s. 
Hence, from (25),

D  "  = ° '79x 10^  c-s-s-unit- <42>

As another example the observation used in figure 7 may be used. Here the con­
centration was not observed at any except the final position so that less accuracy 
may be expected. I f  the formulae (28) and (34) are used directly, assuming the start 
of the diffusion to be from a highly concentrated source, it is found from table 3 and 
figure 7 tha t m  2110

* “  4(660) =  °'°459’ “• = -660 = ° '333 °m/s> 

so tha t D = (° i92(0-0459)2> = ° '80 x 10' $ °S-s- unit- <43)

10. Co m parison  w it h  pr e v io u s  m e a su r e m e n t s

Measurements of the diffusion coefficient for KMn04 are quoted in Landolt 
& Bomstein’s tables from Furth & Ullmann (1927). These figures are quoted in 
em2/day. To reduce them to c.g.s. units they must be divided by 86400, the number 
of seconds in 24 h. The measurements were made at 18° C which was approximately 
the temperature prevailing during the measurements described in the present paper. 
They covered a range 0 < C <0-01 g/ml. and in tha t range the diffusion coefficient 
ranged from 0*435 x 10~5 to 1-5 x 10~5. They are shown in figure 9 as circles and 
a smooth curve has been drawn to pass as nearly as possible through them.

In  estimating the value of D which most nearly corresponds to the observed 
distribution of concentration, a constant D  was assumed and the corresponding



theoretical distributions of C were compared with those observed. I t  is possible to 
deduce from the present measurements shown in figure 5 the variation of D  with C, 
but certain inaccuracies make the results of doubtful value. I  hope later to describe 
improvements in the apparatus which will make it possible to give more accurate 
values of D. Some values of D  obtained in the experiments here described are 
shown in figure 9 and the range of values of C covered in the experiments are
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Figure 9. Diffusion coefficient for KMn0 4 at 18° C. Comparison between present measure­
ments (broken lines) and those of Furth & Ullmann (represented by circles).

shown by means of broken lines. The experiment represented by the broken line a t 
D = 0-6 x 10~5is that of equation (36) and figure 5. The experiment represented by 
the line a t D — 0-8 x 10_5is tha t of equation (43) and figure 8. The lines a t D =  1*15, 
1*20 and 1*30 x 10-5 were obtained in experiments of type B l under conditions 
similar to those of figure 8, but with smaller amounts of potassium permanganate. 
I t  will be seen tha t they are not inconsistent with the measurements of Ullmann, 
which probably give approximate values of C over the range OcOcO-Olg/ml., 
even though the validity of the theory used by this author in interpreting his 
experimental results may be questioned.
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