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I11.

THE STABILITY OR INSTABILITY OF THE STEADY MOTIONS
OF A PERFECT LIQUID AND OF A VISCOUS LIQUID. Paxr II.:
A VISCOUS LIQUID.

By WILLIAM M‘F. ORR, M. A,

Professor of Mathematics in the Royal College of Science for Ireland.

Read June 24. Ordered for Publication Junr 26. Published Ocrorer 28, 1907,
INTRODUCTION AND SUMMARY OF CONTENTS.

In Part L* reference was made to a well-known difficulty in reconciling
theory and experiment in the case of the steady motion of liquids. The
flow through pipes and between concentric cylinders, one of which is
rotated, had been found experimentally to be unstable if the velocity is
great enough ; while, on the other hand, Lord Rayleigh had shown that, in
these cases, if the effect of viscosity be neglected in the disturbed motion,
the fundamental free disturbances are strictly periodic, the values of the
“{ree periods” being real. An explanation of the difficulty was given by
showing that it is necessary to push Lord Rayleigh’s investigations a step
farther by resolving a disturbance into its constituent fundamental ones
by quasi-Fourier analysis, and that, when this is done for disturbances of
initially simple type in some of the most important and simplest cases
of flow, it is found that the disturbance will, for suitable values of the
constants, increase very much, so that the motion is practically unstable.

The present investigation attempts to discover how far this conclusion
must be modified when viscosity is taken account of.

It may be stated at once that I have not succeeded in throwing much
additional light on this matter; but a good deal of the work had been done
before I discovered that the slight extension of Lord Rayleigh’s analysis which
is contained in Part I. would explain the difficulty, at least qualitatively ;+ and
I therefore decided to carry the investigation as far as I could: I may
moreover plead that I found some portions of the analysis interesting on
their own account.

* Proc. R.I.A., vol. xxvii., Section A, No. 2.
+ I consider that a proof of instability for a perfect liquid is a proof of instability also for a
viscous liquid if the viscosity be small enough
R. 1L A, PROC., VOL, XXVII., SECT, A. [10]
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Chapter L., pp. 80-94, deals with Lord Kelvin's investigations*

The two problems which he discussed having been described in Art. 1,
p. 80, an abstract is given in Art. 2, pp. 80-83, of one of his proofs
that an infinitely wide stream of finite depth and uniform vorticity is stable
this solution, following Lord Rayleigh, I describe as a “ special ” solution
in contradistinetion to another which he indicated in a subsequent paper.
As far at least as the velocity-component in the direction of the depth
is concerned, Lord Kelvin first obtains a solution, (v), of the differential
equation which satisfies the most general initial conditions throughout, but
violates - the permanent boundary-conditions at the top and bottom of the
stream ; he then adds to this solution a “ forced ” disturbance, (v), which
would be caused throughout the stream by exactly reversing this outstanding
boundary disturbance, and, by addition, thus obtains a solution which does
satisfy the boundary-conditions. The “forced” disturbance is obtainable
as an integration of an infinity of constituents each of which is simply-
periodic in the time, and the constituents are to be chosen by a Fourier
analysis, valid between the times ¢=-c and £=+c so as to satisfy
the boundary-conditions ¥ =0 from ¢{=-c till £=0, and v = - v from
t=0 till £=0. The v solution is composed of one or more terms, each
of which has a factor which involves the time exponentially, the index
being essentially negative, and eventually varying as the cube of the time;
thus v diminishes indefinitely; and Lord Kelvin states that hence the “forced”
disturbance », which rises gradually from zero at ¢ = 0, also diminishes
indefinitely, and concludes that the steady motion is stable,

Art. 3, p. 83, contains a brief account of another proof of stability in
the same motion, which Lord Kelvin indicates in his discussion of the second
of the two problems which he discnssed.

Art. 4, p. 84, gives Lord Rayleigh’s adverse criticism of the second solution,
in which he points out that Lord Kelvin has merely shown the possibility
of obtaining forced vibrations of arbitrary (real) frequency, and that this
constitutes no proof of stability, it being possible to do this in the case of
a pendulum displaced from a position of unstable equilibrium.

Art. 5, pp. 84-85, gives remarks by Lord Rayleigh on the “special ”
solution in which he appears to accept it.

In Art. 6, p. 85, it is pointed out, however, that the “special ” solution
involves a tacit assumption that the “ forced ” disturbance, v, vanishes
everywhere throughout the liquid at the time ¢ = 0.

In Art. 7, p. 86, it is argued that this assumption is legitimate if

* Phil. Mag., August and September, 1887.
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is known that the fundamental free disturbances have stability of the
common exponential type, but that it would not be true if the contrary were
the case; and in Art. 8, pp. 86-88, a simple instance is taken of a system
having only one coordinate in which this argument is seen to be correct.

In Art. 9, p. 88, it is pointed out besides, that, except at the boundaries,
it is not known that the “ forced ” disturbance, v, does diminish indefinitely.

It is accordingly held that Lord Kelvin has not proved stability, even for
infinitesimal disturbances.

As the fundamental modes of disturbance do, as is shown in Chapter IL,
possess stability of the simple exponential character, the “special ” solution
is, I believe, as a matter of fact, the solution for a given initial disturbance ;
if this be a simple trigonometrical function of the coordinates, the form of v is
simple; but that of the “forced ” disturbance, v, in no case appears capable
of being readily calculated. It is urged, however, in Art. 10, pp. 88-90, that
this solution actually proves that for sufficiently small viscosity or sufficiently
great velocity the motion is unstable; for under such circumstances v,
congidered alone, will increase very much if the constants are properly
chosen, the possible ratio being limited only by friction; and it is held
that the fact that v violates the boundary-conditions is of little importance
if the wave-lengths in all directions are sufficiently small. The boundary-
conditions being that the velocity perpendicular to the depth of the stream
and its gradient in the same direction should vanish, it is seen moreover
that it is quite easy to add to v a term which gives a solution satisfying
either one of these conditions or the other, but not both. (If the former
be chosen, the solution thus obtained includes as a limiting case that given
in Part I. for the same problem in the absence of viscosity.) ‘

In Art. 11, pp. 90-92, numerical values corresponding to the circumstances
under which instability has been actually observed to set in under somewhat
similar circumstances are substituted in the two-dimensioned form of the first
of these two modifications of the “special” solution; it appears that it would
not be possible for the kinetic energy of the relative motion of any disturbance
of the simple type in question to increase to more than about four times its
original value.

And in Art. 12, p. 93, the same is done for the second modification; and
it is seen that an initial disturbance of the same type, but with different
constants, might increase about ten-thousand-fold.

In Chapter IL, pp. 95-121, the fundamental free disturbances of this same
steady motion are discussed.

The preliminary analysis is, of course, substantially that given by Lord

Kelvin in the “special” solution: supposing the plane boundaries to be
[10%]
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y =+ a, and the steady velocity to be By in the z-direction, the y-velocity
in the disturbed motion is taken to be v = Vert+itz+n3s)  where [ and n are
arbitrarily assigned and p is to be found. The differential equation shows
that Vv is of the form:—

u¥(AJy(u) + BT y(u)) where uis of the form (Cy + C")};

if the boundary-conditions should include the vanishing of V?v, it is thus seen
that the investigation is very much simpler than for the natural conditions
v =0, dv/dy =03 and accordingly this case is discussed in detail.

In Art. 13, p. 95, the equation giving the values of p (the period-equation)
is derived.

In Art. 14, p. 96, in view of a remark of Lord Rayleigh’s which appears
to suggest that it may not be possible to obtain disturbances which do vary
as ¢, it is first proved, or rather rendered probable—for the demonstration is
not rigorous—that this equation has an infinite number of roots; this follows
by making use of the approximate forms of the Bessel functions for large
values of the variable.

In Art. 15, p. 99, it is proved directly from the differential equation that
all possible values of p must have a real negative part, and that the imaginary
part lies between the extreme limits found when there is no viscosity.

Art. 16, p. 100, gives a rigorous proof that for all values of /, n, there are
an infinite number of real values of p.

Art. 17, p. 101, indicates briefly a proof that if /o is small enough, all the
values of p are real, and given approximately by a comparatively simple
algebraic equation ; this proof is developed rigorously in Art. 18, p. 102, which
contains as a necessary step an investigation of the number of roots inside a
circular contour of large radius having the origin as centre, this investigation
and its result holding good, whatever the value of la.

In Art. 19, p. 106, the double roots are considered; it is shown that a
double root occurs when, and only when, a certain multiple of (/3a®/v)? is a
root of o/, i(u) =0, v denoting the kinematic viscosity ; and, in Art. 20, p. 108,
it is proved that, as / increases through such a value, two real roots do actually
disappear ; while in Art. 21, p. 111, approximate expressions are obtained for
the complex roots. It is seen that all the roots, real and complex, are
accounted for. There are thus a definite finite number of complex roots, anfl
for them the values of p + v(7’ + n*) lie close to two straight lines which
contain an angle of 2x/3. When the disturbance is oscillatory, its time is
independent of n.

In Art. 22, p. 111, it is proved that, in the most persistent disturbance, »
is a function of y only; ie., / and n are zero.
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Art. 23, p. 113, contains two fundamental equations showing how to
discover the coefficients of the gquasi-Fourier expansion of an arbitrary
function of ¥ in a series consisting of the infinity of 7’s which correspond to
given values of /, n; it seems reasonable to assume the possibility of such an
expansion; I am quite unable to prove it. I have failed in the endeavour to
apply this analysis quantitatively to the case of a disturbance of simple type,
as was done in Part I, Chap. L., Arts. 4-8.

In Art. 24, p. 115, a brief reference is made to the case in which the
boundary-conditions V?» =0 are replaced by d/dy.V* =0.

The much more difficult case in which the boundary-conditions are

v=0, dv/dy=0

is taken up in Art. 25, p. 117; it is proved that the imaginary part
of p lies between the same limits as before. I have failed, however, to
obtain any direct proof from the differential equation itself that p has a
negative real part, and also to obtain any equations by the aid of which
the Fourier analysis of an arbitrary disturbance can be performed. There
is frequently a connexion between these two questions ; a fundamental
equation of Bessel-Fourier analysis* for instance, serves equally to prove
that all zeroes of the Bessel function of order greater than — 1 are real;
and, though equation (63) of Art. 23 does not show the roots to have a real
negative part with the boundary-conditions V*»v =0, the two results have
been obtained by similar methods. Probably some simple proof that p has
a negative real part in the present case will be discovered; but it seems
possible that no simple theorem relating to Fourier expansion may hold.
Similar difficulties may arise to a certain extent, even for a system having
only a finite numnber of coordinates ; in some such cases the proof of stability
for fundamental disturbances is much more difficult than that of the reality
of the roots of the determinantal equation which is met in the corresponding
problem of displacement from equilibrium, and the period equation may
have to be examined as carefully as any other algebraic equation, the fact
that it arises in a dynamical problem being regarded as a mere accident;
also, when, in steady motion, the fundamental determinant is unsymmetrical,
and there exist forces of resistance proportional to the velocities, no rule
appears to be known for abbreviating the labour of solving the simultaneous
simple equations which determine the coefficients of the fundamental
disturbances making up a given initial one.

* 1. e. the equation
[ atier) Ju(ar) rar = 0,
AU

where ka, Aa are different zerocs of Ju(#), and n + 1 is positive.
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In Art. 26, the period equation is expressed in terms of integrals which
involve V?», a function whose form has been already found. On the
supposition that the approximate forms of the Bessel functions, for large
values, may be used in this case also, I have given an approximate form
of the equation appropriate to the region in which the roots actunally lie.
In this portion of the investigation somewhat intricate questions arose from
the fact that the approximations assume different forms in different regions,
Fortunately, in the region in which the roots actually occur, the difficulty
is not met with in its entirety. As I am quite unable to solve this
equation in the most general case, it seems undesirable to give this portion
of the investigation, which is somewhat long, in full.

In Art. 27, p. 119, some results are stated. It appears that for none
of the roots can the disturbance be unstable, but owing to the way in
which approximations have been used, the proof indicated is not rigorous.
The result of an investigation of the number of roots inside a circle of
large radius round the origin is stated. The period-equation for a liguid
at rest, a problem discussed by Lord Rayleigh, is obtained as a special case.
A reference is made to the case in which a(2* + n?) is large; for the
smaller values of p the roots are very nearly the same as with the boundary
conditions V*» = 0. Some reference is made to the general case; for such
of the real roots as are remote from the complex ones, an equation is given,
which, if the values of the constants were given, could be readily solved;
for the others, especially the complex ones, the form is very complicated.
In all cases, however, there are an infinity of real roots, and a finite, but
undetermined number, which may be zero, of complex ; and, roughly speaking,
for these the values of p + v(/* + #*) lie in the neighbourhood of the same
two lines as with the boundary-conditions V?» = 0. An approximate form
of the period-equation is given suitable to the case in which a (% + #?)* is
indefinitely small, the form of the period-equation previously taken now
becoming an identity; the equation giving the complex roots is still
complicated.

It will be seen that, except in the case of very slow motion and in
that of large values of a (I + n*)?, the discussion is very incomplete and
unsatisfactory when the boundary-conditions are that v and dv/dy should
vanish. . '

Owing to the failure to use Fourier analysis in the simplest case* the
whole investigation elucidates the question of stability but little; for it seems
unjustifiable as a mathematical proposition to infer that the steady motion of

* I.e. that in which the boundary-conditions include the vanishing of v».
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a system possessing an infinite number of coordinates is stable for an arbitrary
disturbance, however small, from the stability, even when of an exponential
character, of the fundamental ones into which it can be resolved ; an infinite

series of the type
: Se?rt (0, cos wyt + Sy 8in w,t),

like one in which no exponential factor occurs, may at some times have a
value which is exceedingly great compared with its initial one, and may even
‘become infinite. To discover how far the motion is stable for any particular
disturbance, it may be necessary to obtain completely the corresponding solu-
tion, whether by Fourier analysis or otherwise. Possibly, it rarely happens
that stability for the fundamental disturbances is associated with instability
for those of a more general type: but this is the case in the problem under
discussion, as far at least as practical stability is concerned ;* this is sufficiently
evident from the results of Part I, and Chap. L., Arts. 11,12, below. It would
seem improbable that any sharp criterion for stability of fluid motion will
ever be arrived at mathematically. Indeed, in simpler cases of steady motion
where there are only a few coordinates, although such a criterion has been
laid down, it has been shown that it cannot always be relied on. It has been
proved by Kleint and by Bromwich} that where there is exponential insta-
bility, but only slight, there may be practical stability, and vice versa. There
is, however, this difference hetween such cases and the present one, that in

‘them recourse has to be had to the terms of the second order, while here the
motion is unstable, if terms of the first order only are taken into account.

‘Chapter III., pp. 122-138, consists of some applications of the method of

Osborne Reynolds.

F: The method is explained in Art. 28, p. 122. Taking an arbitrary distur-
bance, Reynolds§ found an expression for the rate of increase of the kinetic
energy of the relative motion; this is made up of two terms, of which one is
essentially negative, and is the dissipation function for the relative motion
the other may be positive or negative. On equating the sum to zero, a value
of the coefficient of viscosity, u, is obtained for which the disturbance would be
stationary for an instant; if the disturbance is chosen so as to make this u as
great as possible, then for any greater u every initial disturbance must decrease ;
there is thus obtained an inferior limit to that value of y which would permit

* That is, if the viscosity is small enough.
.t ¢ The Mathematical Theory of the Top ”” (Princeton Lectures, 1896). )
1 ¢““Note on Stability of Motion with an Application to Hydrodynamies,”” Proc. Lond. Math. Soc.,
xxxiii., Feb. 1901.
§ ¢ On the Dynamical Theory of Incompressible Viscous Fluids, and the Determination of the
Criterion,”” Phil, Trans. A, 186, Part I., 1895; Scientific Papers, i,
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a given motion to be unstable. Previous investigators by this method have
selected the type of disturbance to some extent arbitrarily. .

In Art. 29, p. 124, however, the method of variation is used to assist in
discovering the proper type; it is shown that when the value of u is the
greatest for which it is possible that a disturbance should remain stationary,
the velocity components in the disturbance satisfy certain differential
equations,

These are applied in Art. 30, p. 124, to the uniformly-shearing stream for
a two-dimensioned disturbance, supposed of definite but undetermined wave-
length in the direction of flow. The differential equation to be solved in all
such cases is linear and of the fourth order; in this particular instance it has
constant coefficients. The boundary-conditions lead to equations determining
u; as in the other cases to be discussed, u, so determined, has an infinite
number of values; the greatest of these is taken; finally, the wave-length in
the direction of flow is so chosen that this value shall be the greatest possible.
The final result is BpD?*/u = 177, where p is the density, D the distance
between the planes, and the steady velocity is U = By. H. A. Lorentz, who
discussed a species of elliptic whirls, obtained the number 288 instead.*

Two cases of other boundary-conditions are discussed in Art. 31, p. 129,

Art. 32, p. 130, takes up the case of a stream flowing between fixved
parallel planes, the second of the two problems discussed in such a different
manner by Lord Kelvin, and the numerical investigations by Reynolds
himself and by Sharpe are briefly described.

In Art. 33, p. 131, the more general plan which I have indicated of
using Reynolds’ method is applied to this case, again in two dimensions.
When the velocity perpendicular to the boundaries is expanded in powers
of the distance from the central plane, the differential equation gives a
linear relation among the coefficients of three successive terms; there are
two independent solutions in series containing only odd powers, and two
in series containing only even; reasons are given justifying the choice of
the latter (I confess I shrank from the labour of the double investigation).
The equation which determines y when developed from the boundary-
conditions is easily solved with sufficient accuracy. Choosing the wave-
length in the direction of flow so as to make this value of u as great as
possible, there results the criterion DUp/u = 117, U being the mean velocity.
Reynolds obtained the number 517, Sharpe 167.

Art. 34, p. 134, goes on to the case of a circular pipe, and refers to
Sharpe’s investigation.

* See p. 124,

This content downloaded from
128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC
All use subject to https://about.jstor.org/terms



Onre—=~Stability or Instability of Motions of & Viscous Liquid. 77

And in Art. 35, pp. 135-138, the more general method is applied to a
gymmetrical disturbance. The differential equation is of a similar type to
that in the preceding case, and is solved in a similar manner; the final
result is DUp/u = 180, D being the diameter of the pipe; the number
obtained by Sharpe is 470. The law of velocity in this instance being
U= (" (a* - 7%), and that in the last U = C'(a® - 3?), the value I have found
for ¢’ is almost double that for C.

It is claimed that in each case the numbers I have found are true
least values (but with some reservation as to the effect of end-conditions);
that below them every disturbance must automatically decrease, and that
above them it is possible to prescribe a disturbance which will increase
for a time.

The numbers obtained above give velocities very much below those at
which observers have found motions actually to become unstable; this is
to be expected.

Although I cannot profess to have examined the records of the experiments
carefully, it seems that the results of Reynolds' and of Couette® are to
some extent contradicted by Mallock’s.> The general result of each is that,
up to a certain velocity, the motion is certainly stable, and the frictional
resistance varies as the velocity : beyond this comes a region in which the
motion appears at times to be stable, and at times to be unstable, the average
resistance on the whole now increasing more rapidly than the first power
of the velocity : if the velocity is still further increased, the motion is
permanently eddying and turbulent, and the resistance is, approximately
at least, proportional to the square of the velocity. Reynolds found, from
experiments made on pipes of different diameters, and in which the viscosity
was varied by varying the temperature, that the motion was certainly stable
until DUp/u = 1900. Couette gives results of experiments* on eight pipes
of different diameters, the temperature being approximately constant. The
mean value of DU is very nearly 25'4 in C.G.S. units, the range being from
22 to 28; taking u/p at 13°8 C. (the mean temperature) to be ‘0118, this
gives DUp/u = 2150. Moreover, some of Reynolds’ experiments were made
with colour-bands—a method which might be expected to reveal eddies which
might otherwise escape detection, and thus to give a lower limit for U.

14 An experimenial investigation of the circumstances which determine whether the motion of
water shall be direct or sinuous, and of the law of resistance in parallel channels,”” Phil. Trans. 1883 ;
Scientific Papers, ii.

2 ¢¢ Etudes sur le frottement des liquides,”” Annales de Chimie et de Physique, 6¢ Série xxi., 1890,

3¢¢ Experiments on Fluid Viscosity,”” Phil. Trans., 187, 1896.

4L.c., p. 488.

R. I. A. PROC., VOL. XXVIL,, SECT. A. [11]
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Couette found that when a cylinder of radius 14:6395 cm. was rotated
in water at 16'7°C. outside a concentric one of radius 14:3930 cm., the
motion ceased to be thoroughly stable when the speed exceeded about
56 revolutions per minute; taking u to be *011, this corresponds to a value
of BpD*u=1940 for liquid shearing at the same rate as that in contact
with the fixed cylinder. In Mallock’s experiments, when a cylinder of
radius 9943 cm. was rotated outside one of 7632 cm., it appears from a
diagram that, at the temperature 0° C., the motion was not thoroughly stable
when the speed exceeded about 75 revolutions per minute ; this corresponds
to a value of Bpl? =204, or, taking u = ‘018, BpD*/u == 11300. When
another outer cylinder of 8687 cm. radius was substituted, the corresponding
number of revolutions was about 78, giving . BpD*/u = 4500. (Up to these
speeds the resistance varied as the velocity.) Moreover, Mallock states that
the critical velocity he found at different temperatures was not proportional
to the viscosity. “ At a temf)era,ture of 50°C. the viscosity of water is only
about a third of what it is at 0° C., but, at the former temperature, instability
begins at a speed only of 11 or 12 per cent. less than at the latter.”” (His
diagrams seem to indicate 15 to 20 per cent. less.)

In the experiments with different cylinders, the conditions of dynamical
similarity are not satisfied; but they would appear to be practically satisfied
with the same cylinders at different temperatures; (apparently conditions
concerning pressure and gravity may be disregarded). Unless Mallock’s
results are rejected altogether, Reynolds’ conclusion that in similar systems
eddies appear when UlLp/u exceeds some definite limit depending on the
form of the apparatus (L denoting the linear dimensions), would seem to be
open to doubt, despite the strong confirmation it receives from Couette’s
experiments.

Mallock attempted experiments in which the outer cylinder was fixed
and the inner one rotated, and states that, in these circumstances, the motion
seemed essentially unstable at all speeds. I have great difficulty in accepting
this conclusion; and apparently the fact may just as well have been that it
was found impossible to establish the steady motion starting from rest.

It seems remarkable too that the values of the coefficient of viscosity
which Mallock deduced from his two sets of experiments differ from one
another, and exceed the usually accepted values, one set being, throughout
the whole range of temperatures, not much less than twice that given by
Poiseuille.

In earlier experiments of a similar type by Mallock,' it was found that at

1+ Determination of the Viscosity of Water,”’ Proc. Roy. Soc. xlv., 1888, p. 126.
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all speeds the resistance could be represented as the sum of two terms, one
varying as the velocity and the other as its square; the latter was attributed
to the action of the ends of the rotating cylinder, and was found to become
smaller and smaller as the ratio of the length to the width of the annulus
increased.

[I take this opportunity of making a few corrections in Part I.:—

. 15, 1. 8, for “m”” read “m?”.

. 15, 1. 3 from foot, for “a” vead “any”.

. 25, 1. 25, for “B” read “f3”.

.31, 1. 19, for “= *’ read “=".

35, 1. 17, for “£” read “£”.

35, last line, for (/5 —1)2” read “(y/ 5- 1)/2”.

LTI "~ R C T R -]

40, I would withdraw the opinion expressed in the final sentence which
begins on this page. ’

p. 42, 1. 21. In keeping with the last change, I would insert “/b and”
before “ mb”,

p. 47, et seg. Just as the analysis of Art. 21 is simpler than that of
Art. 20, so, in the disturbance discussed in Art. 18, the
investigation is simpler when ke is very small, the other
extreme case from that chosen.

The following electric analogy may illustrate instability of fluid motion :—
In two dimensions vorticity represents electric density—stream-function,
potential. Take a shearing stream with embedded positive and negative
electric charges, arranged, as an extreme and simple case, like rectangles on a
chess-board, the sides parallel to the direction of the stream being much
longer than those across it, and the bounding-planes being kept at zero
potential. Let the charges, like the vorticity, flow with the stream. When
sheared so that original diagonals run right across the stream, the potential
at most points towards mid-stream is much greater than originally, owing to
the altered distribution of the charges.]

[11+]
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CHAPTER I

Lorp KELVIN’S INVESTIGATIONS, ESPECIALLY THE CASE OF A STREAM WHICH
IS SHEARING UNIFORMLY.

ART. 1. The Problems which Lord Kelvin discussed,

THE stability or instability of steady laminar motion, when viscosity is
taken into account in the disturbed motion, has been discussed by Lord
Kelvin for two cases. One of these is that of a fluid undergoing simple
shear, the problem which, when viscosity is ignored, formed the chief subject
of Part I., Chap. L, of the present paper;* in the other, the steady velocity is
a quadratic function of the distance from a plane boundary, as with a viscous
fluid which is moved between two fixed parallel infinite planes by gravity or
by applied pressure.

As somewhat subtle controversial matters are to be touched on in what
follows, it appears desirable, with a view to facilitate the reader’s compre-
hension of the points at issue, to give to some extent an outline of the
substance of his investigation.

Lord Kelvin, in one paper,t discussed the former of the two problems
alluded to; in another,f he attacked the latter problem on somewhat
different lines, and in a foot-note indicated that this method applies equally
to the former, and thus constitutes a second solution of it. It will be
convenient to allude to the former solution as his “special” solution.

ART. 2. Abstract of his Special Solution in the case of the Stream
shearing wniformly.

Referring, then, to his first paper, if we denote the plane boundaries by
y=0, y=>0, suppose that the former is reduced to rest, that the velocity in
the steady motion is U = 3y, and that in the disturbed U+ u,», w, and

* Proc. R.I.A., xxvii,, A. No. 2, p. 9.

¢ Stability of Fluid Motion—Rectilinear Motion of Viscous Fhiid between two Parallel Planes,”
Phil. Mag., Aug. 1887.

1 ¢ Stability of Motion—Broad River flowing down an Inclined Plane Bed,”” Phil. Mag., Sept.,
1887.
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denote the kinematic viscosity, or quotient of viscosity by density, by v, the
fundamental equations are .

du/dt + Bydu/dx + v
dvjdt + Bydv{dz

Il

vV — p7'dp/dz,
vWi - p7'dp/dy,

1
dwjdt + By dw]/dx = vVw - pldp/dz @)
du/dx + dv/dy + dw/dz = 0
and from these we obtain, by elimination,
(d/dt + Byd/dz - vW*) e = 0, (2)
where
a = V™, 3)

Ignoring, for the sake of brevity, any further reference to u, w, it is
desired to obtain an expression for v, satisfying (2) and also the following
initial and boundary conditions:—

when ¢ = 0, v to be a given arbitrary function of #, ¥, 2; “)
when y = 0, and when y = b, for all values of 2, #, ¢, both »
and dv/dy to vanish. 5)

Lord Kelvin first proceeds to find a particular solution, v, of (2) which
satisfies the initial conditions (4) irrespectively of the boundary conditions (5),
except as follows :— 7

v=0 when =0, and y=0 or y =2. (6)

He next finds another particular solution, v, satisfying the following

initial and boundary conditions:—

v=0, do/dy=0, when £=0, (7)
v=-V, do/dy=-dv/dy, when y=0, y=0 (8)
The required complete solution will then be
=V+o 9)
To find v, Lord Kelvin remarks, that if v were zero, the complete integral

of (2) would be

o =f@ - Byt y, 2) (10)
where f is a perfectly arbitrary function, and takes therefore as a trial for a
type of solution with » not zero,

G = Tei(lz+(m-lpl)y+nz), (11)
where 7' is a function of ¢£.  Substituting in (2), one obtains
7= Oe-vt[l’+-m"+n’-lmﬁt+l’ﬁ‘t“/sl’ (12)

and hence, from (3),
Teille+ (m—-1gt)y +nz)

TEw (m - IR+ w2 (13)

V =
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Realizing by adding solutions of this type for + 4 and + m with proper
values of C, one obtains types of complete real solution

Bap.{ —vt('+ m? + n? — ImBt + PB/3)) cos

v=4k Ty (= Iply+ sin [l + (m - Bty + nz]
Eaxp. | - vi(l* + m*+ n* + Imf3¢ + I)3%*/3) cos
- P+ (m+ 1Bty +n? sin [z = (m + 1Bl g + ne]
(14)
where % is an arbitrary constant. This gives, when ¢ = 0,
¥k . sin
V=% s SR (lz + n2), 15)

which fulfils (6) if sinmb = 0, and allows us, by proper summation, for the
different admissible values of m, and summation or integration with reference
to / and n, with properly determined values of %, after the manner of Fourier,
to give any arbitrarily assigned initial value to » for every value of z, ¥, 2
from 2=~ to 2=+, y=0to y=5 and 2=-c to + 0. The same
summation and integration applied to (13) gives V for all values of z, ¥, 2,2.

It remains to find the value of v which must satisfy (2), (7), (8). To
do this Lord Kelvin first finds a real (simple harmonic) periodic solution
of (2), fulfilling the conditions

v =Ccoswt + Dsin wt

when y =0, 16
v = ("cos wt + D'sin wt (16)
dy
v =€ cos wt + Dsin wi
when y = b, amn

.(2. = @cos wt + D'sin wi
dy

where C, D, (", IV, €, D, &', D" are eight assigned arbitrary functions of z, z.
Then, by takingJ. dwf(w) of each of these after the manmner of Fourier,

one solves the pﬁoblem of determining the motion produced throughout
the fluid, by giving to every point of its plane boundaries an infinitesimal
displacement, of which each of the three components is an arbitrary function
of 2, 2, t* Lastly, by taking these functions each = 0, from ¢ = — o0 to ¢ =0,
and each equal to minus the value of v or dv/dy, as the case may be, for every
point of each boundary, when ¢ > 0, we find v of equations (2), (3), (7), (8).

* As far as v is concerned we have only to deal with arbitrary boundary-values of v and of dv/dy,
the latter being obtained from those of 4, w by the equation of continuity.
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The value of » satisfying (2), (3), (16), (17) is obtained by first finding
an imaginary type solution* Assume

» = ¢iwt+iz+az) vV (18)
o = ¢ilottizinz) g (19)
Equation (2) then becomes
&8 [, e B ¢
dyz = <l +“n + ——;}—-— S. (20)

This may be solved by series proceeding in ascending powers of
F+nt+i(w+ IBy)v

which are seen to be essentially convergent for all values. The form of
S having thus been found, the solution of (2) can be expressed by using
integral forms, and it involves four arbitrary constants; by the aid of these
arbitrary constants, any prescribed values can be given to » and to dv/dy
for y = 0 and y = 4. Thus a real value of v satisfying (2), (3), (16), (17) may
be obtained.

Now, the v solution, expressed by (13), comes essentially to nothing
asymptotically as time advances. Hence, Lord Kelvin states, the v of
(2), (3), (7), (8), which rises gradually from zero at ¢ = 0, comes asymptotically
to zero again. He concludes that the steady motion is stable.

ART. 3. His Solution of the Second Problem and its modification to
swit the First Problem.

In the second paper, which, as stated above, deals with the case in which
the steady velocity is expressed by a quadratic function of 7, Lord Kelvin
writes as in (18), above,

v = eilttlzinn)
and obtains the differential equation satisfied by ¥V, which is of the fourth
order. He shows how four independent solutions of it may be obtained in
the form of series in ascending powers of y, convergent for all values of ¥,
unless v be zero. The rest of his discussion is by no means full ; I trust I do
not misinterpret it in the following statements. He appears to indicate that
by means of the four arbitrary constants which occur in the value of V, any
values desired can be assigned to ¥ and to dV/dy for y =0 and y =5, and
that by integration or summation with respect to w, /, #, one can thus obtain
the motion produced in the fluid by giving the plane boundaries y = 0, y = b,

* At this stage of Lord Kelvin’s work, in his equation (49), there occurs an error which is noted
in an “erratum” prefixed to the bound volume of the Phil. Mag.
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displacements which are arbitrary functions of , 2, ¢, indicating in a footnote
that this same method may be used as affording a complete discussion of the
former problem without any introduction of the v which satisfies (2), (3), (6).
He states that the essential convergence of these series proves that the steady
motion is stable, however small be v, provided that it is not zero.

If v be zero, the series become divergent in a certain region, thus giving
rise to the “ disturbing infinity *’ alluded to in Part I., Chap. I, p. 19.

ART. 4. Lord Rayleigh’s Criticism of the latter Solution.

Commenting on these investigations, Lord Rayleigh writes*—“. .. I must
confess that the argument does not appear to me demonstrative. No attempt
is made to determine whether in free disturbances of the type ¢™* (in his
notation ¢¥) the imaginary part of = is finite, and if so whether it is positive
or negative. If I rightly understand it, the process consists in an investiga-
tion of forced vibrations of arbitrary (real) frequency, and the conclusion
depends upon a tacit assumption that if these forced vibrations can be
expressed in a periodic form, the steady motion from which they are
deviations cannot be unstable. A very simple case suffices to prove that such
a principle cannot be admitted. The equation to the motion of the bob of a
pendulum situated near the highest point of its orbit is

dixfdt — m*x = X,
where X is an impressed force. If X = cospf, the corresponding part of z is
cospl
e
but this gives no indication of the inherent instability of the situation
expressed by the free ‘ vibrations,’
. @ =de™ + Bemt)”

This criticism is evidently directed against the argument in the second of

the two papers to which I have referred.

ART. 5. Lord Rayleigh’s Remarks on the Special Solution.

In a later paper Lord Rayleigh, referring evidently to Lord Kelvin’s first
investigation, wrotet} :—

“...In the particular case where the original vorticity is uniform, the
problerz of small disturbances has been solved by Lord Kelvin, who shows

* ¢«“On the question of the Stability of the Flow of Fluids,” Phil. Mag., xxxiv., 1892, p. 67.
Collected Papers, iii., p. 582.

T ¢ On the Stability or Instability of certain Fluid Motions,’”” Proc. Lond. Math. Soc. xxvii.,
1895 ; Collected Papers, iv., p. 209.
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that the motion is stable by the aid of a special solution not proportional to
a simple exponential function of the time. If we retain the supposition of
the present paper that the disturbance as a function of the time is pro-
portional to ¢, we obtain an equation [(52) in Lord Kelvin’s paper] which
has been discussed by Stokes. From his results it appears that it is not
possible to find a solution applicable to an unlimited fluid which shall be
periodic with respect to 2, and remain finite when y = + o, and this whether
2 be real or complex. The cause of the failure would appear to lie in the
fact indicated by Lord Kelvin’s solution, that the stability is ultimately of a
‘higher order than can be expressed by any simple exponential function of the
time.”

ART. 6. No Proof of Stability in either Solution. A tacit Assumption in the
special one,

Lord Rayleigh’s objection to the argument in Lord Kelvin's latter paper
appears unanswerable. The precise point of failure in the solution is that it
does not in reality satisfy the most general conditions which may be assigned,
just as, in the problem of the pendulum which Lord Rayleigh instances, the
most general conditions cannot be satisfied without the introduction of the
terms

Aemt + Be-mt’

When the values of v and dv/dy are assigned at the bounding planes for all
values of z, 2, t, Lord Kelvin’s solution is evidently an absolutely determinate
one; but the initial state of things in the interior may be arbitrarily pre-
seribed ; and to allow this to be done there must evidently be added solutions
which make » and dv/dy always zero at the bounding places: in other words,
free disturbances. o

Now, the special solution which Lord Rayleigh accepts in the second
passage quoted (Art. 5), contains no reference to the free disturbances any
more than does the solution which he rejects; and, on examination, it must,
I think, be held that neither does it afford a proof of the stability of the
motion. The value of v in it, like that of v in the other, is completely deter-
mined by the boundary conditions (8) without any reference to the initial
condition (7); and the statement in the penultimate sentence of Lord Kelvin’s
first investigation that v rises gradually from zero at ¢ = 0 thus involves an
unjustified assumption that the solution which satisfies (2), (3), (8) will
“satisfy (7) also.

R. L. A, PROC,, VOL. XXVIL, SECT, A. [12]
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ART, 7. The Assumption is valid, if Steady Motion exponentially Stadle ; not if
exponentially Unstable.

On consideration, it appears that this assumption may be shown to be
correct, provided the free disturbances have stability of the ordinary expo-
nential character; but that it would be incorrect if, for instance, any of them
were exponentially unstable or neutral ; this being so, the argument begs the
question at issue. For, if a system in an exponentially stable state, whether
of equilibrium or motion, be subjected to a simply harmonic disturbing force,
(or motion affecting a definite coordinate), of any definite period, the solution
in which the disturbance is simply harmonic and of the same period is known
to become asymptotically correct as the time increases indefinitely, whatever
may be the initial conditions (at least if the number of coordinates is finite).
When the disturbing force is expressed as a Fourier integral, each element of
which is simply periodic in time, and the elementary periodic disturbances
which correspond to each in the fashion just described are combined by inte-
gration, it seems reasonable to infer that a similar statement would hold good
for the resulting integral disturbance. 'When the range of time through which
this resolution of the disturbing force is effected extends (say) from —¢, to +
then, at any instant, ¢, this force has been in operation for a time ¢ + ¢, even
though it may have been zero through a great portion of this interval, and
accordingly the solution obtained in this manner is, if the state be exponen-
tially stable, sufficiently accurate, provided ¢ + ¢, is sufficiently great, whatever
may have been the disturbance (supposed finite) at the time — . But if the
disturbing force is zero from ¢ =-1¢, to ¢ =0, then if the state is exponentially
stable, and 7, is great enough, whatever finite disturbance may exist at the
time — ¢, it must be sensibly reduced to zero at ¢ = 0; so that in this mode
of procedure we do, indeed, obtain the solution in which there is no distur-
bance at the time zero. 'We have only to suppose £, increased indefinitely to
obtain the case with which we have here to deal; and hence it appears that
the value of v determined from (2), (3), (8) does indeed satisfy (7). But this
argument fails, unless it is Anown that the state is exponentially stable.

Arr. 8. Mathematical Investigation of a stmple example illustrating Validity
of this Objection.

A simple instance of many which could be cited in which the analysis
is simple may serve to illustrate the argument, and especially to show
that the result need not hold for an unstable state; the elaboration of a
formal proof applicable to a case in which the number of independent
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coordinates is infinite would probably be a problem of considerable difficulty.
Consider a system possessing only one coordinate, and governed by the equation

d*z/dt? + (@ + b) dx/dt + abxz = X, (21)

where, when ¢ is negative, X is zero, and, when ¢ is positive, X = ¢, ¢ being
positive, or having its real part positive. The solution in which at ¢ =0
x and dx/dt are zero, is known to be, for positive values of ¢,

@-0)b-c)(c-a)yz=0-a)et+(c-b)e™+ (a - c)e?. (22)
By means of the equation

Jf@) =71 J: dw jj J(w)cos w (v ~t)du, (23)

Fourier analysis of the disturbing force gives

— r ¢ cos wl + w sin w? o (24)
o

A ¢ + o*
The solution of
d’zld® + (¢ + b) du/dt + abz = ¢ cos wt + w sin wi, (25)

which is of the same period as the disturbing force, being

(- ayz = (2 — w*) coswt + (@ + ¢)w sin wt _ (be—w’) coswi + (B +0)w sin wt

@+ o b + o? ’
. (26)
the integral solution obtained in the way indicated is accordingly
b o ® (ac - w?) cos wt + (¢ + ¢) wsin wt
(b~ ayme J o @ + 0¥ (¢ + ) o
(” (be — w¥) cos wt + (b + €) w sin wtd
Jo @ + o) (¢ + o) @
or
(a—b)(b—c)(c—a)n-m=(b-a)J ccos«»f+w2s1nwtdw
0 ¢+ w
® acos wt + w sin &t ® b cos wt + w Sin wi
+(c—b)j0 par dw+(a—c)jo o dw.
@7

The first integral on the right is zero when ¢ ig negative, and we when ¢ is
positive ; if the real part of « is positive, the second integral is zero when ¢ is
negative, and we® when ¢ is positive ; but, on the other hand, if the real part of
a is negative, it is zero when ¢ is positive, and we* when ¢ is negative ;* while
it is infinite if the real part of « is zero; and similar statements hold for the
third term. Thus the value of z as given by (27) agrees with the correct

% I'hese statements are equivalent to equation (24), @ and ¢ being interchanged where necessary.

(127]
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value given in (22) if the real parts of a, b are both positive, but not if either
or both are negative or zero.
A system subject to an equation of the type

dzjdt + ax = X

affords a still simpler illustration, and might be held to be more appropriate
to the problem in view.

ART. 9. Other Objections to the special Solution as a Proof of Stability.

The same penultﬁnate sentence of Lord Kelvin’s investigation also contains
another unproven assumption, viz.: that v comes asymptotically to zero as ¢
increases to oo. This statement, like the preceding one (i.e., that it rises
gradually from zero at ¢ = 0), is only known to be true for the boundary
values of v. This objection to the second statement may be expressed as
follows:—In the first place, the fact that the value of », simply-periodic in
time which satisfies (2), (3), (16), (17), can be expanded in a convergent series
of powers of y, does not preclude the impossibility of so choosing w, 7, m, n,
that v could, through some portion of the interior, be made very great, or
even as great as we please, compared with its values at the boundaries;* and
in the second, the mere fact that the resultant value of v is obtained as the
integral effect of such solutions corresponding to different values of w, when
viewed in the light of the known possibilities of Fourier analysis, so far from
showing that it eventually diminishes indefinitely, is seen to impose no limit
whatever on its value.

Again, the tacit assumption that, if the steady motion is stable for distur-
bances in which » varies as sin my, it is also stable for those of a more general
type, appears to require justification.

ART. 10, The Special Solution contains a Proof that the Motion, if rapid enough,
will be practically Unstable. Two Modifications of the Solution
partially satisfying the Boundary-Conditions.

Thus, Lord Kelvin’s special solution, equally with that included in his
discussion of the more difficult problem, appears unacceptable as a proof of
the stability of the steady motion. We have seen, however, that if it be
admitted, as will be proved in Chap. II. below, that the in»ﬁnitesimal‘ prin-
cipal disturbances have stability of the ordinary simple exponential type,
it does provide an investigation of the propagation of an arbitrary initial

# It may be held that this remark, if it stood alone, would not affect Lord Kelvin’s inference that
the, steady motion is stable if the initial disturbance be of the type he chooses and sufficiently small.
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disturbance. And although the function y of equations (2), (7), (8) is not
easily obtainable in a form which enables us to calculate numerical values,
important conclusions may be drawn from the form which this solution gives
for v without any regard whatever to v. Whether the infinitesimal distur-
bances are stable or not, it furnishes, in fact, a proof that the motion may be
practically unstable, and shows qualitatively, and to some extent quantita-
tively, the circumstances in which instability may be expected. (In short, I
cannot make any substantial advance in the matter of showing that there
will be instability beyond pointing out what may be inferred from this
solution.) There is good reason for supposing that, if b, mb, nb are large,
the precise conditions which prevail at the boundaries cannot modify the
disturbance appreciably at any sensible distance, and thus cannot much affect
the question of stability for disturbances of small wave-lengths in the 2 and 2
directions. It is seen that, if the viscosity is sufficiently small, just as when
it is altogether neglected,* the initial disturbance may, owing to the expres-
sion *+ (m—-{B3f)*+n® in the denominator of v, as given by (13), (14),
increase very much in spite of the exponential multiplier. We may, more-
over, easily amend the expression for v, by adding to it the proper solution
of the equation Vv = 0, s0 as to obtain a solution which shall satisfy either
of the boundary-conditions v =0, dv/dy = 0, but not both.t 1f we select
the former alternative, such a solution corresponding to an initial disturbance
in which
) v = v, = B cos lz sin my cos nz (28)
is :

2vsinh A6 Eap |- vt (N +m? ~Im Bt + 532%/3)}
(A* + m*) Beosnz A+ (m - I3t)

x {sinh Ab sin[lz + (m - 3¢) y]- sinh X (b ~ y)sin &z — sinh Aysin [lz + (m - {3¢)]

_ Bap[- vt (N*+m? + lmBt + /3]
&+ (m o+ I3ty

x {sinh Absin[lz ~(m + I3t)y]- sinh X (b - y)sin & - sinh Ay sin[lz - (m + 132) b]},
(29)

in which X* =+ #% The solution in the case of a two-dimensioned dis-
turbance, in which » =0, A =1/, can be completed by writing down the

* Compare Part I., Arts. 4-8, with Arts. 10, 11 here.

T Of course, Lord Kelvin's typical initial disturbance of (15) violates the boundary condition
dv/dy = 0; the conditions » =0, d%/dy? = 0 are somewhat simpler; but even in that case I cannot
complete the solution in a form which gives results suitable for quantitative comparisons.
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corresponding value of w. It is

2lwsinh b Bap (- vt (I +m® — imB¢ + 1*3°¢*/3))}
(&+m*)B P+ (m - I3ty

x {—(m-I3¢t) sinhlbsin[lz+(m~13t) y ]+l cosh {(b-¥)coslz-lcosh ly cos[lu+(m~1[3t) b] )

Exp[-vt(l2+ m® + Imf3t + I'34%/3)]}
B I+ (m + IBE)?
x { (m+1f3¢)sinh bsin[ Iz - (m+Bt) y ]+ cosh 1(b-y) cos lu~I cosh Iy cos[ lx— (m+1[3t) b]}.
(30)

It is seen that these expressions differ from those obtained when viscosity
is ignored (Part L, equations (28), p. 26; (38), p. 28;) only by the presence
of the exponential multipliers, and become identical with them if v is equated
to zero. There thus appears to be no necessity for the suggestion thrown out
by Lord Rayleigh that, in these questions of stability, investigations in which
viscosity is altogether ignored may possibly be inapplicable to the limiting
case of a viscous fluid when the viscosity is supposed infinitely small.*

ART. 11. For suitable Values of Constants in First Modification the Disturbanee
will Increase greatly. Substitution of o numerical Value suggested
by Expervment.

Taking then the values of u, v given by (29), (30), they are derivable from
a stream function, i, given by

2y sinh /b
@E+m)B

sinh/b cos[lz + (m - I3t)y] - sinh{ (b - y) cos iz - sinhly cos[lx + (m - [3¢) b]
B+ (m - I3¢t)

- another term derivable by changing the sign of m. (31)

= Bup[- vt (I + m* - ImBt + PR3]

Here
- 2lV vy

(l’ m")B = Exp [- vt (P + m? — lmﬁt + I*3%*/3]. cos[lx + (m — lﬁt)y]

~ another term derivable by changing the sign of m. (32)

If 7 be the average energy of the relative motion per unit length of stream,
2n/l b
ATafl = -j j UVdedy. (33)
0 0 -

Making use of this, on performing the integrations, a,nd compa,ring the value

* ¢On the Question of the Stability of the Flow of Flulds,” Phll Mag » XXxiv., p. 61, p. 67,
1892; Scientific Papers, iii., p. 577, p. 582.
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of T thus found with its initial value, ie., 7, = B (I* + m*)/8% there results

T (P+m?) Exp[-2vt (P+m*~ImBt+1*3%*/3))] N Eup[-2vt (P+m*+ImBt+123**/3)]
T, 2 [ P+ (m~IB3t) E+(m+If3t)
Bap [-vt(Psmi-ImBts2)3)].  Bap [-vt(BrmelmBt+23)])?
- { P(m~1Pt)? - E+(m+iBty }
, coshib —cos(m —I3¢)b
x ! 3l smhib ] ' 4

As the terms to be subtracted from the two first are essentially positive,
there is no possibility of any great increase, unless the first two are large;
and even in the absence of the exponential factors, this can occur only if m/l
is large, and then solely during the time in which m -3¢ is of order not
larger than /. At such times, the terms which have 7* + (m + /3f)* in the
denominator may be neglected in comparison with the others. During such
a time, if m/l is large, we may approximately replace* the exponential factor
of the two remaining terms by Eap {- 2vm®/(3]8)}, and thus obtain

2 { I8 cosh /b — cos (m - I[3t)b) (35)

“':g 3 . 1 —_ <
T, - 21 I+ (m -3¢ty 3lbsinh ib

As the last factor is less than unity, a large value for 7/7, requires that
vm?/({3) should not be large, i.e. that m*?. m/l should not be large compared
with (36%/v; now the smallest possible value of mb is #, and m/l is large,
so that instability requires (34?/v to be large. Conversely, if m/l, mb are
large, and [3b?/v large enough to be of the same order as m*b*.m/l, an initial
disturbance of the type given by (28), and subject to the boundary-conditions
required by (29), (30), one of which is v = 0, will increase very much before
dying out. At the time when m - I3¢ = 0, we have in fact

T . -’ m*( tanh}lb
{ 31b ;

70* =6 38 ton
With the relative magnitudes chosen for the constants, the exponential factor
is not small, and the product of the other factors is large, its approximate
values in the extreme cases of /b large and of /6 small being respectively
m*2 and m*b*/24,

It may be of interest to take values of the constants for which a somewhat
similar motion has been found experimentally to be unstable, and ascertain
to some extent how much they would allow a disturbance of the type (29),
(30) to increase. Couette foundt that, when a cylinder of radius 146395 cm.

(36)

* I.e. in the sense that this gives the index of the exponential factor with sensible accuracy.
1 ¢ Etudes sur le frottement des liquides,” Annales de Chimie et de Physique, (6) xxi., p. 433,
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was rotated in water at 16'7° C. outside a concentric one of radius 14:3930 em.,
the motion ceased to be thoroughly stable when the .speed exceeded about
56 revolutions per minute; taking v to be ‘011, this corresponds to a value
of (30*/v which is about 1940. Writing B8%/» = 1900, it is seen that the
disturbance could not increase greatly. Going back to (34), but writing
m ~ If3t = 0, and retaining only the terms which are more important, we have

T

—S:Ewp{_2

7 37

B (38 + md)| &+ m? { 1'_ tanh 370
5700 ) 2P Ty

The final factor is less than unity, and also less than [*0*/12; thus its
value 1s less than

: _ 27,2 272
Eap {-5—7%—’[’% <3W+ m’lﬁ)} 1_9__2;_571%_3 (38)
and also less than |
_ 2},2 2h2
Eup {_573)—’(’);% <3zw+ m“b*>} : {’1_;4@ : (39)

For either of these expressions to be a maximum, there is required
(m*0* + P8*)* = 190075 . mb, (40)

or, if m/l is supposed large
m*p® = 190000 ; 41)

then the former becomes approximately

.2/1  (1900)*
¢ %<§ * 2m“b2 )’ : (#2)
and the latter ’ ) :
Ay,
¢ (24 " 24(1900} (43)

A superior limit to (37) is thus the smaller of (42), (43), and thus their
common value, when they are equal, i.e, about 15. The maximum value
-of (37) appears in fact to be about 4; and it approaches this value when
=2, mb=>5r. ,

It may be seen that, for this value of (30°/v, the terms omitted from (34)
are unimportant, and that the approximations used give nearly its maximum
value and the time at which that occurs.

If the disturbance were taken alone which involves the first exponential
factor in (31), (32), somewhat similar results would be obtained as to the
possibilities of its increase.
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Arr. 12. A similar Investigation for the Second Modification.

If we take the solution which would make dv/dy, and therefore u, zero,
instead of », at the bounding planes, it is seen that the two-dimensioned form
corresponding to an initial disturbance in which

v =, = B sin lx cos my (44)
has a stream function given by
20y sinh b Exp [- vt (I* + m* = Imf3t + I*3**/3)]
@ +m)B &+ (m - I3ty
x {sinh & cos [lz + (m - IBt)y] - I*(m —~ I3t) cosh I (b - y) sin i
+ ' (m — 1{3¢) cosh ly sin [lz + (m - I(3¢) b])
+ another term derivable by changing the sign of m. (45)

In this case, the ratio of increase at time ¢ is

T PF+m [Ewp [—2vt(P+m?-ImBi+123%¢*/3)] N Eap [-2v0(P+m*+Im3t+1:3*%/3)]

T, 2 I (m~13t)? E+(m+Bt)
(m~136) Bap[-vt(I+ m*~Im B+ P3/3)] (m+{38) Bap[ vt (P+m?+ImB+13°¢/3)]) 2
+3 e (m—1BEy - Fr(mipty ;
cosh b — cos (m - I3t)b
8 3/ sinh 1 il (46)

Here, again, there is a possibility of a large increase if m/l is large.* At the
instant when m — 3¢ is zero, the only term in this which is not negligible

assumes the form
-2vm . ] P+m? 4

simpler than (37), and capable of assuming a much greater value. A condi-
tion that (47) should be a maximum is

v (& + m*) = Imf3,

or wvm®=13; (48)
and then it is approximately

c33Y2mh, or e BBBhE2mit (49)
If Bv*/v = 1900 and mb has its lowest value, m, this is nearly 9500. Taking
{35%/v = 1940, we have in round numbers 10000.

% Tt is not evident that, as in the case of the first modification, there is no possibility of a great
increase under any other circumstances.

R. I. A, PROC., VOL. XXVIL., SECT. A, [18]
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If we took the disturbance indicated by the first term alone of  in (45),
almost the same result would be obtained.

The difference between these two solutions, and between their results as
to stability, strengthens the view that boundary-conditions are unimportant
it, and only if, b is large. It is not suggested that when instability actually
occurs, the increase in a disturbance is as small as that obtained in the former
solution, or as great as that in the latter. The boundary-conditions to which
they refer are not those which occur in the experiment; /b is not large (in the
latter solution, very small), so that the violation of boundary-conditions is
important; and even the initial disturbance does not satisfy the realizable

boundary-conditions.
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CHAPTER IIL

THE FUNDAMENTAL FREE DISTURBANCES OF A STREAM WHICH IS SHEARING
UNIFORMLY.

ART. 13. The Period-Equation for the Boundary-Conditions Vv = 0.

In a passage quoted above,* Lord Rayleigh appears to suggest that possibly
in the case of a stream of uniform vorticity there may not be free disturbances
which involve the time in the usual exponential or trigonometrical form, i.e.
varying as ¢!, where p is a real or complex constant. I proceed to consider
this question. Referring to Lord Kelvin’s analysis given in Chapter I., if in
equation (20) of that Chapter, we write wi = p, it assumes the form

aSjdy = (2 + n* + (p + UBy)/v) S, (1)
S = (d¥dy* - I* = n*) V. (2)

where

The solutions of (1) are given by Lord Kelvin in the form of infinite series;
and the equation had previously been discussed by Stokest and others. The
golution in fact is, if we replace # + n* by A%

S=(vA*+p + Iy

(an3 B 22

where I, is the function connected with the Bessel function /,, by the relation
-gn - 0 Y o l
I(n) { 2.@n+2) 2.4 2n+2) (2n+d)
@)

L,(0) = ,0) = 5

We may also write (3) in the form

2 R G N

where 7
Y4
A e Sl yo o JARERE ®)
Ve e
¢(Y)=1+ “ﬁ) + é—.g—g—.—(ﬁ +eon (7)

¥ See Art. 3, p. 85.
+ It was in connexion with this equation that Stokes published his investigation of the asymptotic
expansion of Bessel’s functions; ¢ On the Numerical Calculation of Definite Integrals and Infinite
Series,” Trans. Camb. Phil. Soc., ix., Part i., 1850 ; Math. and Phys. Paper ii, p. 329.

[18%]
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The solution of (2), as an equation determining ¥, is easily expressible by
means of integrals, and is so expressed by Lord Kelvin. He does not,
however, make any reference to the problem of determining p so as to
satisfy assigned boundary-conditions.

The most natural boundary-conditions to take would, of course, be that at
each of the bounding-planes w, v, w should vanish; conditions which, as far
as v is concerned, are equivalent to the vanishing of 7" and dV/dy. The
analysis would obviously be much simplified, however, if two of the four
conditions which ¥ can satisfy should be the vanishing of S at each of the
planes ; and it will be chiefly this case that I shall consider. It is readily
seen that we should have this case if the boundary-conditions were that
v should vanish, and that the tangential forces on the bounding planes should
be the same in the disturbed as in the steady motion.

Denoting the bounding-planes by z =2+a, instead of #=10,b, as in
Part I., Chap. I, the equation determining the value of p evidently takes

the form
B/ vA+p AGE
7< B ““)s }

dH G R

B ] AR e o

As the form of this is unaltered by changing the sign of 4, complex roots
occur in pairs in the usual fashion.

ART. 14, This Period Equation has an Infinite Number of Boots.

In view of the suggestion of Lord Rayleigh,* referred to above, it seems
desirable to prove, in the first place, that this equation in p has an infinite
number of roots; it has, in fact, an infinite number whose real parts are
negative. This may be shown by the aid of the approximate expressions for
the I functions for large values of the parameter. If we suppose that
(vA*+ p)/li3 has its real part negative, large compared with its imaginary
part, and large compared with a, we may take the argument of

2 3
< v)\lﬁ-}‘ ¥4 + m)

to be a small positive angle, and that of

<— Ny m')%
3 '

* Sce Art. §, p. 8o,
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to be a small negative angle. Now, if the argument of » lies between the

limits + =, we have the equation*
Iy(z) ~ Ii(2)
. _ (1 -2k 1+ 27») (L-2k)(3 - 2k) (1 + 2k)(3+ 2k)
= ¥ z — 7
2/mz)t sin kme®]1 - e 8160
(9)

in the sense that, provided s - % + § is positive, the error in terminating the
geries on the right after the s term has a modulus less than that of the next
term if the argument of x lies between the limits + #/2, and less than a
certain multiplet of it if the argument of « lies between x/2 and =, or between
- m/2 and - #. And, by writing in this equation % = ye-™, and dividing across
by sin kx, we obtain the equation

Li(y) + Li(y) — i cobky {Li(y) - 1a(y))

1-2k)Q1+ 2L) (1 -2k)(3 = 2k)(1 +2k) (3 + 2k)
1+ ce(o
8y 8.16. 9"

(10)
which holds in a sense obvious from the preceding sentence, provided the
argument of y lies between O and 2». ‘While, by writing in (9), = = ye*™,
there results

Li(y) + In(y) + i cot by {L(y) — Lu(y))

(1-2k) (1+2k) (1—2k)(3—2k)(1+2k)(3+2k) +..)
8y 8.16.%* ’

1
provided the argument of  lies between 0 and — 2a. )
Thus, if y is large, and its argument lies between + 7/2, it follows from (9)
that the term involving Z_;(y) - Zx(y), which occurs in the left-hand members
of (10), (11), may be neglected, so that within these limits for large values
of ¥ we have the approximate equations

Li(y) - Li(y) = (%/my)ssin ke, (12)
Li(y) + Ii(y) = (2[my)ie". (13)

Accordingly, if AZi(x) + B(x) is to vanish for two large values of z, whose
arguments lie between + n/2, the values must differ approximately by a multiple

= (2/my)tev

= (2/my)te i1 +

% ¢ On the Product Ju () Ja (¢),”” Proc. Camb. Phil. Soc., x., Part III., equations (14), &e.;
¢« On Divergent Hypergeometric Series,”” Trans. Camb. Phil. Soc., xvii., Part ITL., Art. 3, especially
foot-notes, pp. 179-180; and Art. 11. In the foot-note on p. 179, for ‘= £ 4’ read ““ & (x — )",
Some errata in Art. 11 are corrected in Vol. xix., Part I., p. 155.

+ The multiplier depends on the argument of #, but not on the modulus.
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of =¢; and thus, if we x_nake the further supposition, that the quantities

B3 vA’ + p 3
(- 2 )]

are sufficiently large, equation (8), which expresses that S as given by
(3) should vanish for two different values of the parameter, takes the
approximate form

3 v’ 4 p 3 2([( vAP4+p N .
3{ < B ““N T3\ TR ‘”> =T

2(43 [vA* + AL I3 vA® + AL
3% v( lﬁp “’)} 3{(3( zpp’““"/}
where 7 is any integer, positive, or negative.

If » is sufficiently large, whatever be the values of /, N, this equation
in p» has one root such that the real part of vA*+ p, and a fortior: the
real part of p, is negative. (When the equation is rationalized, care must
be taken to distinguish between it and the equation which would be obtained
by connecting the two terms on the left-hand side by a plus instead of
by a minus sign.) In fact, as we have already supposed that e is small
compared with (vA® + p)/l3, the equation may be replaced by

B vX”+p%
2(7. ZB >m, - 7,

P = — v(X +7%4a’), (15)

or

= T, (14)

giving

a value which is wholly real and negative. The suppositions made in arriving
at this approximate value of p, viz.: that (vA® + p)/{3 hasits real part negative,
large compared with its imaginary part, and large compared with @, and that

B (W\; [; Py m>

are sufficiently large, are accordingly justified, provided r is sufficiently
large. And as » may be any integer if large enough, it thus appears that
the approximate form of the period-equation has an infinity of roots.

Moreover, from the value found for p, it appears that by taking » large
enough, the accurate form (8) of the period-equation may be represented as
closely as we please by the approximate form (14), so that the actual period-
equation must have an infinity of roots.
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Arr. 15. Each Fundamental Disturbance satisfying the Boundary-Conditions
Vv = 0 14s exponentially stable.

It may next be shown that a// the values of p which satisfy the period-
equation (8) have a real negative part. This follows easily by a method
which has been used by Lord Rayleigh in the discussion of similar questions
when viscosity is ignored. The period-equation has been obtained by making
the function S, which is a solution of equation (1), vanish for the two values
y = a. In equation (1), then, write S = P + i@, p = 0 + ip, where P, @, 0, ¢
are all real ; separating the real and imaginary parts we have

va@2Pldy? = (WA® + 0) P - (¢ + {39)Q, (16)
va@*Q/dy? = (vA* + 0)Q + (¢ + IBy) P. 17

Multiplying the former by P, the latter by ¢, and adding, we obtain
v(PA*Pldy’ + Qa*Q/dy?) = (vA* + 0) (P* + Q). (18)

Integrating with respect to ¥ from y = —a to y = + «, since S, and therefore
both P and ¢, vanish at the limits, we obtain

- [ yapiayy + @giagpiay- [ s 0@ e @ay. @9)

The right-hand member must therefore be negative, so that not only must p
have a negative real part, but that real part must be numerically greater
than vA%

If we multiply (17) by P, (16) by @, and subtract, we obtain

v(PIQIdy* - QEPJdy) = (¢ + 1By) (P + @), (20)

Integrating with respect to y from % = - a to ¥ = + @, since P and @ both
vanish at the limits, we obtain

0=[" ¢ + 180 (P + @), ey

so that ¢ + /3y must change sign as y passes through some value between
~ a and + a. Accordingly the value of ¢ must lie between the limits
+ IB3a.

If the boundary-conditions assigned were that dS/dy should vanish at the
bounding-planes, it may be readily seen that all the conclusions drawn above
as to the existence of, and the nature of, the roots of the period-equation still
hold.
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While, if the boundary-conditions were that S should vanish at one
bounding-plane, and dS/dy at the other, it may be seen that the period-
equation has an infinity of roots, and that all the values of p have negative
real parts numerically greater than vA*; the conclusion that the imaginary
part of p lies between the limits + /(a7 would not, however, hold. And in
the right-hand member of (14), »= would be replaced by (27 + 1)7/2, as we
should now require, approximately, 4¢* + Be® to vanish for one value of the
parameter, and Ae¢* — Be® for another, so that the two values of the parameter
would differ approximately by (27 + 1)=¢/2.

It thus appears that the fundamental modes of free disturbance possess
stability of the ordinary simple exponential character, when the boundary-
conditions include the vanishing of V?v.

ART. 16. For all values of I, n, there are an infinite number of Aperiodic
Disturbances.

Considering real values of p for which vA®+ p is negative, if we take that
value of

3

2 bl

%" Mzg“p" * ?/7’} ’

whose argument is zero when y is zero, then when y is «, its argument must

lie between the limits 0 and 3=/4;* and when y is - @, its argument must lie

between 0 and — 37x/4. Now, from (9), (10), there is one linear function of

L (z) and I; (%), viz, a multiple of I;(z) — I3 (), which, for large values of

whoge argument lies between — 3#/2 and + 3x/2, is approximately 3¢

and there is another function, viz., a multiple of I (z) + Zx(x), which, when
the argument lies between 0 and =, assumes the approximate form

2t (6% + ¢ coskm.e®),

but which, when the argument lies between 0 and — =, is approximately

x3(e° -1 cosknm.e™).
If, then, we write

31,78 B
the period equation is, approximately,
e 42, 6™, o2 — 5/2.3’“2 )
et 3 ¥ )

* This is true for complex values also, since, as proved in Art. 15, the imaginary part of »A? + p
lies between the limits + /Bai.
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or, a8 it may be written,

- 1;(6“1'"2 - g“z-"x) 4 e ¥ ____ 0. (23)

Substituting
Uy =P +iQ, uy=P - 1@, (24)

this becomes
25in 2Q + % =0, ' (25)

Moreover, the form of (8) shows that when P is real, the accurate value of
the left-hand member of (23) is a real quantity; and (10), (11) show that
the errors in the expressions e*1, ¢ have moduli less than those of Au,™e*,
Bu, e, respectively ; and those in e¥2, ¢ have moduli less than those of
Aug ez, Buy™ %2, respectively, where 4, B are certain numbers. "Thus the
error in the left-hand member of (25) is less than

Q{1+ AU (1+BUY) -1} + e {(L+ BU)* -1}, (26)
where U denotes the modulus of %, or #,. And if

Bl v+ £\3
v B
is large enough, P, U can be made as great as ever we please. From this
it is evident that, if

l_@ (_ v+ p\2

v\ 1B
is sufficiently great, on substituting a real value of p in the accurate expression
for the left-hand member of (25), there is obtained a real magnitude which
differs from 2 sin2¢ by as little as ever we please. Consequently, for all
values of /, A, there are an infinite number of real negative values of p, given
as nearly as we please by the equation 2 = =, where » is a large enough
integer.

“ARrT. 17. For Waves of Sufficient Length in the direction of flow, all Disturbances
are Aperiodic, the values of p being given approximately by equation
(15).

The period-equatibn may be written in the form
. 2a%p’ . 2a4(21p"? + (3*%a?) N 40’ (9" + [3a®)
v 3150* 2835°
205429 + T18p"*3* e + 3ltat 4%’ (117p™ + 30p™[3%%a” + [3'1at)
! 12162154 * 1824322575 e

1

.=0,
(27)
where " = p + vA?, and accordingly if (Bla*/v is small enough, it is evident
B. I, A. PROC., VOL. XXVIIL,, SECT. A. [14]
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that no value of (p + vA*)a?/v is very small; hence, if la is large enough,
all the values of
{(p + vA)v}3(Bla*/v)2, or (p + vA*)/(vI*3?)

can be as large as we please, and hence

B 25

so large that the approximate forms of the J functions for large values of the
parameter may be applied as accurately as we please, and it thus appears
evident that, under such circumstances, all the values of p are given
approximately by (15).

ART. 18, A Rigorous Proof of last Proposition. Nuwmber of Roots in a Circular
Contowr of large Radius having Origin as Centre.

A rigorous proof of the last statement presents some difficulties, however.
Let p be any quantity, in general complex, not restricted to a value
which satisfies the period-equation, and denote p + »A* by p’; then, if la is
sufficiently small

s g = g { lg(% N ai)s:% gzg ( 5 i)”f = 2ai (- pv),  (274)

in the sense that the difference between the left- and the right-hand members
can be made less than any assigned quantity by taking la small enough ; for

the difference may be made less than a certain multiple of Bla?/(vp') as
follows from the binomial theorem. If, under these circumstances, with the

origin as centre, there is described a circle for which
mod 2¢ (- p’/v} = (r + $)m, (28)

» being zero, or any integer, it may be proved that the number of roots of the
period-equation within this contour is . (The circle might equally well be
taken so that the right-hand member of (28) is any other quantity lying
between 7w and (» + 1), and finitely dlfferent from both.) Let the equation
be written in the form

wdud[{ 14 (w) - Ly(w)} {T4(w) + T3us)) — (T4 (us) ~ T3(uz) } {1-3 (wa)
+ L3(u)}] = 0. (29)
A comparison with (8) shows that in this form the proper equation has been,
for convenience, multiplied by wu,du,3.
With a view to examine the increase of argument of the left-hand member
as p" describes the circumference of the circle, we first trace the changes in
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the approximate expression for it in the different portions of the region
traversed.

In fig. 1, O denoting the origin, let 4, 4’ on the axis of imaginary
quantities denote the points [las, — Blai; through A4 draw AL parallel

N
Nl
L A
o
(e A
M
M|
Fia. 1.

to the axis of real quantities and in the negative direction, and draw 4M, AN
making angles of 27/3 with AL; also draw AL, A’M’, A’N" parallel to
AL, AM, AN. Suppose p’ starts from a point on the line AL; let the
argument of each power of u, be zero in that position ; and let the argument
of each power of w, be zero when p’ moves down to 4’Z’. When p’ lies
between AL, A’L’, since the ratio of its value, given by (28), to Bla is
large, the argument of u, is a small positive quantity, and that of ; a
small negative quantity. Thus, in this region, from equations (9), (10), (11)
we have

wi(Ly(m) - Ly(w)) = (2fm)sinw/3. e, (30)
wd(Ly(u) + Ty(w)) 2 @fm)(em +if2.6™), (31)
i (Ly(u) - L)) = @fm)hsinw/3. e, (32)
wh (L) + Ty(w)) = @lm(es = if2.0%); (33)

so that, omitting a constant factor, the left-hand member of (29) has the
approximate form
e (et — 1)2. ch) - et (eul + ,5/2 L), (34)
or,
gty _ gl - U _ qg¥imYe, (35)

When p’ crosses to the lower side of A’L’, since the argument of u; then
[14%]
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becomes positive also, the factor e*2 — /2, ¢ of the right-hand member of
(33) and of the first term of (34) is to be replaced by e*: + ¢/2.¢™:, so that
instead of (35), we have the simpler expression

g¥a U — gt (36)

This expression remains valid, as p” travels round the circle until it passes
into the region between AM, A’M’; here the argument of u, exceeds = ; and
it may be seen that the factor ¢ in (32) and in (36) is now replaced* by
¢¥2 + t¢*2, and that (36) now becomes

gla 1 — glh=ty . goth1tly, (37)

When p’ passes out of this region, the factor ¢ for a similar reason has to
be replaced by e™ + de*, and, accordingly, we now recover the simpler
expression (36). This holds good again until p” passes into the space between
the lines AN, A’N’; in so doing, the argument of «, is increased through 2w,
and thus the factor ¢ is changed into ¢*: + 4¢™:, and (35) into

eMat — g1t 4 g Uy (38)

When p’ crosses A4’N, the factor ¢“1 is changed into e“1 + 7e*: from a similar
cause, and we thus again recover the simple expression (36), which remains
valid until p” reaches its starting-point on the line AL.

The final value of (36) is, however, not the same as the initial, but differs
from it by a change of sign; for the initial and final values of u;, and also
those of u,, are equal in magnitude and opposite in sign.

Again, under the circumstances stated, the simple expression (36) is in
reality valid all round the contour; for the additional term in (35), (37), or
(38), as the case may be, is small compared with the larger of the others.
(It may be seen, however, that if the circumstances were such that the
circular contour cut the productions of the lines AN, A’M’ between the
lines AL, A'L/, it would not be legitimate in that region to omit the final
term of (35); as will be shown below,} for sufficiently short waves there are

% The law of discontinuity in the form of the approximate expressions for the Bessel functions
was conveniently stated by Stokes (‘‘ On the Discontinuity of the Arbitrary Constants that appear
as Multipliers of Semi-Convergent Beries ’’ ; Acta Mathematica, xxvi., 1902 ; Collected Papers, v.,
p. 285). The substance of his statement is that of the two expressions—-(1) ¢ multiplied by a
divergent series whose first term is unity, and (2) e multiplied by a similar series—when the
argument of » increases through an even multiple of x, (1) must be increased by 2icosrw times (2) ;.
and when through an odd multiple, (2) must be increased by 2i cos»» times (1), in order that they
may respectively continue to represent the same linear function of 2%, (z) and 22/, (#). This
may be seen, in fact, from equations (9), (10).

t Art. 21, p. 111,
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Orr—Stability or Instability of Motions of a Viscous Liquid. 105

complex roots for which p’ lies near one or other of the productions
mentioned.)

We have then to trace the change of argument of ¢%~% — ¢"1™"% as p’
describes this circular contour. It will be more convenient to suppose p’
to start from, and stop at, the point of the circle midway between AL, A'L".
From (274), (28) it is seen that, as p" describes the contour, the real part
of %; — w, starts from an initial value zero, is continually positive, and ends
with the value zero, while the imaginary part continually increases from

-@2r+1)m/2 to +(2r+1)=/2

Thus, of the vectors e:"*1, ¢*17%, the former is throughout the greater,
except that their initial values are equal ;* the former revolves in the positive
direction, and the latter in the negative direction, each through an angle
(2r + 1)w; owing to the former being throughout the greater, the vector
e*2"% — ¢m17%  which is their difference, follows the direction of the former,
oscillating about it, but never rotating round it,} making, indeed, always
an acute angle with it. As the initial direction of this difference is the
same as that of e¢% %, and as the same is true of the final directions, the
total angle through which the vector difference rotates is the same as
that through which %" rotates, ie. a positive angle (2r + 1) . Thus,
while p” describes the circle, the argument of the left-hand member of (29)
increases by (27 + 1)mx. But the points 4, A" are zeroes of the left-hand
member of (29), extraneous to the proper period-equation; the increase in
the argument of the extra factor (w,u,)3, or in (- p" +Bad)i(-p" - IBas)t, is =
Subtracting this we obtain an increase of 27 as that depending on the number
of zeroes we wish to find ; hence their number is». But all the zeroes have been
proved to lie between the lines AL, A’L’. By giving r the values 0,1, 2, etc,,
in succession, we see that there is no zero to the right of the arc of the first
circle » = 0, and that there is one and only one zero in each of the quadrilateral
spaces bounded by two consecutive circles and the parallel lines. And it
has been already shown that in each such space there is one real zero given
approximately by w, —u, = 7r¢; hence, under the circumstances referred to at
the beginning of the Art., this approximate equation gives all the zeroes.
And the same argument shows that whatever the value of la, if 7 is large
enough, the number of zeroes lying inside the circle referred to in (28)is 7.

* But opposite, and the same statements hold, of course, for their final values.

+ It is important to note that in the first and last quadrants of the circular contour the real part
of #2 — u; changes more rapidly (and in the first and last portions exceedingly more rapidly) than the
imaginary part, so that when the vectors, which are represented only approximately by ¢# %1 and
€“1"%3, are in the same direction, even for the first and the last times, the former is very much
the greater.
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ART. 19. The Double Roots of the Period-Equation.

As for waves of sufficient length in the direction of flow, all the values of
p are real, it follows that, if this wave-length be supposed at first large and
then to be gradually diminished, a value of p can become complex only by

the wave-length passing through a value such that two real values of p
become coincident.

Now, if we write

B 22)- v, (BP(o-gen o

the period-equation in the notation of equations (6), (7) assumes the form

$(X)(Y3) - $(Ya) (Y1) = 0. (40)

1f p has the real negative value which makes

Y, = Y,® = a real negative quantity,*
the functions ¢ (Y1), $(¥>) are identical ; and the same is true of
. Y1), Yg(Ys), and also of (10), ¥'(13);

accordingly, if this value of p just alluded to makes ¢(Y"), and therefore also
Y¥(Y,) vanish, this value of p is a double root of the period-equation. (If such
a value of p, however, makes /(Y,), ¥(¥;) vanish instead, it is only a single
root; for, to be a double root, it would require to make either ¢'(¥") or ¢(¥)
vanish; but no root of J,(z) = 0 can satisfy either J’,(z) = 0 or J_,(x) = 0.)

Thus, there are double roots p for certain values of /, p and / being given by
the equations

- 2/ 8l3a* \2
WX+ p = - 370, Jx=-<~—_>}=o. 41
It may be proved, also, that these equations give the only double roots.
The equation "

dldp {p(X)Y(¥2) - p(Xa) (Y1)} = 0, (42)
which a double root must satisfy, when combined with (40), gives
(o)) {$(Yo ) (T2) = ¢ (V)W(T2)} = { (X))} (Y (X)) - 4»'(171)4/(511;1)%
)
But, from the linear differential equation satisfied by ¢, ¢, we have, for all
values of the parameter,

$(DW(Y) - ¢/ (X W(X) = constant;
. so that (43) is equivalent to
{p(¥V)* = {6(13)}% (44)

* For any such value p' is represented by the point ¢ (fig. 2, p. 108).
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and thus the equations to be satisfied in case of a double root are either
¢(Y1)=¢(¥2), and (X)) = ¢(T), (45)

¢(72) =- ¢(¥2), and (¥;) =- (L) (46)
The former alternative is equivalent to the statement that ¢(¥), (¥3) should
both be purely real; the latter, that they should both be purely imaginary.
In either case, there would exist some equation of the type

¢(¥) + CY(X1) = 0, (47)
in which (' is some real quantity, except either ¢ or i vanishes (for both
Y, and Y;). Of the two exceptional cases, that in which

(1) =¢(X2) = 0, ¢(1)) = ¢{T3), (48)
is the one already referred to; for, as a Bessel function* can vanish only for
real values of the argument, the former pair of these equations requires

Y® and Y;® to be real, negative, and therefore, by (39), equal, quantities.
The second exceptional case, ie.

¢(¥1) = ¢(¥2) =0, (X)) =4(T3) (49)
is impossible, for the former pair of equations again requires that Y,*and ¥3?
should be real negative equal quantities. Then, since ¥; cannot be equal to ¥,
the second pair would imply that ¢ (¥;) and  (¥3) should both vanish; this
would recover the former exceptional case, though it is impossible that ¢, ¢
ghould vanish together. Thus we are driven back to equation (47). But this

cannot be satisfied by a complex value of ¥°. We may rest this last statement
on the general theorem that, if # lies between + 1, any expression of the form

I(z) + CI,(),

where C is a real quantity, and every power of = has its principal value, can
vanish for, at most, only one value of z, and this a real positive one.t Or it
may be established independently as follows : Denote by y(Y) the left-hand
member of (47) with ¥ replaced by ¥ ;t and suppose, if possible, it vanishes
for ¥, and Y5, complementary complex values; we evidently have

@’ (a 1)fde® = a¥i’x (a 1)),

a*x (aY,)/da* = a Y (aY3);
from which we deduce

x(¥3)dx(a V) da* - x (a V) &y (a V) da’ = (Vs - ¥d) ax (Vi) x (aT3);

or else

* Of order greater than — 1, as here.
+ Unless # = }, in which case it may be a negative one.
1 By Yis denoted (I8/v)}(— vA® — p — IByi)/IB asin (6).
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on multiplying by da, and integrating between the limits 0 and 1, we obtain
1
X (V) X (¥o) - x (¥a) X' (¥2) = (T3 - K“)Joax(ayn) x(a¥z)da;  (494)

by supposition the left-hand member is zero, while the integrand on the
right, being the product of conjugate complex factors, is essentially positive ;
accordingly ¥,® and Y;® must be equal; and, on substituting in succession
Y\, Y, in (47), we evidently return to the special exceptional cases again,
Avwr. 20, The March of the Roots, as the Wave-Length, in Direction of Flow
decreases. A finite Number of Disturbances become Oscillatory.

In fig. 2, let O be the origin, 4, A" the points Blas, — 3las, and C the point
- Bla)/3.

As proved in Art. 19, when a double root occurs, the value of p” is represented
by the point C.

I desire to make use of some expression for the error in terminating, after
an assigned term, the divergent series which occur in connexion with the
Bessel functions; a partial statement as to this error has been made in

A

o
Fie. 2.

connexion with equation (9); it may now be completed by stating that,

in that equation, if the argument of # is +(m - y), y being acute, one

form of the multiplier there alluded to is

cosec (0 + ) (sec O)a+k+e,

where 0 is any acute angle such that 6 + y is also acute; in the case in hand
we may conveniently take 6 to be zero, and use the theorem that the error is
less than the next term multiplied by cosecy. And as whenk =14, L -%k+s
i positive, even when s is zero, we may use this form of remainder after any
number (even zero) of terms. When p’ lies between C and O, the argument
of %, lies between #/2 and 3rn/4, and that of w, between - x/2 and - 3=/4, so
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that, when the period-equation is written in the form (23), we may take in
the notation of (26), 4 =5/72, B=5./2/72. We shall not be using the
approximations in any case in which the value of |, | or | %,| at € is less than
3x/4 ; consequently, at any point between ' and 0, the value of |« | exceeds

(/3/2)t.3x/4 or 18989,
and thus the fractional error in e*t or ¢*: is less than 1/27, and that in e or
¢ less than /2/27. Thus, if the period-equation be brought to the form
—t(e™ -m)+1=0 (50)

by dividing across by the factor which will make the third term rigorously
accurate, the fractional error in €**: or ¢*: is less than

(1 (s 2

and therefore less than 1/10. Thus the correct left-hand member lies between
e??(2sin 2Q + 1/5) + 1.
Let us suppose that at 0, w, = u, = nwt + wi/4, where = is unity, or any
higher integer. At C the left-hand member lies between the limits
28inwf2+1/6+1,
and is therefore positive. As p’ travels from C towards O, the factor
2sin 2@ + 1/5 remains positive, certainly until 2¢) decreases by /3, at which
stage 2P has decreased algebraically by more than /3, (for it may easily
be seen by differentiating (- p” + ad)? that its real part decreases algebraically
as p’ moves towards O at a rate which, measured absolutely, is greater
~ than the rate of decrease of its imaginary part), and hence ¢*P<e™l3 <¢;
everywhere between this point and O, ¢*#(2sin2@ + 1/5) is numerically
less than (2})¢?, and thus the left-hand member is positive. Under these
circumstances, then, there is no root of the period-equation for which p” lies
between C and O. '
Let us next suppose that, at €, u, = 1@ = nwi — wi/4, n being unity or any
higher integer. At ' the left-hand member of (50) lies between the limits
~2sinw/2 +1/6+1,
and is therefore negative. Again, at O the left-hand member lies between
the limits
P(25in2Q + 1/5) + 1,
where P is negative and numerically greater than (1'9)/,/2, this being its
value in the case n = 1; from this it is clear that the left-hand member is
esgentially positive. Thus, under these circumstances, there must be some

odd number of roots for which p’ lies between ¢ and O.
R.LA, PROC., VOL. XXVII, SECT, A, [15]
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Now, the roots of the equations J_3(z) = 0, J3(z) = 0, occur alternately ;
those of the former are approximately 2 =rx + Tw/12, and those of the
latter # = v + 117/12, where r is zero, or any positive integer; and, as has
been proved in Art. 19, whenever the value of p” at C is such that the
corresponding value of w (or w.,5) is a zero of Ji(x), this value of p’ is
a double root of the period-equation. Hence we can trace the effect of
diminishing the wave-length in the direction of flow on the nature of the
roots of the period-equation. Starting with a very small value of o, if we
gradually increase it until

3l ~
g{ %‘3(‘—/2—3 a> }" or (321Ba*/(27,/3 . v))k (51)

becomes equal in value to the lowest zero of J i(z), the smallest value of
p’ is represented by the point C; if we further increase /, this value passes
between € and O, and so remains until the expression (51) becomes equal
to the lowest zero of J}(z); at this stage two roots of the period-equation
coincide at €. On increasing the la still further, these two roots become
complex, and there is now no root between ¢'and O until the expression (51)
becomes equal to the next zero of J_j(x), at which stage a root passes C, to
return to it, and, coalescing with another, become a double one when (51)
becomes equal to the second zero of Ji(z); aftei‘ this these two become
complex and different; and so on,

That a pair of roots do, indeed, become imaginary as la increases through
the value which makes them coincident, may be seen as follows:—It has been
shown that when lo is sufficiently small, there is one, and only one, root
between the real values for which

wy — Uy = (2r + D)7w/2; 52)

now, the roots are continuous functions of @, ie. dp’/da is finite (except when
9’ is a double root); hence, the only manner in which this distribution of
roots could be altered would be by a root passing through a point given
by (52). But, by making use of the above expressions for the limits of error,
it is easy to prove that this is impossible; thus, two real roots do disappear—
one from the left and one from the right of C—while the value of «, at ¢/
changes from (r — })=i to (r + })wi. But, from the statement in the final
sentence of Art. 18, p. 105, these roots continue to exist, and must therefore

be complex.
Thus, the greatest wave-length in the direction of flow for which a

disturbance can be oscillatory is 2m/l, where

(32B1a°/(27 o/ 3v)1* = the lowest zero of Jy(z) = 2:87.  (53)
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ART. 21. The Approximate Values of the Complex Roots.

If the point p’ lies to the right of the line 4'C' (fig. 2), the argument of
u, lies between — m/2 and — 3m/4, so that if «, is large enough, ¢* is small
compared with ¢¥z; thus, the period-equation takes the approximate form
o —dem 4+ et = 0, o (M4)
giving
w = (rm + 3w/4)e, (55)
where 7 is zero or any positive integer. This assigns to p’ a position P such
that .
3 (PB[v I3 = (rr + 3w/4) 1, (56)
giving '

p=p - vA*= - VA’ - -;—(g . .4.:12—_‘.3 1r)§<vl’ﬁ’>%

- R o)), o0
7 being any positive integer (including zero), provided = is not so great as to
make the coefficient of ¢ negative; (in that case, we return to the real roots).

A more correct, though still only approximate, equation is that which
makes the numerical value of w, satisfy

Jy|u| + J-3lu] = 0. (58)
Equation (58), or its approximate form (56), becomes lessand less accurate

if the position it assigns for p’ is near C'; as we have seen, p’ coincides with ¢
for values of u, satisfying the equation

Jy(ws) =0, or wu = (ra + 11mx/12)7;

the » + 3/4 of (55) being thus replaced by » + 11/12.

It is seen that these values of p” all lie close to the line C'/4; but it may
be seen that the correct values cannot actually lie on the line except when
at . And as the roots we have so found, taken along with their images in
the axis of real quantities, just equal in number those which have been proved
to be complex, all the roots have been accounted for and approximately
ascertained.

ART. 22. In the most Persistent Disturbance, v is a Function of y only.

When the wave-lengths in the directions of z and z are increased
indefinitely, i.e., when the velocity-component v is made a function of
y only, X and ! are both zero, and the values of p are given by p = v*z*/4a’,
r being any integer, as may be seen from (15), or, by returning to (1), and

(15%]
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the lowest numerical value is that for which » is unity. For any finite
value of /, the value of the real part of p/, or p + vl* + va? and therefore,
a fortiors, that of p, is numerically greater than in this case. This may be
proved as follows.

Considering, firstly, the real values of p’, if we write, as in Art. 15,
S=P + i@, and integrate equation (20) from — « to y, we obtain

v PAQIdy - QAP/dy) = 18 J Ly )y (59)

Since P* + @* is not changed by changing the sign of y, the right-hand
member is essentially of opposite sign to / between + a, except that it is
zero abt + a; consequently so is the left-hand member. Hence we may
infer that between every two real zeros of P, provided % = + a be not one
of them, there lies one zero of ¢, and between every two of @, with the
same exception, there lies one of . From the forms assumed by (16), (17),
when p is real, evidently of the two functions P, @ one is odd, the other
even; we will choose P even, ¢ odd. Then @ vanishes when y is zero;
it seems to be the case that for given values of /, n, in the disturbance
which has the smallest numerical value of p, with this exception, neither
P nor @ can vanish for any other values than + a«; if, however, this be
not the case, we have just proved that as y increases from zero it will reach
a zero of P before another of ¢; and thus in any event a zero of P not
later than another of . When y is zero it results from (59) that if P be
taken positive as it may, d@/dy is of sign opposite to that of /, and thus as
y increases from zero, ¢ also has its sign opposite to that of /. Consequently
in the equation which (16) now becomes, viz.:
va'Pldy* = p’ P — BlyQ, (60)

the first term on the right is negative, and the second positive. Thus the
variation of P, until it becomes zero, is analogous to that of the displacement
of a particle v subject to a force to a fixed point, which force is less than
the displacement multiplied by — »"; and the particle starts from rest. The
time which elapses until the particle reaches the centre is greater than

w [— v\}

55
Therefore, in the problem which is the subject of discussion, the value
of y for which P first vanishes—a value which, as we have seen, cannot
exceed a—is greater than

-%— <——p—,v )i , le, =p >wvn¥dar

Thus the result is established for real values of p.
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I have not succeeded in obtaining a rigorous proof for complex values
of p. Whenever such roots occur, the approximate value, however, of the
real part of the first complex value of p’, as given by (57), is much greater
than vr?*/4a®. In fact, if o be regarded as fixed, and ! is increased from
zero, when the first root of the period-equation reaches C, w, being then
the lowest root of the equation

J-3{32B1a%/(27/3 v) )t = 0,

(which is a little greater than 7z/12), the numerical value of p’ is slightly
greater than (147/128) (vn*/4a?). No complex root occurs, however, until
! is further increased to such a value that

J3{32B10%/(27,/3v)}} = 0,

as the lowest value for which J3(z) vanishes slightly exceeds 117/12, the cor-
responding value of p’is a little greater than (363/128)(vn*/4a*). And, in the
approximate formula (57) for the complex roots, /, and therefore also »/*3?,
has a larger value than in this critical case, while the coefficient of (v/3*)3 in
the real portion is decreased in the ratio (9/11)¥; the approximate value of
the real part of p’ is thus numerically greater than

363 ( 9 >§ va’

128°\11) "4a*

It does not seem possible that this approximate value could be so far
wrong that the actual value should be so small as va?/4a?.

For small values of /o a further approximation to the 7 root of the period
equation is given by

, . 2 10\ B**af
~pafvp=5 31 - (3,,—“ - ;?,3) T; : (61)

It thus seems probable that, as la is gradually increased from zero, the
lowest value of — p” continually increases, and the other values of - p” (but not
necessarily those of — p) continually decrease until they become complex.

ArT. 23. Equations for resolving an Arbitrary Disturbance into the
FPundamental ones : Inability to use them.

The problem of resolving any arbitrary disturbance (subject to the
boundary-conditions V* = 0) evidently reduces to that of expressing an
arbitrary function of y which vanishes when y = + @, in terms of the
functions S which correspond to the free modes of disturbance already
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investigated, having the values of /, X assigned. If S, S, be functions corre.
sponding to two different possible values p,, p, of p, from the equations

lldzﬁgl/dy2 = (ng + ]71 + ?’lBy) Sl,
vd*S,fdy* = (vA* + p, + 1UB3y) S,
V(= Sufdy* ~ SuliSfdf) = (ps — pi) SiSh,

and by integration between the limits + «,

(2 "PI)J SiSudy = v

there results

SdSydy - SudSyfdy | - (62)

a

If p, and p, are different values for which S, S, vanish at the limits, this
gives

r 8,8,y = 0. (63)

If, in the formula (62), we write p, = p, + 8p,, divide by &p;, and then
suppose &p, to diminish indefinitely, we obtain

a

@8 ds,ds,
dydp, " dy dp,

ds, ds,
“ldy dp,

jﬂ Sedy =v | 5

-a

a

(64)

since S, vanishes at both limits.
Thus, if we assume the possibility of expanding an arbitrary function, (y),
in a series of the form

24:5,0)
the coefficients are from (63), (64) determined by equations of the form
asy dS.|*  (*
vt | = rws (65)

Should the period-equation have a double root p, in which case that
portion of the complete disturbance which involves ¢?* takes the form

ASert + B(eP'dS/dp + tSert),

the expansion of f(y), the value of S at the time ¢ = 0, has to include a term
BdS/dp as well as 48, and ‘(65) fails to determine 4, B. The investigation
necessary to find their values is somewhat longer, and it appears unnecessary
to give it.

I have not succeeded in applying these formule to any initial disturbance
of the simplest type, such as that discussed by Lord Kelvin. Towards so
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ﬂomg, the evaluation, accurate or approximate, of the coefficients .4 by means
‘of (65) would be only one step. Were this accomplished, we would have

S = % A, 8, (y)er, (65 4)

‘and 7 would have to be found from this, by the aid of (2), and found in a
:;form suitable for arithmetical comparisons.

It may be noted that although, from the results of Chap. I., above, and
-those of Part I, there is good reason to suppose that, for a suitably chosen
‘initial disturbance, ¥ may increase very much, this is not the case with .
On the contrary, it readily follows from (2) of Chap I. that the average
if?x'alue of 82 throughout the liquid diminishes continuously and indefinitely ;
‘a similar contrast between decreasing S and increasing 7" may be noted for
the disturbances discussed in Chap. I., Arts. 2 and 10-12,

ArT. 24. The Case of Boundary-Conditions dS/dy = 0.

If the assigned boundary-conditions are that dS/dy should vanish at each
of the boundary-planes, the period-equation is obtained by making, in the
notation of equations (5), (6), (7),

AY(Y) + By'(Y)
vanish at the boundaries; but
W(Y) = 87HI(- 3 VI3 7,

24/() = 3@ ¥37H;
so that the equation is similar to (8), except that the / functions are of
order + %

For large values of p” whose real part is negative, the approximate form of
this equation is

e — gl _ gemtim% = (), (66)

Obviously it may be proved, as in Art. 16, that for all values of /, », there
are an infinite number of aperiodic disturbances, the values of p being given
approximately by (14), (15) again,

Evidently, too, if /z is small enough, in (15) » may be taken to be any
integer, even unity.

But an investigation almost identical with that of Art. 18 proves that, for
all integral values of + (including zero), if /o be small enough, and for all
values of la, if 7 be large enough, the number of roots inside the circular
contour for which

mod 2a (- p'/v)i = (r+¥)m

is 7 + 1, one more than with the boundary-conditions S = 0. This difference in
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number is due to the fact that (66) has to be multiplied, instead of divided
as is the case with (23), by

(-9 +1Bad)i(- p’ - IPai)},
in order that it may represent, for large values of ', the true period-equation.

Accordingly, when /e is very small, the period-equation has one 700t not
gwen by (15). This root gives a value to p” which is itself very small and
diminishes indefinitely with la. In fact, if /o is zero, one value of p’ is zero;
this may be seen by noting that when lo is zero, Y, = Y,, in the notation of
(39); p" will now be zero if ¥; =Y, =0; and it is evident that these values
satisfy the period-equation, affer its division by Y, - Y, or an equivalent
differentiation, which is a necessary preliminary. If, returning to (1), in it
we replace ! by zero, we do indeed obtain a root, p” = zero, corresponding to a
disturbance in which S is constant, in time and in space.

Thus, if /2 be small enough, here again all the disturbances are aperiodic,
and all the roots are accounted for by (15), with the exception of this one,
which we may regard as also included in (15) on making.r zero.

It is readily seen that a value of p” occurs at € (fig. 2, p. 108), whenever at
this point

I_3(u) =0, ie. v = (rm+ bn/12)s,
or Iz () =0, ie. w = (rm+13w/12)1,

7 being zero or any positive integer. The former set are double roots ; and it
may be proved much as in Art. 19 that these are the only double roots.

‘We may trace, as in Art. 20, the effect of diminishing the wave-length in
the direction of flow on the nature of the roots. When la is exceedingly
small, one value of p” is close to O (fig. 2), and all the others to the left of C;
as [ is gradually increased, all the roots move towards € until the expression
(51) becomes equal to the lowest zero of J-3(x); at this stage two values of p’
coincide at €. On increasing / still further, these two roots become complex,
and there is now no value between € and O until (51) becomes equal to the
lowest zero of Jz(x) when a value of p” passes C, to return to it and in coinci-
dence with another become a double root when (51) becomes equal to the next
zero of J_z(x); after this these two become complex and different; and so on.

The greatest wave-length in the direction of flow for which a disturbance
can be oscillatory is thus 2x/l, where '

(32B1a°/(27,/3v)}} = the lowest zero of J_3(z) = 1-2. 67
- There are a finite number of complex roots, those whose imaginary parts
are positive being given, when not too near C, by the approximate equation
e —jet = 0,
or, Uy = ro + w/4, (68)
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where » is zero or any positive integer; and, more accurately, by

J-glu| - Jlwm| = 0;
the second term of (66) is now small compared with the other two. These
complex values of p’, of course, as before, lie close to the line 04, and their
conjugates close to C4’.

It is seen that here again all the roots which exist have been accounted
for and approximately located. ’

It will be noticed that, approximately, when /o is large, the real roots, if
not too near C, are the same as when the boundary-conditions are S = 0; the
complex roots are different, however; this is the only evidence I have noticed
against the view that, for disturbances whose wave-lengths in all directions

are small, the question of stability is little affected by the precise boundary-
conditions.

ART. 25, The Case of Boundary-Conditions V=0, dV/dy=0: Fatlure to obtain
any Stmple Proof that fundamental Disturbances are Stable.

‘With the boundary-conditions 7'=0, dV/dy =0, I am unable to give any
simple proof by any method analogous to that of Art. 15 that the funda-
mental modes of disturbance are exponentially stable. 'We obtain, however,
the same limits for the imaginary parts of the values of p, viz., +/Bai. The
equation satisfied by ¥ being

[@*/dy* - {X* + (p + ilBy) v} J(&*/dy* - X) ¥ = 0,
if we write V' =V, +1V,, p=0+1i¢p, separate the real and the imaginary parts,
multiply one equation by 7, the other by 7, add, and integrate between the
limits + a, we readily obtain

J (9 + IBy)[(@Vr/dy) + (@Vafdy)* + Ne(V2+ Vi3)Jdy = 0, (69)
from which it follows that ¢ + /By must change sign between the limits of .
I have also been unable to obtain any equations analogous to (63), (64)
Art. 23, by the aid of which any arbitrary free disturbance may be resolved
into its constituent fundamental ones.

ART. 26. Derivation of the Period-Equation : Its approximate Form.
The solution of (1) being denoted by S, ¥ may be expressed in the form

V= _Z_IX ge*fISe-*ydy - e"‘—"JSeUdy! , |

whence avjdy =% {e*”j.Se"‘J’dg/ + e"\yJSe"fdy}.

B.LA. PROC., SECT. XXVIL., SECT. A, ’ [16]
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The boundary-conditions thus lead to the period-equation

j " Sevdy J She~dy — J Sievdy J Sy = 0, (70)

where S|, S, are any two independent solutions of (1).

A laborious development of this equation in ascending powers of p’ threw
little light on the nature of the roots; every term in the equation appears to
have the same sign, however.

On the supposition, justified to some extent by results, that for all the
roots the quantities which occur as variables in the Bessel functions in S are
large, an equation approximately equivalent to this may be obtained. As
approximate forms of S are (- p" - IByi)-%.¢*, where

2(IB\E [-p - IByiNE
=3() ) @
it might appear that we would be justified in using these exponential fofms
in the integrands, and replacing, for example,

j " (-0 - Byirtenvay

by
(- 2" = IBys)y-te M| + du/dy)

Irrespective of the delicate considerations of the discontinuity in the forms of
the approximate expressions for the Bessel functions, this procedure would
not, however, be prima facie justifiable unless it were possible, regarding
7y as a complex quantity, to connect the limits of integration by a path
along which the real part of % + Ay continuously increased, or continuously
decreased, which is not always possible. I therefore considered more fully
the functions [e*¥Sdy; but the approximate form finally obtained for the
period-equation proved so intractable that it does not appear justifiable to
go into details, In the region in which the roots appear to actually lie, viz.,
one in which p’ has its real part negative, and its imaginary part between
the limits + /3as, the form is

iy . Erp (Aa + u, 7 Exp (e — u,

(cemr ot iyimam * v me)
v\t vA% - 3Ap"2 , . Exp(-Aa+u
van (i) B (g ) - D

B
(-p/[tB)+ iy - J1B)-ai)
|- RoAp ey Bop- M=)~ 3 Bop (- u,)}
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{7 ol Bxp (= Aa+w) 1 Bzp (- Aa — ;)
- #18) + 7| s ey -—A—z‘((—p’+lﬁai)lv)*]
v\t ~ vA% + 3Ap’T , ~ Exp(Aa + us)
+2m (%) E”P(. )~ P eyt ww‘)/»»}

N CpIB) +ai)t o (=piB)-ai)t PR
I o B Q=)= 55 o B e “)}(_72)

u, denoting, as before, %(IB/v)¥ {~ p’({B) + @i}, and u, the corresponding
expression with the sign of a changed.

ART. 27. Some Results.

It appears that the period-equation has no roots for which the real part
of p (or even that of p’) is positive. If the real part of p is supposed positive,
the equation assumes a simpler form ; the first expression within the { } is

to be replaced by
Exp A+ uy) Exp (- Ao + uy)

(_p,/(lB) + a‘@)_ik + ‘l«— pl+ lﬁa'b)/v)ﬁ - (‘P /(ZB) - m)—i)‘ +1 ((_p/_ lpa?’)/v)i;
73

and the third is to be similarly replaced by the first and last of thga fc)mr
terms which constitute it. In fact, if the real part of p (though not neces-
sarily if merely that of p”) is positive, that of any one of the expressions
+ Ay + u either continually increases or continually decreases as y changes
from - @ to + a; and accordingly it seems evident that we may proceed as
indicated in the third paragraph of the preceding Article, and thus obtain this
modified form of the period-equation. If we now consider the terms in the
equation which are most important, it will be found that it is necessary that
¢ should be complex or less than unity, which is, of course, impossible.

In using these approximate forms there is a tacit assumption that p is not
too near either of the values + /3as: making the contrary supposition in this
case, too, I failed to obtain any evidence of the existence of a root whose
real part is positive.

It may be shown that, if with the origin as centre, a circle be described
for which

mod. 2¢ (— p'/v)t = (2r + 1) w/2,
where r is a large enough integer, the number of roots of the period-equation
for which p’ lies within this circle is » — 1.* This follows as in Art. 18: the
alterations in the form of the left-hand member of (72) which have to be
made in different portions of the contour are, as in that Article, negligible if
p’ is sufficiently great.

* This is one less than if the boundary-conditions included v?» = 0. (See Art. 18.)
[16%]
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There is obtainable as a special and limiting case the solution of the
problem of the free disturbances of the fluid at rest; these have been inves-
tigated by Lord Rayleigh.* In this case, 3 being zero, if p” is finite w, u, are
infinite, but u, —w, or 2ai(- p’/v)? is finite; if, in (72), in the first and third
expressions in { ], we neglect all terms which do not involve Exp (+ ), and
then equate (3 to zero, we obtain an equation which is valid and exact
over all the plane; it may easily be verified that this equation leads to
Lord Rayleigh’s results.

Another special case which may be noticed is that in which Aa is very
great. In this case the smaller roots, i.e. those for which A is very much
greater than ({(- "+ !f3ai)/v}3, are given approximately by the same formule
as when the boundary-conditions include S = 0; and for those which are not
go given p” is wholly real and negative. In fact, for those real values of p’
which are far removed from the complex ones, the equation assumes the
approximate form

) = A +3{(- " + {Bai)/v}*][A +3{(- p’ - {Bai)/v}}]
"A-d {(- 2+ iBas) v\ —i{(- p’ - [Bai)/v)P]
o = N (R + 2B — A= 2 + 2(p" + B3%a?) }*
= X2+ 07 (P + i3tat)E + A (- 29 + 2(p" + DBra)t)

(74)

This equation could be selved without any great difficulty if the values of
the constants were given. It will be seen that in taking successive values of
o in order of increasing magnitude, in passing through the region in which
" and vA* are of the same order, one root is, so to speak, lost as compared
with the period-equation 8) All the roots of the equation (72) are thus
accounted for.

In the most general case, the real values of p” which are not too near the
complex ones are given by (74). As regards the determination of the complex
values, though (72) simplifies somewhat, I have not been able to reduce it to
a form which I can solve. :

The approximate forms (72), (74), which have been obtained for the period-
equation are inappropriate to small values of Aa, as when Ae is made equal to
zero, they become identities; when Aa is very small it is more convement to
express (70) in the form

J' S, cosh Aydy J S, sinh Aydy - J aS’l smh kydy J S, cosh )\ydy 0.
(75)

* «On the Question of the Stability of the Flow of Fluids,”” Phil. Mag. xxxiv., 1892, p. 69 ;
Collected Papers, iii., p.-582.
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If A is made to diminish without limit,* this becomes

f« S\dy J: Syydy —Ka Siydy ra Sy = 0. (76)
In the region in which the roots actually lie, this assumes the approximate form
(1(6m)? + (o - ey, F — g H) (ran? — et
- {(em - 'ie"’-l)ul% - e"eu,%} { e, - r“au,'%'} =0. (17
For real roots, if p’ is not too near €' (fig. 2), this may be replaced by
eh1mu3 — g2t = ()

identical with (14). Even in this somewhat simple case, the equation giving the
complex roots does not appear readily solvable. In this case it may be shown
that the critical point at which p” becomes imaginary does not coincide with
C (fig. 2); but that some of the roots become imaginary at points to the left
of C, and others at points to the right; that for the roots which are of low
order the absolute distance of the critical point from C is not large, and that
as the order of the root rises it tends asymptotically to . The complex roots
thus consist of four series—one to the left of 4C, another to the right, together
with the images of these series in the axis of real quantities.

In the most general case the critical point at which roots become imaginary
is not far from C'; and the values of p’ lie not far from the lines 4C, 4"C.

It is thus seen that, unless either Aa is large, or else (3/a®/v so small that
all the disturbances are aperiodic, the results I have indicated are very
incomplete for the natural boundary-conditions v = 0, dv/dy = 0.

* 1f the velocity-gradient is great enough, Az may be very small, and yet Bla%/» not small ; so that
for sufficiently rapid motion this case is a little more general than that in which » is made a function
of y only. In the latter case, the method similar to that of Art. 15 succeeds in proving directly that
the disturbances are exponentially stable ; this result was, I believe, obtained many years ago by Love.
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CHAPTER III.
APPLICATIONS OF THE METHOD OF OSBORNE REYNOLDS.
Agrr. 28, Explanation of Osborne Reynolds’ Method.

Professor Osborne Reynolds* has discussed the question of the stability of
flow from a point of view very different from that adopted by Lord Kelvin.
He supposes the turbulent or unstable motion to be already in existence, and
seeks to determine a criterion as to whether the relative kinetic energy of the
disturbed motion will increase, diminish, or remain stationary. In case the
disturbance is regarded as finite, i.e. if, in the expressions for the velocities,
terms of higher order than the first in small quantities are retained, the
magnitudes of the velocities enter into the determining condition ; but if only
terms of the first order are taken into account, the criterion does not involve
the scale of the disturbance, and moreover gives a lower limit than is obtain-
able when the disturbance is finite, for the slowest steady motion, under
assigned conditions, for which a disturbance of assigned type could possibly
increase. Thus the discussion of infinitesimal disturbances would appear in
reality as important as that of finite ones, and is moreover considerably
simpler. For infinitesimal disturbances, considering only the case in which
the velocity in the steady motion is in the a-direction, and is independent
of z, the criterion may be obtained as follows. Let the velocity in the steady
motion be U, and that in the disturbed U + », #, w, let the stress-components
in the steady motion be Py, P.y, ete., and those in the disturbed be P, + pqs,
Py + pey, ete. By writing down the fundamental equations for the disturbed
and for the steady motions, and subtracting, we evidently obtain the equations

du/dt + Udulde + vdUldy + wdUldz = p™{dpes/dec + dpey/dy + dpas/dz},
dvfdt + Udv|dz o N Apuyldx + dpyy/dy + dpy./dz},
dw/dt + Udw/dz 7 (APus/de + Apyafdy + dpas/dz}. (1)

Multiplying by pu, pv, pw, respectively, and integrating throughout any
volume, we have

djds. %J p(w*+v* +uw¥) d . vol= - j pu(vdUldy + wdU|dz) d. vol.

- %[p Ud[dz(w* + v* + w*) + Ju {APaa/d + Apoy|dy + Apas/dz} d.vol

+ two terms similar to the last. ?)

* For reference, see Imtroduction, p. 75. An excellent résumé of Reynolds’ method is
contained in Lamb’s ¢ Hydrodynamics,’”’ 3rd Edition, Art. 346, from which I have paraphrased
a few sentenoces.
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On integrating by parts all the terms on the right, except the first, the
right-hand member may be written

1
- J pu(od Uldy +wd Uldz)d.vol - 5 J' pL U + 0 + uf) dS +J U(Przt MPay+ MP2s) A8

+ two terms similar to the last —I{pzzdu/dm + Pyydv/dy + prdw/de

+ Py(Av]dz + Aw]dy) + Paa(dw/de + dufdz) + Py (du/dy + dv/dz) ) d . vol, 3)
d8 denoting an element of the bounding surface, and /, m, » the direction-
cosines of the outward drawn normal. The term involving the first surface-
integral represents the rate at which kinetic energy of disturbance is convected
into the volume considered, and the other three surface-terms denote the rate
at which the additional stresses p.;, puy, etc., called into existence by the
disturbance, would do work in the additional motion u, », w on the fluid
contained in the surface. In many cases the joint effect of the surface-terms
is »4l; this happens, for instance, when the disturbance has a definite wave-
length in the direction of flow, if the volume is bounded by surfaces parallel
to the direction of flow, such that w, v, w vanish at them and by perpendicular
planes, such that the distance between them is any multiple of a wave-
length. In any such case, by substituting in the last integral in (3), the
values of the stresses, viz.,

Puz == p— §u(Qufdz + dv/dy + dw[dz) + 2udu/dr, Puy=pn (dufdy + dv/da:), ete.,

the right-hand member of (2) becomes

~ [ pu(vdUldy + wd Uldz) d . vol

— uf {2(du/dz)® + 2(dv[dy) + 2 (dw/dz)* + (dv/dz + dw|dy)? + (dw/dx + du[dz)?

+ (du/dy + dvfdz)*} d . vol + [ p’ (du/dwx + dv/dy + dw/dz) d . vol, 4)

where P =p+2u/3 . (du/dz + dv/dy + dw/dz).

The second member ig essentially negative; the first may be either positive or

negative; the third is, of course, zero, though it is convenient to retain it for

the present,* thus not assuming the fluid to be incompressible ; and whether

the disturbance increases or decreases, depends on the sign of the whole. If

then, for a given steady motion we could find the lowest value of u for which

it is possible to choose u, v, w, so that the expression (4) may be zero, there

would be no possibility of the motion being unstable for a greater value of u.
In the applications of the method by Reynolds, Sharpe, and H. A. Lorentz,

the character of the disturbance is to a certain extent assumed, and apparently

somewhat arbitrarily ; and I proceed in the present chapter to conduct similar

investigations, while endeavouring to avoid any such arbitrary choice.

* For the purpose of variation.
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ART. 29. Differential Equations satisfied by the Disturbance which is Stationary
Jor the Greatest Possible u.

Proceeding to a more general investigation, the critical equation for p,
whether the fluid be compressible or not, is from (4):
- [ pu (vdUldy + wd Ujdz) d . vol + | p'(du/dx + dv]dy + dw/dz) d . vol
- u [ {2(du/dz)? + 2(dv(dy)® + 2 (dw/de) + (dv/dz + dw]dy)* + (dw|dz + du/dz)*
+ (du/dy + dv/dxy’} d.vol = 0.  (5)
The variation of u, #, w in this gives, as conditions for a stationary u, on
integrating by parts,
2uVu + 2ud/dx (du/dx + dv/dy + dw]dz) — p (vdU/dy + wd Uldz) -
= dp/dz + 4u/3 . (du/dx + dv|dy + dw/dz), (6)
ete., or, supposing the fluid incompressible,*
2uVu — p (vdUldy + wd Ujdz) = dp/dw,
2uV* — pud Uldy = dp/dy,
2uV*w - pud Uldz = dp/dz. (N
If the volume is bounded by fixed surfaces parallel to the direction of flow
and by perpendicular planes such that the distance between them is any
multiple of a wave-length, the surface terms, which have not been given,

vanish; under these conditions also equations (7) with that of continuity
satisfy (5), so that (5) need no longer be referred to.

AgxrT. 30. The uniformly Shearing Stream subject to Boundary-Conditions
v=0, dv/dy=0. Lorent? Result.

A stream of uniform vorticity is, of course, the simplest case ; and Reynolds’
method has been applied to it by H. A. Lorentz.+ The type of disturbance he
selects consists of a species of “ Elliptic Whirls” in which each particle of fluid
has motion in an elliptic orbit superimposed on its steady motion; these
ellipses are similar and similarly situated; and the angular velocity round the
centre is a function of the distance from it ; the orientation and shape of the
ellipses and the law of velocity are then determined, so that the value of g
which makes the right-hand member of (4) vanish shall be greatest possible.

If the steady velocity be By, and the distance between the bounding-planes D,
his resulting equation is pBD* = 288u.

# If the fluid be compressible, the variation of p and p in (5) leads to an equation which would
determine the scale of the disturbance.
+ ““Ueber die Entstehung turbulenter Fliissigkeitsbewegungen und iiber den Einfluss dieser

Bewegungen bei der Stromung durch Réhren.””  Abhandlungen iiber theoretische Physik,
Band 1, s. 43, '
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Analogy with other problems leads us to assume that disturbances in two
dimensions will be less stable than those in three; this view is confirmed by
the corresponding result in case viscosity is neglected, seen by comparing
equations (28), (38) of Part L., Chap. I.; it is further strengthened by com-
paring the two- and the three-dimensioned forms of equation (29), Chap. L.,
above, and by the discussion of the fundamental free disturbances in Chap. IT.
Considering, then, the two-dimensioned case,* the elimination of p from (7)
gives

2uV?(du/dy — dvldz) — pB (dv/dy — du/dz) = 0. (8)
We may now conveniently introduce the stream-function , when this becomes
uVAVE, + pBd/dedy = 0. 9)

This is to be solved subject to the conditions that i and dy/dy vanish at
the bounding planes which we will denote by ¥ =+a. We next suppose that,
as a function of z, Y varies as ¢%*, when the equation becomes

p(d?fdy® - By + dlpBdi/dy = 0. (10)
The fundamental solutions are ¢ = ¢™¥ where the values of m are given by
p(m* + PPy — Bplm = 0. 1)

Denoting the roots of this by m,, m,, ms, m,, the equation to which the
boundary conditions lead is

emy ai emyai em3ai oMyt
g myai gmpai My ai PRt
: . . o =0 (12)
ml eml ar m2emz at ma 6'”3 al mégﬂlel
m e ™ ai Mg €™ ai M€ ™3 ai M6 M ai
or
(mymy + mymy) sin (m, — mz) @ sin (mg — me) o
+ (Mg + mymy) 8in (m, — ms) @ 8in (my ~ my) @
+ (mam, + mymy) 8in (ms ~m,) @ sin (m, — my) @ = 0. 13)
As the sum of the values of m is zero, they may be written
’ ’
p+r, p-1, —p+v, —p-7, (14)

where p is real, and, making these substitutions, (13) becomes
(4p* - 7 — %) 8in 2ra sin 27'a — 277'cos 2re cos 2r'a + 2r'cos 4pa = 0. (15)

Now, the values of m which satisfy (11) must all be imaginary, or else two
real and two imaginary.

* The three-dimensioned case was attempted, but it proved too difficult.

R.ILA. PROC., VOL, XXVIL, SECT. A, (17]
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Taking the former alternative, on writing » = 4, »’ = 1¢, (15) becomes
(4p* + ¢* + ¢’*) sinh 2¢a sinh 2¢’a — 24" cosh 2¢ga cosh 2¢’a + 299" cos 4pa = 0.
(16)
This may be written in the form
(¢ - ) sinh*(g +¢) a - (g + ¢')* sinh*(g - ¢') &'+ 4p* sinh 29« sinh 2¢'a
~ 499 sin® 2pa = 0, 1

from which it is evident that it cannot be satisfied by real values of ¢, ¢"; for
if they be chosen positive, as can always be done, the first term exceeds the
second, and the third the fourth.

Falling back, then, on the latter alternative, and writing in (15) 7 = ¢
simply, it becomes

(4p* + ¢ - r*) sinh 2¢a sin 2ra - 2¢'r cosh 2¢'a cos 2ra + 2¢r cos 4pa = 0. (18)

To find a stationary disturbance of given wave-length, and the correspond-
ing value of u, we have then, supposing ! given, to solve the simultaneous
equations involved in (18), and the statement that the values of m which
satisfy (11)are p+7», —p*gi.

Now, from the coefficients of the powers of m in (11) we have the

equations
g'z - - zpz = 2l’,

@+ )P -7 =1,
2p(g* +1%) = Bolu. (19)
If we express ¢/, , in terms of p, /, we have
=2/ P+ PPl (20)
7= /Pl -0, @1
and also obtain
mo= g\%—;—j—} (22)

It may now be proved that the equation (18) has no solution for which
2ra is less than #.  Denoting the left-hand member of that equation by V,
we have

$dV[da = (¢2 + 7*)(q" cosh 2¢/a sin 2ra —r sinh 2¢’a cos 2ra)
+4p*(¢ cosh 29’a sin 2ra+r sinh 29’a cos ra) - 4pg’r sin dpa,  (23)
1d*V]da* = (¢* + r*)* sinh 2¢’a sin 2ra

+4p*((q"”~ 7") sinh 2¢’a sin 2ra+2¢'r cosh 2¢’a cos 2ra - 2¢'r cos 4pa),
' (24)
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L d*V/do® = (¢"* + ) {¢ cosh 2¢’a sin 27a + 7 sinh 2¢’a cos 2ra}
+4p*{(¢" - 3¢'7*) cosh 2¢'a sin 2ra + (3¢/* - 7°) sinh 2¢’a cos 2ra
+4pq’r sin 4pa}, (25)
Tedt Vidat = (¢ + r*)* {(¢"* - *) sinh 2¢a sin 2ra + 2¢"r cosh 2¢/a cos 2ra)
+4p*{(¢"*-6¢"r*+7')sinh 2¢’asin 2ra +4¢ r(¢*~r*)cosh 2¢’a cos 2ra
+8p*g'reosdpa). (26)

‘When « is zero, the first three differential coefficients vanish, and the fourth
is positive. Substituting the values of ¢’, », given by (20) and (21), (26) gives
Ted'V/dat = 64p**(p* + I*) sinh 2¢'a sin 2ra

+ 64p*(p* + 52)2(319“ - l”)2 cosh 2¢’a cos 2ra
+ 32p (p* + l’)lf(Sp2 - l”)l‘s cos 4pa. 20

This cannot vanish for any value of 27a less than #/3; since for such values
the second term exceeds the third even on replacing cos 4pa by — 1, and since
the first term is positive. Therefore, neither can V itself vanish, if 2ra < #/3.
Again, V may be written
(6p + 20*) sinh 2¢a sin 2ra - 2(p* + 12)% 3p* - l’)‘]‘f cosh 2¢’a cos 2ra
+2(p* + ) (3p* — ¥ cos dpa, (28)

which, when sin 272 is positive, is algebraically greater than
2(p* + 1) (3p* - 1)¥ | 3¥sinh 2¢a sin 2ra — cosh 2¢'a cos 2ra + cos dpa}.  (29)
Of the terms in brackets, when 2ra lies between x/3 and #/2, the first term is
greater than 3 sinh2¢’a; the second is numerically less than £ cosh2¢'a; and
thus the three are algebraically greater than 2 sinh2¢’a - {cosh2¢’a ~1, and,
as ¢ >r,/3, this is certainly positive. And, since ¢’ >3, it is evident
that (29) cannot vanish if 2ra lies between =/2 and =. Thus (18) has no
solution for which 2ra < m.

When 2ra > =, sinh2¢'a and cosh 2¢'a each exceed 100; and accordingly
in (18) we may neglect the term involving cos 4pa, and may equate sinh 2¢a
and cosh2¢'a; the equation thus sensibly becomes, making use of (28),

tan 2ra = (p* + ) (3p* - 1) (3p* + 1), (30)
The simultaneous equations (21), (30) have, of course, an infinity of solutions ;

there is one for which 2ra lies between » and 4w/3; it may be shown that
there is only one; for, by the aid of (21), we may write (30) in the form

7ltan 2ra = (2p /PP + I+ p* + I)¥(3p* + )1 (31)
as p increases beyond the value //,/3, the right-hand member continually
[7%]
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decreases, while the left-hand member continually increases, for », given by
(21), continually increases. And it is this solution which we require; for
(21), (22) show that, / being given, the smallest value of 7 corresponds to the
largest value of u for which the disturbance could possibly increase.

We finally wish to obtain the greatest value which the value of u so found
can be made to assume by varying /. A stationary u is a maximum g, for p
has no minimum ; as / increases indefinitely, 7 remains finite, ra being < 47/3,
and p, satisfying (21), tends to equality with /,/3, so that u given by (22)
diminishes indefinitely. The differentiation of (22) gives us for a stationary p

p*dlldp = (8p* + 21%)1. (32)
By differentiating (30), making use of this, we obtain
ap®(3p® + 21) (3p* — B drfdp = - 2 (p* + 12)}; (33)
and in a similar manner from (21),
Prdrfdp = 2@t + Y — (° + 1) (p* + 2P, (34)

Combining (33) and (34), there results
a(3p+ 2)(3p* ~ (" + 20) (92 + 1} - Qp(p*+ )} = 2By, (35)

and this, (21), and (30) are equations determining /, p, ». From (21) and (35)
we obtain

2ra (3p° + 21 (p* + 202 - 2p (p* + YA} = 404 (2p — (p* + PR} (3p? - I)E (36)
If 2ra were 7x/6, the value of /?/p* which would satisfy this would be -93;
while, if 2ra were =, it would be ‘94. It will be seen that the former
supposition is very nearly correct; taking then the former value of */p®,
substitution in (30) shows that 27a is the circular measure of 206° 57 (the
latter would give about 3’ less), ie. 2ra = 3-61. From (21) there is next
obtained //r = 105 (and < 1:06), giving la = 1'89. Then (22) gives

Bp/(8r°u) = pI{2p — /p* + 1*)7 = 1'698 (and < 1699). 37
Thus, if D= 2a, the distance between the bounding planes, there finally results
Bpa*/u = 443 or BpD¥u = 177. (38)

This result has been obtained on the supposition that the initial disturbance
has a definite, but undetermined, wave-length; but as the different wave-lengths
contribute to the rate of increase of the energy of disturbance terms which
are simply additive, this restriction may be removed, provided the proper
end-conditions are satisfied, and for this it is sufficient that on every stream-
line the end-values of the velocities and of the alteration in pressure should
be the same.
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Axr. 31. Two instances of other Boundary-Conditions.

As another example, suppose the former boundary-conditions are replaced
by v =0, d*»/dy* = 0, equivalent to = 0, d*p/dy* = 0. Equation (13) has
now to be replaced by
(ma*my? + ms*my?) 8in (m, — my)a 8in (Mg — M) @ + (M*my’ + my*myt) sin (m, — ms) @

sin (m, - mg)a + (ms*m.* + my*my?) sin (my —m,) e sin (m, ~ my)a = 0, (39)
or, in the notation of (14),

{(7* — 72— 4p*(1* + 1*) | sin 2rasin 2r'a + 8p*r1r'cos 2racos 2r'a — 8pPrr'cosdpa = 0.
(40)
On writing again 7 = 1g, # = 4¢/, this becomes

{(¢* - 9% + 4p*(¢* + ¢"*)}sinh 2¢ga sinh 2¢'a + 8p*¢gq cosh 2ga cosh 2¢a
- 8p*qq’cos4dpa = 0. (41)
As the first two terms are positive, and the second exceeds the third
numerically, this equation cannot be satisfied, and, accordingly, as before,
we fall back on the other alternative, viz., » real and 7" imaginary. Writing
in (40) 7" = ¢¢" simply, it becomes
{(* + ¢+ 4p*(¢"* - 7*)}sinh 2¢’a sin 27a + 8p*¢r cosh 2¢’a cos 2ra
- 8p*¢’r cos 4pa = 0. ' (42)
Now this equation has no solution for which 27« is less than #/2; for within

this limit, as ¢*> 37%, the left-hand member is certainly algebraically greater

than
8p*r {7 sinh 2¢'a sin 2ra + ¢ cosh 2¢'a cos 2ra — ¢" cos4pa};  (43)

and while 2r¢ increases from 0 to #/2, the sum of the first and second terms
in the brackets increases continually, and therefore everywhere exceeds its
initial value ¢'; hence the result follows. We may, therefore, equate
sinh 2¢’a and cosh 2¢’a, and neglect cos4pa in comparison. Thus we have,
expressing the coefficients in terms of p, /,

tan 2ra = - 1 (3p* - P (p* + 1YY, (44)

and the lowest value of 2ra accordingly lies between 5m/6 and w. As a
condition for a stationary value of u, we now obtain, using (32),

ap (3p* + 21%) (3p* = P drfdp = 3P (p* + IP), (45)
and, by the aid of (21), (32), (34), there results, instead of (36), the equation
2ar(3p® + 20%) (2p(p* + 1)k — p* - 21) = 6p°*(2p — (p* + PP (3p* - 1) 2. (46)
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Substituting 2ar = bw/6, # we obtain */p* = ‘73, ‘75, respectively. The
former value substituted in (44) gives 2ra to be less than = by the circular
measure of 20° 547; and the latter 20° 42’; we therefore see that the correct
value of I*/p* is nearly ‘736, and that of the angle in question 20° 50';
thus 2ar = 2-778, and finally
Bopa?/u = 2636 or BpD*u = 1055, (47)
If, again, we were to take as boundary-conditions
dvjdy = 0, d*/dy* =0,

we should obtain equation (13) over again, and the same criterion as in (38).

ART. 32. 4 Stream between fixed Parallel Planes. Results of Reynolds and
of Sharpe.

The case of flow between fixed parallel planes was the only one to which
Reynolds himself applied his method so as to obtain a numerical result.*
Noting that if the disturbance is expressed as a trigonometrical function
of y, the higher harmonics would, on the whole, make for increased stability,
he chose as the type to be investigated one in which

w = A(cos p + 3cos3p)cosniz/2a + B(2cos2p + 2cos4p)sin wlz/2a, (48)

v = lA(sinp + sin3p)sinwlx/2e - {B(sin2p + 2-'sindp)coswiz/2a, (49)
where p = wy/2a. The values of / and of B/4 were then so determined
that the value of u obtained by equating to zero the rate of increase of

the energy of disturbance should be greatest possible, and the result he
obtained for the critical equation was

DUp/u = 517, (50)

where D = 2a, the distance between the planes, and U is the mean velocity.
This case has also been discussed by Sharpe;t he chose as the type
of disturbance that in which, in the same notation,

w = A(sinp + sin3p)coswiz/2a + B(28in2p + 4sindp)sin #lz/2a, (51)
v =—lA(cosp + 37 cos3p)sinwiz/2a + IB(cos2p + cosdp)coswiz/2a, (52)

and obtained a lower value for the critical velocity, his equation being

DUpju = 167. (53)

* Loc. cit., p. 75, ante.
T ““On the Stability of the Motion of a Viscous Liquid”’ : Trans. Amer. Math. Soc., vol. vi.
No. 4, October, 1905,
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ART. 33. The more General Investigation.

Proceeding to a more general investigation, if the axis of z be taken
midway between the planes, and the steady velocity be U = C(a*- 9?), and
keeping to the two-dimensioned case, equations (7) are replaced by

2uVau + 2Cpyv = dp/dx,
2uVie + 2Cpyu = dp/dy. (54)
Eliminating p, and substituting for U, we obtain
2uVE (du/dy - dv/dz) + 2Cp{y(dv/dy - du/dz) + v} = 0, (55)
or, introducing the stream function, i,
uV4 — Cpl2yd*y/dxdy + d/dz) = 0. (56)
If we now further suppose that ¢ varies as ¢, where [ is definite, but
undetermined, this is reduced to
w(@Ydy? - BYy — Cpli(2ydildy + ) = 0. (57)
It seems convenient to substitute Iy = a, Cpt/ul® =%, and doing so this
equation becomes

(d*/da? — 1Y — % (2adip/da + ) = 0. (58)
This can be solved in series preceding in ascending powers of a. Writing
Y = 240"/ m, (59)
the coefficient law is
Apis = 2450+ (1 - (20 + k)4, = 0. (60)

There are, therefore, series whose first terms are respectively 1, a, a?, a®
If u, v, or y, dif/dy are to vanish at the boundaries y = + a, there is evidently
one solution of the problem in which i is an even function of y, and another in
which it is odd. And there are various reasons for supposing that the former,
i.e., that in which » is an even, and % an odd, function, will give the narrower
limit of stability. This view is in conformity with the fact that Sharpe
obtained a lower value for DUp/u than Reynolds did; I understand Sharpe
to state that it seems more in accordance with experiments that » should
have a maximum midway between the planes than that « should; and I
obtained this result when /o is very small.

When le is sufficiently small, we may replace the coefficient law (60) by

the simpler one
Apis— (Rn + 1) k4, =0. (61)
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The values of ¢ then proceed simply in powers of ka*, all other terms being
omitted. Equation (68) given by the boundary-conditions becomes

32k%a,*  15360k‘'a,'®  1426* kfa,*

1+ E + (17 + Ton TS 0.+ (62)
The lowest root of this is approximately
. Cplat/u = - tkay* = 107. (63)
On the other hand, the odd forms of i lead to the equation
1+ 6—7%(%) 318011?* Fa,' 6120?: a™+...=0, (64)
and the lowest root gives approximately
Cplat/u = — tka,* = 265. (65)
Considering then the even forms of i, one of the series whose lowest term
is unity is
Yot = 1+ +(3+lc) +(4+ 12k) +(5+50]c+%’) +(6 + 140k + 174%*) —

[_2 [4 L6 |8 L10

14

+ (7 + 815k + 11894 + 9.17%%) -[—— +(8+ 616Ic + 5144%* + 3960%%) — LM
2 3 DR Tt 4y
+(9 + 1092k + 1697442 + 37492k + 9.17.25k ) (_16 + (... 122490% ) L1_8 +
(66)
and that whose lowest term is a?/2 is
2
Y = ° +(3+5k) + (4 + 28F) — +(5+90k+5 13%%) —=
EN L L6 (8 LlO
§ 2 2
+ (6 + 220% + 606%2) = l_12 + (7 + 455k + 3037k +5.13. 21k3) L14
16
+ (8 + 840k + 10968%* + 17880%%) —'J-'—-
+ (9 + 1428% + 32094%2 — 122468%° + 5.13.21.29%4) % L 5+
+ (.. 6692107&) |_20 (6'7)
The boundary-conditions » = 0, » = 0 evidently give
Yo d‘l'z/ da - l,bzdlllo/ da =0, (68)

* These numbers are only approximately correct.
1 The boundary-value of a is denoted by ai.
1 Probably the numerical work would have been simpler had I chosen o — 2, instead of yo.
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where, in determining «, ¥ is equated to «. Denoting this boundary-value of a
by a,, this equation, after division by a;, becomes

2“‘ o Bad 3‘“‘ (198 + 32 U 4 (512 + 320%%) &

T L L“

+ (2048 + ‘)816]»’) + (8192 +128. 168?02)
l_

1+

+ (32768 + 1474565 + 1536079*) |_17

+ (131072 + 322,912k + 276480%) L_ﬁ +...=0  (69)

In verification of the somewhat lengthy numerical work involved in caleu-
lating the coefficients in (69), I obtained it as far as the terms involving #* in
another way, using solutions of (58) in the form of series which proceed in
ascending powers of %, the coefficient of each power being a function of a.
This method did not appear to have much advantage over the other. The
portion of the left-hand member of (69) which is independent of % is

(Ra, + sinh 2a,)/4a,.

‘We have now, regarding/, and therefore a;, as given, to solve (69), choosing
the highest root in u, and therefore the lowest value of z. Then / has to be
chosen, so that this value of u is the greatest possible, i.e. the lowest value of
- tka® is to be made a minimum. The lowest value of - %%a,® is, approxi-

mately,
’af 8a,* 32a.‘ 128a,® 512a,'® 2048a,"

RS ETE T e T (D
a{" 10(11 . 88&;6 + 672018 + 4608“110 + 21504(1112
§L9 M W
_ (70)

in which terms involving %* have been neglected. Making this stationary,
we obtain the equation

2a,* . &Iﬁ . 32a,® . 128a,® + 512a,'° + 2048q,**
ETETT Tl LT
L (a’ 10a,* N 88a,’ N 672a,° N 4608a,* . 291844, .

et m T E s [17 .
2 . 28w  332m¢ 4128a° 55120  6.2048a

B R E A R [13

1+

( 2.10¢L12 N 3.88a,* . 4.672a,° N 5.4608a,® 6.29184a,'0 . z
T Tt R P B LI
(71)
R.I. A. PROC., VOL, XXVII., SECT. A. (18]
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which reduces to
92 3 . 32.961.|9 . 512.6223.[_g . 512.802.(_?_ N

A T TR T T N A §

— - - (72)
This has a root in the neighbourhood of «®=4'4. The minimum value
of - %%, is by no means sharply defined; the values 43, 4'4, 45 substituted
in (70) give - A*a,® = 7591, 7565, 7576 respectively. These all give

Cpa®lu = = ika® = 87. (73)
In (70), however, the terms involving the fourth and higher powers of %
have been neglected. If we substitute the values which have been found
for £ and a, in the two terms involving #* in (69) the former would raise
the value of — %%,® by about 1 per cent., and the latter by about one-fourth
as much. We would presumably make proper allowance for all the terms
neglected* if we increase the value found for - %%a,® by 2 per cent., or that
of - dka;® by 1 per cent. Thus we would obtain the criterion

DUp[u = 4Cpas/3u = 117. (74)

ART. 34. Flow through o Circular Pipe. Sharpe’s Result.

The case also of flow through a circular pipe has heen discussed by
Sharpe.t Taking the z axis in the direction of flow, he selected an initial
disturbance in which
201 = l[Awr (sin p + sin 3p) sin wlz/20 — {Brr (sin p + 27 sin 4p) cos wl2/2q,
2aw = A {4a (sin p + sin 3p) + =r (cos p + 3 cos 3p)} cos nlz/2a

+ Bl4a (sin 2p + 27 sin 4p) + 7 (2 cos 2p + 2 cos 4p)] sin wlzf2a, (T5)

where w is measured radially, w in the direction of flow, the radius is @, and
p denotes m#/2¢. On investigating the values of B/A4 and of /, which lead to
the greatest possible value of u for which the disturbance could be stationary,
he arrived at the equation

DpWiu = 2apWiu = 470, (76)

W being the mean velocity in the steady motion. I believe, however, that
his work contains a numerical error} which sensibly affects the result; and
that if this were corrected, the number 470 would be reduced to about 363.

* It appears that we may safely neglect terms in which occur 4% or higher powers; for the left-
hand member of (62) forms part of the left-hand member of (69); as far as can be judged, the term
involving 4® in the former is the most important term involving it in the latter; and substitution of
the numbers just found shows the value of this term to be about 1/20000.

1 Loe. cit. :

1 A coefficient of B[ in a certain equation which Sharpe gives as 6+67 should, I think, be

(nt = 275w%/24 + 1312/27)/16 or 2:057.
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ART. 35, A circular Pipe; the more General Investigation.

In discussing the most general disturbance in this case, we may either
transform to cylindrical coordinates the equation (5), and obtain in those
coordinates the equations giving a stationary u, or else obtain in Cartesian
coordinates the equations which would now replace (7), and then transform
them. Adopting the latter procedure, the equations are

2uVu, — pwd Widz = dp/dz
2uVuy, — pwd Widy = dp/dy,
2uViw - p (u A W/dz + w,d W|dy) = dp/dz, (77)
where u,, u, denote the velocity-components in the #, ¥ directions transverse

to that of flow. Confining ourselves to the symmetrical case, which there is
little doubt will give the lowest critical velocity, we write

Uy = aufr, u, = yu/r,

when the two former equations become

2u(Vu — ur™®) - pwd Widr = dp’/dr, (78)
and the latter is
2uVtw - pud Widr = dp’/dz. 79
Noting that
dldr V?* = (V* = ) d/dr, (80)

and writing W = 0’ (a* - 7*), the elimination of p between these gives

2u (V? - r*)(du/dz - dw/dr) + 20" p{r(dw/dz — dujdr) ~ u} = 0, (81)
Introducing the stream-function  defined by the equations

ru = djdz, rw =~ di/dr,
this becomes
u(V2 =08 (i (dp[dr? + dBp[d?) — r2ddr) - 2C"pd?bfdrdz = 0
or, wr (vt = i dfdr + d*dz )5 - 207 pdsdrdz = 0. (82)
[On multiplying by », differentiating with respect to =, and dividing by r,
this might be written
uViw = 207 prid? (r*w)fdrdz = 0, (83)

an equation which might be obtained more easily directly from the equations
which replace (7). In the subsequent investigation,  might equally well be
taken as the unknown function, instead of .]
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We next suppose that, as a function of z, i varies as ¢#*; then (82) is
equivalent to

pld?drt —rtdfdr — Py* - 20" lpirdy/dr = 0. (84)
It will now be convenient to substitute
Ir=2a, 20piful® =k, (85)
when the equation becomes
(&*/da* - aVd/da — 4)*) — 16kady/da = 0. (86)
Solving this in a series of the form
= Sdua = 7%:'—”—1 :
2|2

the law connecting coefficients is
(n+4)(n+2yndues — 8(n+)ndy,. + 16(1 - nk) 4, = 0, (87)
or Buis = 2By2 + (1 -nk) B, = 0. (88)

There are evidently solutions whose initial terms are respectively 1, a*,
a*loga, a*.  As /r and »"'dy/dr must be finite when ~ vanishes, the solutions
with which we are concerned are those whose first terms are a? o

The latter is

b (B 4k) —2 4 (4 + 20k) —— + (5 + 60% + 32K?) =

|_5 |_6

G
+ (7 + 280% + 1216%* + 384/°) L_ l_8

4"7% L2[3 L3 4 4|_5

+ (6 + 140% + 264%?)

L6 L7

+ (8 + 504k + 4128k + 4464%°) ——

L_L9

2 3
+ (9 + 840k + 11520%* + 28000/4° + 6144%*) ——— L9 LlO

2 3 4
+ (10 + 1320% + 27984%% + 1258404° + 92640%*) ———= LIO B

.+ 2283840%°) ———

26

¢ 5
+ (. + 739136% + 122880%°) ——— B L13

Lll [_12 G

LB [ (89)

+(..+4.8.12.16.20.244") ————
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One of the former is

Yo = L2+(l+2k)L2L3 (1+8F) L5L4+(1+20k+12lﬁ)L4L5
+ (L + 40% + 88%2) L5 |.6 (1 + 70k + 36442 + 120%°) Lﬁ L7
+ (1+112%+1120%2+12964*) [7 L8+(1+168k+ 2856k +T568%+ 1 6804 L8 L9
+ (L 2400+ 6384+ BLTG0I + 24096) ' 75 Ll 5
+ (... + 182736k + 302407) L—l__(’?TE -+ 542400K°) 7= Lll Ll’
F (. +2.6.10.14.18. 22k — & (90)

(2]
The boundary-conditions » =0, v=0 evidently give
udipy/da — Yydifs/da = 0, (91)

where, in a, r is equated to . Denoting this value of « by a,, this equation,
on division by a,%, becomes

1 2a, Ba,! 14a.
NEMHE LS L L4 L6 L_ L7

+ (429 + 280%%) + (1430 + 1680%?%) ot + (4862 + 92404+ 3364*) —

L_ L3 l_7 EN
2
+ (16796 + 48048%* + 6048%+) [9 Ll L+ (o4 55684) o

22 24

6
+ 95040%7) 4L le L14

[The terms on the left which are independent of % are those of

+(42 + 457) -8 4 (182 + 40k2) 2

|_8 l_lO

20
[_10 L12
a,

LITEERR

+ (. kY (92)

20, j a {1, (2a)}*da.]
0
The lowest value of — %%a,® is therefore approximately
- ke, :
1, %2 S lda® 420 1320 429" 1430a
72 s s AT e e
daf | 40a'  280a’ | 1680a’ | 9240 48048
CE AT e (e I Ty
(93)
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in which terms involving 4* have been neglected. We have then to choose a,
so that this value shall be least possible. The requisite value of a; is not well
defined, but is in the neighbourhood of 377. Substitutions of a,*=3'5,3'7,4 in
(93) give respectively ~ &%, = 1940, 1938, 1946. 1In these, however, the terms
involving %* in (92) have been neglected. If we substitute the approximate
values just found in three terms of that order which are given in (92), and
take a,* = 37, we now obtain - A%a,* = 2027, 1/10 of the increase being due
to the last of the three terms. With this value we finally obtain

DWhplu = C'a*p/u = — 4ika® = 180.

It appears that we may safely neglect terms in which higher powers of & than
the fourth occur; the term involving 4® which is given in (92) is presumably
the most important of these; and on substitution of the numbers just found,
its value is seen to be about 1/1000.
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