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The ‘law of the wall’ for the inner part of a turbulent shear flow over a solid 
surface is one of the cornerstones of fluid dynamics, and one of the very few pieces 
of turbulence theory whose results include a simple analytic function for the mean 
velocity distribution, the logarithmic law. Various aspects of the law have recently 
been questioned, and this paper is a summary of the present position. Although 
the law of the wall for velocity has apparently been confirmed by experiment well 
outside its original range, the law of the wall for temperature seems to apply only 
to very simple flows. Since the two laws are derived by closely analogous arguments 
this throws suspicion on the law of the wall for velocity. Analysis of simulation data, 
for all the Reynolds stresses including the shear stress, shows that law-of-the-wall 
scaling fails spectacularly in the viscous wall region, even when the logarithmic law is 
relatively well behaved. Virtually all turbulence models are calibrated to reproduce 
the law of the wall in simple flows, and we discuss whether, in practice or in principle, 
their range of validity is larger than that of the law of the wall itself: the present 
answer is that it is not; so that when the law of the wall (or the mixing-length 
formula) fails, current Reynolds-averaged turbulence models are likely to fail too.

‘Law of the wall’ is the forceful name for the finding that, with certain assumptions, 
the mean velocity U in constant-property turbulent flow near a smooth impermeable 
solid surface of negligible curvature can be correlated in terms of the shear stress at 
the surface rw, the distance from the surface y, and the fluid properties p (density) 
and p (molecular viscosity). The assumptions are at first sight sweeping: that the 
only effect of the outer flow (say, the outer 80% of a boundary layer’s thickness) 
on the inner flow is to determine rw. Quantities such as the layer thickness 8 or 
duct diameter, and the edge velocity Ue or other overall mean velocity scale, are 
supposed not to matter; effects of the upstream history of the flow, and even of local 
streamwise (x-wise) pressure gradient and x-wise or y-wise shear-stress gradients, 
are also neglected. Simple dimensional analysis gives

and also less-familiar but consequent relations for the turbulence quantities, such as

1. Introduction

(1.1a)

(1.16)
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where uT = \Jtw/ p and v =  p /  p.The part of the layer thickness 6 over which the 
law of the wall is valid is usually called the ‘inner layer’ or ‘wall layer’, the rest being 
called the ‘outer layer’. The outer limit of validity is at most y — 0.26 and is generally 
accepted to become smaller in flows in strong pressure gradients, especially those 
approaching separation. Very close to the surface (typically uTy /v  < 3) the Reynolds 
shear stress is negligible and the viscous stress law integrates to give U =  rw?////, 
so that (1.1a) is always true there, in the linear form U /uT uTy/v .  In §2, we will 
derive the well-known logarithmic (hereafter ‘log’) law

with k «  0.41 and C ~  5.0 from experimental data. It applies from the outer edge 
of the viscous wall region at uTy /v  ~  30-50, where viscous effects on the turbulent 
shear stress become small, to the outer limit of validity of (1.1).

Now (1.16) is in principle a necessary condition for the validity of (1.1a), because 
the mean velocity and shear stress are connected by the mean momentum equation, 
which under the above assumptions requires that the total shear stress shall be 
independent of y. (Townsend (1956) shows that self-similar shear-stress profiles do 
not imply exactly self-similar velocity profiles except at infinite Reynolds number, 
but the errors are certainly not important in the present context.) Thus, to a good 
approximation, all turbulence quantities that affect uv should scale like (1.16) or 
its equivalents for higher-order statistics. These turbulence quantities necessarily 
include all those that appear in the Reynolds shear-stress transport equation, or 
in their transport equations. However, it appears from experiments and simulations 
that turbulence quantities can show remarkably large departures from law-of-the-wall 
scaling and one of the purposes of this paper is to explore this paradox.

An important use of the law of the wall is in the measurement of surface shear 
stress, either by fitting (1.1a) to measured velocity profiles or by using surface- 
mounted pitot tubes. It follows from (1.1a) that the difference P  — p between the 
pitot pressure and the static pressure, for a family of surface-mounted probes of given 
shape and a range of sizes d, can be correlated as

where the argument of the function h is just the square of The inverse relation
gives rw from measured P  — p.The best-known configuration is the Preston tube, a 
forward-facing circular-section tube whose diameter d should be somewhat smaller 
than the largest value of y at which (1.1a) holds. The geometry is easily reproduced, 
and the calibration of Patel (1965) is still accepted as accurate to ±2% or better 
(Zurfluh (1984) gives a piecewise-cubic spline relation for (P  — p ) /rw, based partly 
on Patel’s calibration and partly on his own data: the latter agree with the calibration 
to ±0.6%). A predecessor of the Preston tube is the Stanton tube, usually a flattened 
pitot tube or simply a fence with slots in the surface fore and aft to measure a pressure 
difference, which is intended to reside wholly within the linear part of the viscous 
sublayer, uTy /v  <  3. In principle, a sufficiently small Stanton tube is independent of 
law-of-the-wall scaling, though its reading can still be affected by the non-universal 
velocity fluctuations discussed in §4, and in practice the flow field of a body with 
low Reynolds number is so much larger than the body that it is difficult to make a 
Stanton tube whose flow field is immersed entirely in the linear sublayer.

( 1.2)
U T K  V

(1.3)
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Most of the above remarks apply to other sublayer devices, such as the near-wall 
hot wire or pulsed wire, the surface hot film or pulsed film, and electrochemical sur­
face gauges. The Preston tube is preferred because it is easier to reproduce and can, 
with care, be resited at different positions on the surface. Clearly, the Preston tube 
cannot be used as an independent check on the law of the wall, and any discrepancy 
between values of rw from a Preston tube and from a satisfactory fit to the law of 
the wall is probably due to simple experimental error. Various workers have used 
Stanton tubes to check Preston tubes and/or the law of the wall. The most that one 
should say is that if Preston and Stanton tube measurements of r w differ, then either 
the Preston-tube value, or both, are wrong: there is no real guarantee that if the 
measurements agree they are right.

Preston tubes and Stanton tubes are almost certainly the most widely used in­
struments for measuring skin friction. All the doubts expressed in this paper about 
the universality of the law of the wall also apply to Preston and Stanton tubes.

In boundary layers in pressure gradient, and in duct flows, the total (viscous 
plus turbulent) shear stress r  varies significantly over the inner layer, which raises 
questions about the use of rw to give a velocity scale: surely local r  would be more 
plausible? (The ‘mixing length formula’, to be discussed below, does use local r.) The 
shear stress at y/6 = 0.2 in fully developed flow in a plane duct or circular pipe is
0. 8 of the wall value, but it is generally accepted that the law of the wall is the same 
as in a boundary layer in zero pressure gradient, where the change in shear stress 
across the inner layer is smaller. (In fact the mixing-length formula predicts that the 
shear-stress gradient in a duct produces a difference in U /uT of only 0.1 at y/6  — 0.2 
and this is almost undetectable in an experiment.) Furthermore, the law of the wall 
is found to be the same, but with a smaller region of validity, in boundary layers with 
rather more than ±20% change in shear stress across the inner layer. Deviations from 
the law of the wall appear at low bulk Reynolds numbers, as was pointed out by Patel 
& Head (1969), and this has led to difficulties in interpreting the current generation of 
direct numerical simulations of turbulence, which are limited to Reynolds numbers, 
based on 6, of about 104. The most obvious reason for Reynolds-number dependence 
is simply that 6 is no longer very large compared to the thickness of the viscous wall 
region, 30 v /u Tso that the conditions for the appearance of an extended region of 
log law are not so well fulfilled. However, in addition, low-Reynolds-number flows in 
pressure gradient will have large values of shear-stress gradient d r /d y  in ‘wall units’,
1. e. (v/ puf)(dT/ dy)w =  AT, which appear to affect the viscous wall region and thus 
the value of C in (1.2), in addition to any effects on n. Note that in a developing 
flow d r /d y  — dp/dx  only at the wall: in the log law region d r /d y  ~  ^dp/dx  is a 
better approximation in a boundary layer (see also the appendix to Spalart 1988). In 
simple cases—where the bulk Reynolds number is large and the flow is not changing 
too rapidly with x—the deviations in C, or in the Van Driest ‘damping constant’ 
A+, can be correlated in terms of Ar (Huffman & Bradshaw 1972): see also §4.

The above comments about range of validity are imprecise, but amount to the 
statement that the law of the wall for mean velocity appears to hold in most simple 
turbulent wall flows. ‘Tenacious’ is the memorable word used by Kline in a position 
paper for the ‘Ringi’ group on turbulent boundary layer structure (now administered 
by Professor W. G. Tiederman, University of Florida). An indication that the law of 
the wall is less reliable than commonly believed comes from observations of the law 
of the wall for mean temperature (§ 2 b: hereafter the T-law), derived by an analogous 
dimensional analysis on the basis of analogous assumptions. Again, this law is well
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confirmed by measurements in flat-plate boundary layers and simple duct flows. It 
is harder to measure temperature and heat-flux rate than velocity and skin friction, 
and the prestige of the law of the wall for velocity (the law) has made us too ready 
to dismiss observed deviations from the T-law as the result of experimental error: 
several sets of measurements made in the late 1960s (Perry et al. 1966; Thielbar 
al. 1969; Blackwell et al. 1972) showed that the T-law failed in boundary layers in 
pressure gradient, but they have been largely ignored. However, there is now sufficient 
evidence that the T-law is comparatively fragile: it breaks down before the t/-law 
in boundary layers with high free-stream turbulence (Maciejewski & Moffat 1990) 
or streamline curvature (Gibson 1990). The sensitivity to pressure gradient (which 
does not appear in the temperature-field equations in low-speed flow) is remarkable.

Now since the derivation of the T-law closely parallels that of the {7-law, one 
would expect their ranges of validity to be broadly similar. This raises the question 
‘Is the tenacity of the U-law just good luck, and if so when does our luck run out?’. 
A surprising conclusion of the analysis of simulation data in this paper is that, in 
the lower part of the viscous wall region, the Reynolds shear stress fails to obey 
(1.16)—it depends significantly on bulk Reynolds number as well as flow type. The 
cumulative effect on the mean velocity at the edge of the viscous wall region is small 
in duct flows and boundary layers in zero pressure gradient, but significant in flows 
with large streamwise gradients, at least at low bulk Reynolds number.

Since we are concerned with relatively small quantitative discrepancies, qualitative 
data on inner-layer turbulence structure are unlikely to be useful. Therefore we will 
not discuss structure in detail in this paper, though quantities such as streak spacing 
(Kim et al. 1971) or burst rate may be useful diagnostics. For a review, see Robinson 
(1991).

In §2 we present the ‘bookwork’ for the laws of the wall for velocity and tem­
perature, with special attention to the weak points, and in §3 we do the same for 
the mixing-length formula on which various extensions of the law of the wall are 
based. Throughout the paper, ‘law of the wall’ means the formula in (1.1) or the 
corresponding result for temperature, including the log laws. For convenience we use 
‘log law region’ for the fully turbulent part of the inner layer, whether or not the 
log laws actually apply in the flow being discussed. Section 4 deals with the viscous 
wall region, making use of recent simulation results. Section 5 discusses turbulence 
models, nearly all of which are calibrated to reproduce the laws of the wall in simple 
situations. The final question posed by this paper is whether we can expect these 
models to predict deviations from the law of the wall. The present evidence is only 
moderately encouraging.

2. T he logarithm ic la w s ...

(a) . . .  for velocity
An equivalent of (1.1), obtainable either by differentiating (1.1) or by substituting 

dU/ dy for U in the list of variables, is

For large uTy /v  =  y+, we expect u not to affect the energy-containing shear-stress­
bearing eddies or their relation to the mean flow, because y+ is a representative
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Reynolds number of the energy-containing eddies as well as of the mean flow. There­
fore, for large enough y + , we expect F  to become constant, equal to 1/ k, say, so 
that

dU_ _  Ut_ 
dy Ky

and, integrating and requiring compatibility with (1.1a), we get

U_
uT +  C, (2. -1)

where C is related to the increase in U across the viscous wall region, y+ < 30-50.
By experiment, (1.2) is valid, with k «  0.41 and C «  5.0, for y+ >  30 but 

y/6  <  0.1-0.2, in boundary layers in small pressure gradient or in pipe or duct flows, 
provided that the bulk Reynolds number is not too small. Note that the outer limit 
of validity must depend on the outer-layer length scale 8 rather than the viscous 
length scale v /u T, because viscous effects are negligible in the log law region.

The above derivation of the log law is due to Landau (1944 work quoted by Landau 
h  Lifshitz (1993)). Most Western textbooks give (usually abbreviated) versions of 
the Millikan ‘overlap’ argument—a formalization of earlier work by Prandtl and 
von Karman—which requires the whole of the layer outside the viscous wall region 
to scale in terms of the local variables uT and 8, independent of the viscosity and 
of upstream history of the flow. The Millikan derivation is appealing and thought- 
provoking, but in fact adds little to that based on (2.1) alone: in both cases the key is 
the unimportance of viscosity for y+ > 30-50, which obviously has to be established 
before the outer layer can be scaled. The reason for working with (2.1) is that outer- 
layer scaling is certain to depend much more on upstream history than (1.1) or (2.1), 
simply because the eddies in the outer layer are larger and have longer lifetimes. 
Indeed the outer layer scales on uT and 8 only in fully developed duct and pipe flows, 
in boundary layers in zero pressure gradient, and in so-called ‘equilibrium’ boundary 
layers with pressure distributions that are rare in real life: the functional dependence 
on y /8 is different in each case. It would be very surprising if (2.1) were so restricted: 
however, this seems to be almost the case for the T-law.

Interestingly, the derivation of (1.1) and (1.2) at the start of this section is con­
ceptually similar to the standard derivation of Kolmogorov’s ‘universal equilibrium’ 
spectrum, almost the only other piece of turbulence theory that leads to an analytical 
result. The standard derivation is stated succinctly by Phillips (1991); ‘Kolmogorov’s 
first similarity hypothesis is that the statistical structure of the components in the 
equilibrium range, being independent of the larger scales, can depend only on [e], 
the rate of energy dissipation and v which determines the spectral distribution of 
dissipation, so that, in particular, the energy spectrum is, on dimensional grounds, of 
the form .. . ’ v 2r]f(kri). Here the velocity scale (ez/)1/4 =  v corresponds to uT and the 
length scale (z/3/e )1//4 =  y corresponds to v /u T, and the — |  power law in the inertial 
(inviscid) subrange corresponds to the log law. An ‘overlap’ region is not usually 
invoked quantitatively in the derivation of the Kolmogorov spectrum, though Mellor 
(1972) has used it in a derivation based on the spatial-correlation structure functions 
rather than the spectra.

Alternative formulations of the law of the wall have been discussed recently by 
Barenblatt and co-workers (Barenblatt 1993; Barenblatt &; Prostokishin 1993) and 
by George & Castillo (1993). Both discuss possible Reynolds-number dependence— 
that instead of F  becoming a constant at large , giving a log law, it continues
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to change, in such a way that the velocity gradient (and velocity) obey power laws 
with coefficients that depend on Reynolds number. George &; Castillo use an overlap 
argument for equilibrium (self-preserving) boundary layers, based on allowing differ­
ent scaling factors for the mean velocity and for the shear stress in the outer layer, 
instead of using uT for both. In most of the present paper the emphasis is on the 
larger effect of rapid streamwise changes and/or the behaviour of the viscous wall 
region, which these alternative formulations do not address directly. Therefore we 
will, without prejudice, base the discussion on the traditional log law: most of what 
is said would apply to the power laws as well.

( b) . . .  for temperature
Kader (1991) discusses the law of the wall for temperature (and other possible 

similarity laws for temperature profiles). It results from the assumption that for 
y S and y <C 6t(where 8t is the thickness of the thermal boundary layer, ^  8), 
the temperature relative to the wall, Tw — T, depends only on rw, on the surface 
heat-transfer rate gw, on the distance from the surface y, and on the fluid properties 
p, /i, the specific heat cp and the thermal conductivity k (again we assume that all 
fluid properties are substantially constant). From dimensional analysis we get

Tw T  „ f  uT
— 7f-----=  f r  -------, - r -  =  P r ,Tr \  v k

(2.5)

The analogy with (1.1) is clear. Here Tt = is the ‘friction tem perature’ 
and the last parameter on the right, B q, represents the ratio of heat transfer from 
the surface to work done against fluid friction (i.e. energy dissipation): in low-speed 
flow, energy dissipation is small and this parameter can be ignored. By considering 
d T /d y  instead of T  we obtain an equation analogous to (2.1),

dT
dy

(2.6)

For Ft to become constant we require the effects both of viscosity and of thermal 
conductivity to be small, requiring both uTy /v  =  y + and its temperature-field ana­
logue uTy/(k /pcp) =  y+ Pr to be large. On general grounds of analogy between heat
and momentum transfer we expect, and find, that y+ Pr must be greater than 30-50: 
clearly this is a stronger condition than y+ > 30-50 if < 1, and it caused confu­
sion in the early days of experiments on turbulent flows of liquid metals, for which 
P r <  1. Given that FT — const., =  \ / n T say, and requiring compatibility with (2.5), 
we get

Tw - T
Tt Kt v -\~Ct (2.7)

with Ct a function of Pr, equal to about 3.9 for air (P r =  0.71).
The turbulent Prandtl number, P r t , is the ratio of the apparent diffusivity of 

momentum to that of heat, and is defined in terms of local variables by

uv/(dU /dy)  
=  vWJ{dT /d y ) ’

(2 .8)

where —puv and pcvvT' are the turbulent shear stress and heat flux. In the region 
of validity of (2.2), and of (2.6) with FT =  1 (the ‘log region’), we find that 
P r t =  k/ k t - By experiment (see, for example, Kays & Crawford 1993), (2.7) is
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valid, for y+ Pr > 30-50, in boundary layers with zero pressure gradient and in pipe 
flows. The outer limit depends on the thickness of the temperature profile <$t , which 
is less than 6 if the surface has an ‘unheated starting length’. The data show that 
nT «  0.48, implying that the turbulent Prandtl number is approximately 0.85 in the 
log region. Reynolds’ analogy between heat transfer and momentum transfer is of 
course plausible only if Prt is fairly close to unity, though this is not explicitly as­
sumed in the above analysis. Guezennec et al. (1990) showed by analysing simulation 
data that the processes of turbulent diffusion of momentum and of heat are very dif­
ferent in detail. The reason is that pressure fluctuations affect turbulent momentum 
transfer but not heat transfer: thus, for example, the eruptions of fluid away from 
the wall in the inner layer have a larger spatial extent in velocity than in vorticity 
or temperature (or smoke or dye—a warning to practitioners of flow visualization). 
Therefore, it is somewhat of a coincidence that Prt is close to unity in the log region: 
it is well known that Prt falls to as little as 0.5 near free-stream edges. Admittedly 
there is no obvious reason why these structural differences should result in tenacity 
of the U-law and fragility of the T-law.

The law of the wall in turbulent flow 171

3. S ta tu s o f  th e  ‘m ix ing  le n g th ’ form ulae

(a) Effect of shear-stress gradient
In boundary layers in pressure gradient—for example—r  varies with y even in the 

inner layer, and rw usually varies more quickly with x  than in zero pressure gradient. 
An obvious extension of the spirit of the law-of-the-wall analyses is to use the local 
shear stress and heat-transfer rate instead of the surface values. In practice the y- 
wise heat transfer rate in low-speed flow near a uniformly heated surface, g, varies 
only slowly with y in the inner layer so gw may still be an adequate approximation. 
For the velocity field the generalization of (2.2) is

dU _
dy ny

(3.1)

which is of course the ‘mixing length’ formula. The analogous mixing length formula 
for temperature, replacing (2.6) (with Ft  =  1/W ), is

dT  _  Q/i
dy Vr/pKTy

(3.2)

In the above, r  =  —puv and q — pcpvT' (molecular contributions being negligible in 
the region of validity of these formulae). The mixing length theory was in effect an 
analogy with the kinetic theory of gases, with lumps of fluid exchanging momentum 
by occasional collisions. The mixing length is analogous to the mean free path: in 
the log region it is just ny «  0.417/, and one would not trust continuum (gradient- 
transport) approximations for gases with a mean free path as large as 40% of the 
distance from the solid surface! There is an interesting philosophical point: if a theory 
is dimensionally correct and leads to a result which could be obtained by dimensional 
analysis alone, the theory need not be physically correct—and so it is with the mixing 
length theory.

The derivation of the mixing length formula presented by Townsend (1961) is based 
on an analysis of the turbulent kinetic energy equation which at first sight adds little
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to the dimensional analysis. In fact, Townsend considers the possible effect of y- 
wise transport of turbulent energy (‘diffusion’), which introduces as a
parameter, but estimates its effects to be small except very close to separation. If 
r  =  rw + ay, where a  is a constant, Townsend shows that the integral of (3.1)— 
ignoring diffusion—is simply the log law (1.2) with the addition of a function of 
a y /r w, equal to 1/(2 n)ay/Twif a  is small. In principle, the constant C  in (1.2) can 
be a function of av/(pul),but except in low-Reynolds-number flows the effect seems 
to be small in flows not too close to separation.

The ‘mixing length’ formula (3.1) seems to work for boundary layers with suction 
or injection (where, in negligible pressure gradient, the momentum equation reduces 
to pVwdU/dy  =  dr/dy, leading to r  =  rw + However, the constant of inte­
gration that corresponds to C in (1.2) is allowed by the dimensional analysis to be 
a function of Vw/u T, and can therefore be chosen to give the best fit to given data, 
which may compensate to some extent for any inaccuracy of (3.1).

In compressible flow, p varies with y so that r /  varies even if r  does not, and the 
Van Driest transformation for the inner layer of compressible boundary layers (e.g. 
Bradshaw 1977; Huang et al. 1993) follows from the ‘mixing length’ formulae for 
velocity and for temperature (the latter in the form Prt The constants of
integration are functions of the ‘friction Mach number’ M T , where aw is the
speed of sound at the wall, and of the heat-transfer parameter B q on the right-hand 
side of (2.5) . . . ,  but this time the ‘incompressible’ values of the constants give a 
good fit to data, and there is general confidence in the accuracy of the Van Driest 
transformation in compressible boundary layers in small pressure gradients. It can be 
shown that the constant of integration of the temperature formula must be a linear 
function of B q for small B q, in order that Ct in the ‘incompressible’ T-law (2.7) shall 
be a true constant, but this is a nice point lost in the data scatter.

Thus, in two cases where the numerator of (3.1) varies significantly with y but 
streamwise rates of change are small, the mixing length formula for velocity seems 
to work well, and the compressible-flow results give reasonable confirmation of the 
constancy of turbulent Prandtl number in the fully turbulent part of the inner layer. 
We now consider flows with large streamwise rates of change, especially boundary 
layers in pressure gradient: of course, such flows usually have large d r /d y  as well.

( b) Flows with large streamwise gradients
In boundary layers in strong favourable or adverse pressure gradients, Patel (1965) 

found departures from the log law with the sign predicted by the mixing-length 
formula—but apparently with rather larger magnitude (though Patel (1973) suc­
cessfully used the mixing length formula to correlate data for boundary layers with 
severe pressure gradient or transverse surface curvature). In fact, Townsend’s result 
for d r /d y  = a  =  const., quoted above, shows that even where the shear stress has 
increased to twice the wall value, the value of U /uT predicted by the mixing length 
formula exceeds the log-law value by only about 1.2—typically about 6%. From his 
measured velocity profiles, Patel (1965) deduced the range of dimensionless pressure 
gradient A p = ( v / p u ^ ) d p / d x ,  within which a Preston tube with uTd/v  <C 200 could
be relied on to 3% accuracy: —0.005 < Ap < 0.01. (Strictly the limit should be based 
on d r /d y —i.e. on Ar as defined above—rather than dp/dx.)

Patel’s conclusions represented the received wisdom, that departures from the 
log law in strong pressure gradient were significant but at least roughly in agreement 
with the mixing-length formula. Huffman &; Bradshaw (1972), studying the effect
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of large d r /d y  on the viscous wall region, found that the mixing-length formula 
adequately described the velocity profile outside that region: however, the flows they 
studied changed fairly slowly in the x  direction.

More recently, several other workers (e.g. Galbraith et al. 1977; Rodi & Scheuerer 
1986), have found that the plain log law (1.2) usually works better than the integral 
of the mixing-length formula (3.1) in boundary layers in pressure gradients (espe­
cially adverse pressure gradient). There is no rigorous explanation for the success of 
(1.2) outside its expected region of validity, and this is one of the main questions 
posed by this paper. Evidently, the effect of d r /d y  in increasing dU /dy  according 
to the mixing length formula is approximately cancelled by the effect of (i) wise 
diffusion and/or (ii) a:-wise gradients (advection). In their direct numerical simula­
tion (d n s ) of a boundary layer in adverse pressure gradient at low Reynolds number, 
Spalart & Watmuff (1993) found that U fell below the log law, i.e. in the opposite 
sense to the deviation predicted by the mixing-length formula for positive dr /d y ,  
and by roughly the same amount. This agrees qualitatively with the measurements 
of Nagano et al. (1991) in adverse pressure gradient. Gasser et al. (1993; see also 
Hirt & Thomann 1986) compared Preston tubes, Stanton tubes and wall pulsed 
wires to a floating-element balance and found that all read low in a boundary layer 
downstream of a small separation bubble (and in boundary layers downstream of 
a positive shear-stress minimum): the above list of devices is in order of decreasing 
size and—as expected—also in order of decreasing error. These results are consistent 
with a velocity profile that falls below the log law in the presence of large positive 
dr/dy .  However, Gasser et al. (1993) found that the devices tended to read high in 
boundary layers in strong adverse pressure gradient (decreasing surface shear stress), 
though the trend of error with device size was not consistent. Finally, Le et al. (1993), 
in a d n s  of the reattached flow downstream of a backward-facing step, again found 
that U fell below the log law, in qualitative agreement with the surface-tube re­
sults of Gasser et al. (1993) behind a small separation bubble: however, the backstep 
flow is essentially a reattached mixing layer with a very different structure from a 
conventional boundary layer.

The above discussion suggests that it is unlikely that departures from the law of 
the wall (or, indeed, from the mixing-length formula) in rapidly changing flows can 
be correlated solely in terms of t / tw, dr/dyor of any other local parameter. If wise 
diffusion of Reynolds stresses were important, the mixing-length formula would not 
work in flows with suction or injection, nor, probably, in compressible flows with 
large y-wise density gradients. For quantitative purposes, we need to consider the 
effects of flow history. Specifically, we should investigate the universality or otherwise 
of the coefficients in turbulence models based on differential equations that allow for 
flow history (in practice, two-equation models or better). We return to turbulence 
modelling in §5.

(c) The law of the wall for temperature
The T-law seems to fail spectacularly in flows whose velocity field changes rapidly 

in the x direction: data are still fairly scarce, but Kays (personal communication, 
1994) regards the evidence as overwhelming. It should be recorded that Head (1969) 
suggested that the T-law analysis was in error, ‘either because of some error in the 
particular assumptions for heat transfer or (more seriously) in the basic assump­
tions of mixing length theory’ (read ‘law-of-the-wall analysis’). The T-law is gener­
ally well supported by measurements in flows with slowly changing velocity fields.

The law of the wall in turbulent flow

Proc. R. Soc. Loud. A (1995)



174 P. Bradshaw and G. P. Huang

r  = 2.075 In y+ + 3.9

Figure 1. Temperature profiles in favourable (Thielbahr al. 1969; V) and adverse (Blackwell 
et al. 1972; o) pressure gradient. T + = (Tw — T )/T t . From Kays & Crawford (1993).

Experimental evidence for boundary layers in strong pressure gradients is limited but 
consistent. Perry et al. (1966) show temperature profiles in adverse pressure gradient 
which run roughly parallel to (2.7) but well below it. At the nearest measurement 
point to the wall, (Tw — T ) /T t is still considerably lower than the pure-conduction 
limit, ( uTy/v)Pr, which must be attained close enough to the wall. This suggests
the possibility of consistent measurement error, but the constant-pressure profiles 
measured by Perry et al. (1966) follow (2.7) well. Samples of the temperature pro­
files measured by Thielbar et al. (1969) and by Blackwell et al. (1972) are shown in 
figure 13-11 of Kays &; Crawford (1993), which is reproduced here as figure 1. The 
profiles follow the pure-conduction limit near the wall but show large departures 
from (2.7) in the log law region, the profile slope being larger in favourable pressure 
gradient and smaller in adverse pressure gradient (thus, the departure from (2.7) is 
in the same sense as found by Perry et al. (1966)). As expected, r  increases with 
y in adverse pressure gradient, and conversely, but the profile of q is little affected 
by pressure gradient. The measurements quoted by Kays & Crawford (1993) were 
at low Reynolds number, but the discrepancies in the T  profiles are far larger than 
in low-Reynolds-number simulations in zero pressure gradient. Integration of (3.2), 
assuming that q« gw but with uT, in the definition of Tr , replaced by y (rw +  
gives an additional term in (2.7), equal to — if a  is small. In principle,
CV, like C, becomes a function of au/(pu)̂,representing the effects of the stress gra­
dient on the viscous/conductive wall region, but these seem to be fairly small. Now 
d r /d y is positive in adverse pressure gradient, and conversely, while the profile of q is 
little affected by pressure gradient. Therefore, the additional ‘mixing length’ term is 
of the right sign, but too small to explain the changes in (Tw —T )/T t (the maximum 
shear stress in the Blackwell run quoted by Kays Sz Crawford (1993) is about 2.3rw, 
so the additional term gives a reduction in (Tw — T ) /T r of about 1.5 while the real 
decrease is at least 3). Volino & Simon (1994) have analysed some additional data 
in favourable pressure gradient and confirmed the trends found by Kays &; Crawford 
(1993). The changes in (Tw — T ) /T t due to pressure gradient are in the same sense 
as the changes in U /uT discussed above, but far larger. By comparison, the law is 
a good approximation.

The turbulent Prandtl number Prt has d T /d y  in its numerator and might be ex­
pected to decrease strongly in adverse pressure gradient: Prt as measured by Black­
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well does decrease, but by only about 15% in the run quoted, where d T +/d y + at 
given y + halves. In view of the failure of law-of-the-wall arguments for temperature, 
the nearest to an explanation tha t can be provided for this, and for the success 
of prediction methods which use constant turbulent Prandtl number (outside the 
viscous/conductive wall region), is as follows.

Outside the viscous/conductive wall region, definition (2.8) is equivalent to

-(T /p ) /{d U /d y )
* (q/pcp) / ( d T /d y y

(3.3)

so if, in the inner layer of a boundary layer in pressure gradient, dU jdy  is still given 
by the simple log law, equation (1.2), and q is still equal to qw, then

Prt =
Tw oy+

(3.4)

At given y+ , the effect of imposing (say) an adverse pressure gradient is to in­
crease the first factor, while according to experiment the last factor decreases, so 
Prt changes less than expected. It has to be admitted that this is a poor justification 
for assuming constant Prt in a prediction method!

Indirect evidence for the failure of the T-law comes from the behaviour of the 
Stanton number in adverse pressure gradient, for which there are rather more data. 
Qualitative belief in Reynolds’s analogy, for which the main support is the law- 
of-the-wall analysis above, suggests that heat transfer rate (W m~^) and Stanton 
number should decrease in adverse pressure gradient (though it is well established 
that heat transfer is not zero at separation or in separated-flow regions, because skin- 
friction fluctuations and consequent heat transfer persist even when time-average 
skin friction is small). In the theory for heat transfer in arbitrary pressure gradient

, it is assumed that Stanton number 
where A 2 is the enthalpy thickness. 

The separating-flow experiments of Parikh et al. (1976) agree with this: obviously, 
A2 grows faster, and therefore predicted St decreases somewhat faster, in adverse 
pressure gradient. Measurements ahead of a separation bubble by Rivir et al. (1992) 
do not include skin-friction measurements, but the Stanton number falls significantly 
only quite close to separation. Recent direct simulations at low Reynolds number by 
Coleman & Spalart (1993 and personal communication) also show a decrease only 
very near separation. These results are compatible with a decrease of Tw — below 
the wall-law value in adverse pressure gradient.

Pauley & Eaton (1994) present wall-law plots of velocity and temperature in 
boundary layers with pairs of imbedded longitudinal vortices, one case in which 
the ‘common flow’ between the vortices was directed away from the surface and one 
with common flow towards the surface. These flows change slowly in the streamwise 
direction but have large spanwise gradients. In both cases the velocity profiles are 
quite well fitted by the log law (skin friction having been measured by a surface fence 
with a height of no more than 8 wall units). The heat-transfer surface has constant 
heat flux after an unheated starting length, and the temperature profiles presented 
are typically only about half as thick as the velocity profiles. This may be partly, but 
certainly not wholly, responsible for the very large departure from the T-law in the 
common-flow-down case. (In the common-flow-up case, the vortices are further from 
the surface and the inner layer is not so strongly disturbed.) The spanwise variation 
of the departure roughly follows the variation of surface shear stress, the turbulent

in the second edition of Kays & Crawford (1993) 
follows the constant-pressure trend St oc Refff'2
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Prandtl number increasing when the normal-component mean velocity V  is nega­
tive and decreasing when it is positive. Evidently, spanwise, as well as streamwise, 
changes in velocity field perturb the law of the wall for temperature.

In the above cases, the wall temperature or heat-flux rate was constant, so that 
the temperature field would have changed slowly but for the effects of the rapidly 
changing velocity field. Teitel & Antonia (1993) made measurements downstream 
of a step change in wall heat flux in a fully developed duct flow at low Reynolds 
number, and found that the temperature profiles fitted the T-law below a value 
of y roughly equal to 0.02£, where £ is the distance from the step change. This is a 
fairly large fraction of the total thickness of the temperature profile, compared to the 
nominal limit of y <0.1-0.26t for validity of (2.7). This work generally corroborates 
the finding of Hoffmann & Perry (1979). It appears, therefore, that in this rapidly 
developing temperature field (with slowly changing velocity field) the T-law does at 
least as well as one could expect. This suggests that failure of the T-law in rapidly 
changing velocity fields is connected with the failure of the the mixing-length formula 
(3.1), which depends on local equilibrium of the flow (Townsend 1961).

(d) Compressible flows
In high-speed boundary layers in zero pressure gradient, the Van Driest trans­

formation (§3 a) gives a good fit to measured velocity profiles in the inner layer, 
supporting (3.1) and the assumption of constant turbulent Prandtl number for the 
case of large dp/dy. Also, temperature profiles, such as they are, do not contradict 
the assumption of constant Prt . This is useful information because the heat flux 
in a high-speed boundary layer varies as q~ +  Utw (the rate of dissipation of 
mean plus turbulent kinetic energy into heat being rdU /dy  per unit volume): the 
implication is that quite large values of dq/dy  do not disturb the turbulent Prandtl 
number. The simulations by Coleman et al. (1993 and private communication) of 
flow in a duct with very cold walls at Mach numbers up to 3 (sfk/a  up to 0.25, close 
to the wall) appear to show good support for the Van Driest transformation, except 
that the additive constant does seem to be changed, either by the very large density 
gradient close to the surface or simply by the low bulk Reynolds number.

There is little reliable information on surface shear stress in high-speed boundary 
layers in pressure gradients: frequently, the Van Driest transformation is relied on to 
find surface shear stress. Fernando & Smits (1990) compared results from Preston 
tubes, using a calibration based on high-speed data but in zero pressure gradient, 
and two transformations; Van Driest and Carvin et al. (1988). The results agreed 
well, which is encouraging, but, as in low-speed flow, a Preston tube reading and a 
velocity-profile fit are not independent measurements of surface shear stress.

(e) Three-dimensional flows
This subject has recently been reviewed by Johnston & Flack (1994), who con­

clude that the two-dimensional U-law works quite well for the velocity magnitude in 
three-dimensional boundary layers with not-too-strong crossflow. A law for the flow 
direction is still wanting: there is very little support for the most plausible three- 
dimensional version of the mixing-length formula (van den Berg 1975), in which U 
and t / p in (3.1) represent two-dimensional vectors in the y -z  plane and the direc­
tions of the resultant shear stress and resultant mean shear are supposed to coincide 
(isotropic eddy viscosity). Most experimental data show a significant difference be­
tween the two directions, so that even though the difference apparently goes to zero
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at the surface it is not negligible in the log law region. Note that there is no rea­
son why the limiting direction of the Reynolds shear stress as —■» 0 (where the
Reynolds stresses themselves are zero) should be the same as the limiting direction 
of the total shear stress. The viscous wall region is not in local equilibrium, and there 
is strong transport of turbulent energy and Reynolds stress towards the surface from 
the region of maximum energy production at y + «  12. Therefore, the direction of 
the shear-stress vector very close to the surface will tend to follow that at «  12.

Degani et al. (1993) have carried out an overlap analysis for the three-dimensional 
boundary layer. The leading-order solution is a quasi-two-dimensional (‘collateral’) 
inner layer: the convective and pressure-gradient terms in the momentum equations 
appear only at higher order. By definition, the latter terms are significant if there is 
significant crossflow, and the accuracy of a leading-order solution in the presence of 
large second-order terms is inevitably doubtful. The analysis of Degani et al. (1993) 
predicts that the velocity component in the direction of the surface shear stress 
(closely equal to the resultant velocity in mildly three-dimensional flows) follows 
the two-dimensional log law. This is indeed found in practice (see, for example, 
Johnstpn & Flack 1994; Pauley & Eaton 1994), probably accurately enough for a 
Prestop tube to be used for skin-friction measurement as long as the flow direction 
does not change more than a few degrees between the surface and the top of the tube 
(Preston tubes are considerably more sensitive to yaw than pitot tubes in uniform 
flow). The direction of the velocity (relative, say, to an x-axis aligned with the local 
surface shear stress) does not seem to correlate with local dp/dz  or the local gradient 
of £-wise shear stress, dvw /dy  (van den Berg’s (1975) mixing-length analysis would 
lead to correlation with the latter).

It appears that local law-of-the-wall scaling is not adequate to describe the cross- 
flow in typical three-dimensional boundary layers. The difference between the direc­
tion of the shear stress and that of the mean shear is probably attributable more to 
strearnwise rates of change than to influence of the outer layer, because, except in 
the depths of the viscous wall region, information generally diffuses out to larger y 
and this would tend to thicken the local-equilibrium region.

The law of the wall in turbulent flow 177

4. T he v iscou s wall region

Logic suggests that any departures from the laws of the wall should become smaller 
as y (say y+) decreases, since the laws for mean velocity and temperature become 
exact (by definition) as y+ —>• 0: in particular, the effects of bulk Reynolds number 
ut6 /u, based on shear layer thickness <5, should be smallest at small y/8.

Huffman & Bradshaw (1972) reached the opposite conclusion, on rather slender ev­
idence. The present analysis of low-Reynolds-number simulation data shows conclu­
sively that the Reynolds stresses are strongly flow-dependent and Reynolds-number- 
dependent near the wall, while the logarithmic law of the wall is much more nearly 
universal. (Recall that the additive constant in the law of the wall depends on the 
velocity profile in the viscous wall region, which in turn depends on the Reynolds 
shear stress in that region.) A simple explanation is that when the Reynolds stresses 
are small they are more susceptible to outside influence, but it is not clear what the 
outside influence is.

If the mean velocity U and the turbulent fluctuations u, v and w are expanded in 
powers of the distance from a solid surface, y, then, using the no-slip condition, the 
no-permeability condition, the continuity equation, and the fluctuating part of the
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momentum equation at y — 0,

lid2Ui/dx2l dp /dxi, (4.1)

we obtain

i 2w+

u+v+

du+ V 
dy+ )

i ^
y +

1 / ^ + Y  + 4

4 \d y +  )  V

du+ dp'+ _|_3 
dy+ dx+ y

1 dp'+ d2 _|_5 
6 dy+ dy+2 y

( id w +\ 2 , 2 ,3
\ W J V +W d ^ V +
1 du+ dp,+ _|_3
2 dy+ dy+ y +

(4.2)

(4.3)

(4.4)

(4.5)

where all gradients are evaluated at y+ =  0. The superscript ‘+ ’ indicates non- 
dimensionalization of velocities by the friction velocity uT =  y/rw pressures by rw 
and lengths by v ju T(‘wall units’). If the total (viscous plus turbulent) shear stress 
is independent of distance from the wall then integration of the expression for total 
shear stress gives

U+ = y+ + -
1 du+ dp,+
8 dy+ dy+ + (4.6)

the coefficient being one-quarter of that in the leading term of u+v+. Equations (4.2)- 
(4.5) are given by, for example, Townsend (1956). Sreenivasan (1989), following 
Monin k  Yaglom (1971) and using later experimental data, gives values for some of 
the coefficients in the corresponding expansions for root-mean-square values, while 
Mansour et al. (1988) and others give some values from simulation results. In the 
present paper we give results for mean squares, from which the series for root mean 
squares may be easily derived.

There are many measurements of the limiting behaviour of u+2 in the literature, 
usually given in the form y/u2/U  which in the limit is just the square root of the 
coefficient of y+ in (4.2). Simulation results are somewhat higher than typical exper­
imental values, probably because of finite spatial resolution of the instruments. An 
exception appears to be the recent work of Durst al. (1994) using a laser Doppler 
velocimeter in a circular pipe: they found a/ u2 jU  ~  0.345 +  7.5 x 10 where
6 is the radius of the pipe, which is as close as could be expected to the plane duct 
simulations described below, though with a somewhat smaller trend with Reynolds 
number. The value for the leading coefficient in from Monin Yaglom is
0.07: values up to about 0.1 have been measured more recently but as Sreenivasan 
points out this is still significantly less than in the simulations, which show 0.2-0.3. 
Measurements of v2 and uv near a solid surface are even more difficult than mea­
surements of w.In this paper we concentrate on the analysis of simulation data: the 
results are necessarily restricted to low Reynolds number but the effect of flow type 
is likely to be qualitatively the same at higher Reynolds number.

Figures 2-5 show the Reynolds stresses in the viscous wall region for the two- 
dimensional duct simulations of Kim et al. (1987) at uTS/u = 6+ = 180 (where 
6 is the half-height of the duct) and of Kim (unpublished) at <5+ =  395, and for 
the constant-pressure boundary-layer simulation of Spalart (1988) at <5+ =  150, 325
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0.20 - i

0.10-

0.05-

Figure 2. Ratio of u2 to y2, in ‘wall units’, in a plane duct (Kim al. 1987) and a boundary
layer in zero pressure gradient (Spalart 1988): Re = uTb/u  where 6 is boundary-layer thickness 
or duct half-height; Y, duct, Re =  180; ▲, duct, Re =  395; •, BL, Re =  150; x, BL, Re — 325; 
0, BL, Re =  650.

and 650 (where 6 is the total thickness of the boundary layer and is not to be 
compared quantitatively with the half-height of the duct). Each Reynolds stress 
is normalized by the surface shear stress and divided by the limiting power of y+ 
given in (4.2)-(4.5). According to the law-of-the-wall analysis, these plots should be 
universal functions of y+ , independent of bulk Reynolds number and flow type. In 
particular, the values at y+ — 0 give the leading coefficients in (4.2)-(4.5), which 
should be universal according to the law-of-the-wall analysis and obviously are not. 
Note that the logarithmic law (1.2) is fairly well obeyed in these flows, deviations in 
U being no more than ±1.0uT. Figure 2 shows an increase in dimensionless 2 with 
increasing Reynolds number, for a given flow: experimental results of several workers 
plotted by Nagano et al. (1991) (their figure 6) show a decrease with increasing Re 
but the authors themselves do not regard the trend as significant.

The normal stresses do not significantly affect the mean motion, but the non­
universality of the shear stress is obviously of potential importance. Therefore, before 
discussing the physics of these results, we investigate the effect of the shear-stress 
deviations on the mean velocity.

If the variation of total shear stress r  with y is known we can write, with no other 
assumptions,

— puv +  ydU /dy  — r. (4.7)
The integral of this equation with respect to y, written in wall units for constant- 
property flow, is

y+ y-\-
[  -u+v+ dy+ +  U+ = f  (t / tw) dy+. (4.8)

J o  J o
Figure 6 shows —u+v+ dy+ for the five simulations and it is seen that the per-
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Figure 3. Ratio of v2 to y4, in ‘wall units’, in a plane duct and a boundary layer: symbols as in
figure 2.

0.100

0.075 2

0.050 2

0.025 -

Figure 4. Ratio of w2 to y2, in ‘wall units’, in a plane duct and a boundary layer: symbols as in
figure 2.

centage differences at larger y+ are considerably less than those near the surface in 
figure 5.

These flows have significant shear-stress gradients: in the duct at <5+ =  180, the 
total shear stress at y+ = 30 is |  of the wall value, while for the other cases the 
difference is less but not negligible. One would expect the turbulence to scale more 
closely on the local (total) shear stress than the wall value—although this is one of 
the assumptions of the mixing length analysis disparaged above!—and indeed the 
integrand for the duct at <5+ = 180 is much lower than the others throughout the
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-5.0e-04-

-1.0e-03-

Figure 5. Ratio of uv to y3, in ‘wall units’, in a plane duct and a boundary layer: symbols as in
figure 2.

■n-,‘11. it**

Figure 6. Integral of Reynolds shear stress with respect to , in ‘wall units’: symbols as in
figure 2.

range shown in figure 6. Now rearranging (4.8) we obtain

[  — u + v + d y + + f  (1 — t / tw) — (4.9)
J o  J o

and the left-hand side is plotted in figure 7. This modified form of the integral 
allows the effect of non-universality of — u + v + on U + to be deduced immediately, 
while if r  =  rw everywhere then the plotted quantity is just the intuitively useful
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Figure 7. Modified integral of Reynolds shear stress with respect to , from (4.9), in ‘wall 
units’. Ordinate is equal to y+ — U+: symbols as in figure 2.

JQy —u+v+ d y+ plotted in figure 6. In the duct at 6+ =  180, —u+v+ d is about
13.2 at y+ = 30 , compared with about 16.2 for the corresponding ordinate in figure 7: 
in contrast, the difference for the boundary layer at the highest Reynolds number is 
only about 0.1. ____

Figures 6 and 7 show (i) that the very large percentage differences in — found 
near the surface decrease rapidly as —u+v+ increases and have little effect on the 
mean velocity profile, and (ii) that the remaining differences in the outer part of 
the viscous wall region compensate fairly accurately for the decrease in total shear 
stress, so that f /+ at, say, y+ =  30, is much more nearly universal than the ‘local’ 
variable U/  y/r/p .

Our analysis of simulation data is continuing, and shows that gross non­
universality can occur within a single flow. In the backward-facing step of Le 
al. (1993) the surface value of — u+v+/ y +3at 10 step heights downstream of the 
step was about ten times larger than in a constant-pressure boundary layer. In the 
simulation of a favourable-adverse pressure gradient boundary layer by Spalart & 
Watmuff (1993), which would be thought of as a mildly non-equilibrium flow, the 
same quantity varies over a range of nearly 3:1, in the same sense as the trend in 
u2 measured by Nagano et al. (1991) in adverse pressure gradient. In all these flows, 
U+ departs significantly from the log law.

The mechanism for the very large departures from universality in the lower part of 
the viscous wall region is not clear. The only purely local quantity that is different in 
the various cases discussed above is the total shear-stress gradient (or the pressure 
gradient), and although figure 5 shows that the variation with d r + /d y + is in the 
same sense for the boundary layer as for the duct (where the shear-stress gradient is 
much larger), it is clear that d r + /d y + will not collapse results for both flows. Some 
non-local mechanism is at work.

‘Inactive motion’ or ‘splat effect’ (Townsend 1961; Bradshaw 1967) was an excuse 
for the failure of the turbulence to scale completely on law-of-the-wall variables,
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even in simple flows such as constant-pressure boundary layers at high laboratory 
Reynolds numbers. In such flows the universality of the mean velocity profile was 
not in dispute, streamwise accelerations in the log law region were small, and the 
implication was that uv must be nearly universal even though—notably— 2 was 
not. Pressure fluctuations generated in the outer layer (or equivalently the induced 
velocity field of outer-layer vorticity) can produce additional disturbances near a wall, 
with length scales typical of the outer layer (i.e. large compared to y). Continuity 
requires that for y <C [length scale], additional v is small compared to additional u 
or w (since v ~  yu /[length scale]) so additional uv is small: hence the name ‘inactive 
motion’. Because the inactive motion depends on the larger outer-layer eddies, we 
expect it to scale on y/6, so that at given uTy /v  there is an apparent effect of the 
Reynolds number uTbfv  even though the phenomenon is basically inviscid.

‘Inactive motion’ certainly exists—spectra in the atmospheric boundary layer im­
ply horizontal motions with wavelengths very large compared with y, and Naguib 
& Wark (1992) found departures of u and w from wall scaling at low wave num­
bers (large correlation separations) in a laboratory boundary layer. This insensi­
tivity of the inner layer to imposed horizontal motions is also found in oscillating 
flows (see Binder et al. (1995) in this volume). However, strong enough influence of 
the outer layer is bound to affect the shear-stress-producing motion near the wall, 
e.g. the function g in the vital relationship (1.16) =  g{uTy/v) .  The inac­
tive motion concept suggests that the largest effects of outer-layer disturbances will 
appear in the viscous wall region, where the mean velocity is smallest and there­
fore pressure fluctuations have the largest effects, and where allegedly inactive u 
and w lead to viscous (Stokes) layers. If the eddies producing the inactive motion 
have wavelengths of order 6and convection velocities of order Ue, th e Stokes-layer 
th ickness 6S is of order yjv8/Ue, so that uTSs/ v  is of order y /uT6 /v y /u T/Ue. Since 
y/uT/Ue = (c f/2 )1/4 ~  0.2, the Stokes layer is confined within the viscous wall re­
gion in any laboratory-scale flow. Even so, the inactive-motion concept would predict 
larger disturbances to the tangential Reynolds stresses than to the shear stress, in 
contrast to the simulation results analysed here. At very high Reynolds number, the 
Stokes layer nominally encroaches on the log layer, but then the outer-layer scales 
are so large in comparison with the sublayer thickness that the inactive motion is 
just a quasi-steady modulation of surface shear stress, as in the case of low-frequency 
oscillations of the free stream. Therefore, perturbations of the viscous wall region by 
the outer layer may seriously affect the shear-stress-producing motion only at fairly 
low Reynolds numbers: at higher Reynolds numbers the perturbations might be more 
truly ‘inactive’. Against this, of course, is the fact that neither the plots shown here, 
e.g. figure 5, nor the measurements of Durst et al. (1994), show any tendency towards 
a limiting curve at higher Reynolds number.

The behaviour of the law of the wall for temperature in the viscous/conductive 
wall region is currently controversial. There, the turbulent Prandtl number Prt is 
expected to be a function of y+ and Pr. The data correlation of Kays (1994) for air 
flows (with small pressure gradients, so that the T-law is well behaved) shows that 
Prt increases near the wall and asymptotes to approximately 1.7 at the surface. This 
behaviour is not found in low-Re d ns  results, where Prt is about 1.1 at the surface: 
for discussion see Huang & Bradshaw (1994). The difference is not too important 
in practice, because the large values of Prt occur where both uv and vT' are small 
(so Prt —► 0/0), but the limiting behaviour of Prt is a useful diagnostic for non­
universality of the T-law.

The law of the wall in turbulent flow
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It is obvious that if the law of the wall for velocity (and turbulence quantities) is 
inaccurate in the viscous wall region then the T-law will be inaccurate also, except 
by good luck. Further analysis of simulation data should clarify matters.

5. T urbulence m od els

Here ‘model’ means one or more Reynolds-averaged (usually time-averaged) for­
mulae or differential equations yielding the Reynolds stresses: we do not consider 
sub-grid-scale models for large-eddy simulations, although these are most severely 
tested in the near-wall region where the Reynolds-stress-bearing eddies are smallest.

All worthwhile models reproduce the law of the wall in the constant-stress layer. 
Indeed, it is commonplace that the comparative success of turbulence models in 
attached flows is due more to the law of the wall than to the turbulence model for 
the outer layer.

Now most stress-transport models of turbulence, at least, include wise diffusion 
terms and, by definition, also include x-wise transport. However, there seems not to 
be a series of computations to see whether stress-transport models (mainly descen­
dants of the Launder-Reece-Rodi (LRR) (Launder et al. 1975) model) reproduce 
measurements of the mean velocity and temperature profiles in the inner layer. This 
is a central difficulty: the LRR family reproduce local equilibrium and the law of the 
wall in slowly changing flows—but do the constant coefficients in the LRR models 
really remain constant in flows which are changing rapidly in the x o r  directions?

Huang & Bradshaw (1994) have recently explored the consequences of forcing a 
‘two-equation’ turbulence model to reproduce the log law for velocity even in the 
presence of significant d r /d y  (but neglecting streamwise transport terms). This re­
quires the eddy (kinematic) viscosity in the log law region to vary as z/t =  
rather than ny \Jt f  p as implied by the mixing-length formula with l =  ny. Using the 
definition of turbulent Prandtl number and assuming that qw, this leads to

<9T _  ^  Prt 
dy T rw ’

(5.1)

which is the mixing-length formula (i.e. (2.6) with the function F  equated to 
1 / kt = TVt / k) multiplied by a factor r / r w. This modified mixing-length formula fits 
temperature-profile data for boundary layers in pressure gradient quite well, assum­
ing a constant turbulent Prandtl number. Obviously the justification for constancy 
of Prt relies on the validity of the original ‘mixing-length’ formulae for U and T, so 
the result must be regarded as purely empirical.

Huang & Bradshaw (1994) studied the family of two-equation models whose vari­
ables are the turbulent kinetic energy, k,and kmen, in search of optimum values of 
m  and n (in the spirit of Spalding 1991): for present purposes the ‘optimum’ model 
is that which reproduces the log law for velocity and (5.1) for temperature (taking 
Prt =  const.) with r  =  rw + ay  and q = qw. It happens that the optimum is exactly 
the Wilcox (1993) k,LO model, where u  oc e/k,i.e. — 1, — 1 (note that u  is not
the root-mean-square vorticity fluctuation, but is nominally related to the vorticity 
held of the larger eddies. Results from the k, e model are poor. Recall that there are 
essential differences between the different two-equation models, irrespective of the 
values of the empirical coefficients: if (say) the uj transport equation is transformed 
into a transport equation for e (using the transport equation for k), the ‘diffusion’ 
(turbulent transport) term transforms into a diffusion term plus a source/sink term
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which has no counterpart in the fc,e model itself. (The reason is that the turbu­
lent diffusivity in two-equation models depends on the variables, so that although 
turbulent transport is modelled as a gradient-diffusion process, it is nonlinear.)

Huang & Bradshaw’s (1994) analysis neglects transport of turbulence quantities 
by the mean flow (the left-hand sides of the transport equations), but these terms 
are generally too small to account directly for the difference between (say) (2.2) and 
(3.1): by implication, streamwise gradients affect the turbulence structure (i.e. the 
empirical coefficients of the terms on the right-hand sides).

So-called ‘low Reynolds number’ turbulence models have coefficients which are 
functions of turbulence Reynolds number, typically adjusted to reproduce
the shear-stress profile (and thus the mean velocity profile) in the standard viscous 
wall region. There is no guarantee that these models will predict the correct shear 
stress profile when the standard law of the wall no longer applies. The compelling 
reason is that the Reynolds-number dependence of the coefficients necessarily has 
to include compensation for any errors in the high-Reynolds-number form of the 
model—such as the inability to deal with highly inhomogeneous flows—which become 
large near the wall.
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6. Conclusions

It is a normal characteristic of scientific research that a first-order theory which 
has served well for many years is found to need second-order corrections. The present 
state of the law of the wall is more worrying. The velocity profile stays close to the 
log law in circumstances where the basic law-of-the-wall scaling should not hold, and 
where the mixing-length formula—which can be defended as a plausible extension 
of law-of-the-wall concepts—predicts departures from the log law. In some cases at 
least, the departure from the log law is in the opposite sense to that predicted by 
the mixing-length formula.

The temperature profile, on the other hand, departs from the log law considerably 
more than predicted by mixing-length theory (but in the same direction): in fact the 
law of the wall for temperature breaks down spectacularly in flows where the law of 
the wall for velocity is still valid. It is especially odd that the T-law is more affected 
by pressure gradient than the U-law. The turbulent Prandtl number in the log region 
remains approximately constant, which must be a coincidence.

Now the laws of the wall for velocity and for temperature can be derived by closely 
analogous arguments: their range of validity ought therefore to be roughly the same. 
Therefore, the fragility of the T-law, compared to the tenacity of the [/-law, casts 
doubt on the latter.

The mixing-length formula for velocity works well in some cases where d(r/p)/dy  
is large, and the mixing-length formula for temperature works well in at least some 
cases where dq/dy is large, providing that streamwise gradients are small. Large 
streamwise gradients usually produce large y-wise gradients, but the implication is 
that failure of the mixing-length formulae is directly due to the effects of upstream 
history of the flow in the inner layer. The co turbulence model reproduces the U 
and T profiles observed in strong pressure gradients, but for no clear physical reason: 
indeed it differs from the k, e two-equation models in its treatment of wise, rather 
than x-wise gradients.

Perhaps the most surprising conclusion of the present paper is that the Reynolds 
stresses, including the shear stress, deviate most strongly from law-of-the-wall scaling
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deep in the viscous wall region. In simple flows the integrated effect of the shear- 
stress changes on the mean velocity in the log law region is small, but in rapidly 
changing flows the changes in the viscous wall region are gross.

Now that serious questions have been raised about the status of the laws of the wall, 
a closer look at existing data, particularly simulation results, is needed. Combined 
with this is the need for more tests of existing turbulence models in flows with large 
streamwise gradients.

We are grateful to Mr C. A. Langer for assembling the simulation results discussed in §4, and 
to him and Mr D. M. Bott for plotting the figures. We are grateful to Dr T. J. Coakley and 
Professor W. M. Kays for helpful discussions, and to Professsor Kays for permission to reproduce 
figure 1. Gratitude to the dead is more difficult to convey; but the name of Osborne Reynolds 
has appeared, on average, twice on each page of this paper (devoted to a law he never knew), 
and this is a testimony to the soundness of the foundations that he laid a century ago.
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