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Flow of a Viscous Liquid on a Rotating Disk* 

ALFRED G. EMSLIE, FRANCIS T. BONNER, AND LESLIE G. PECK 

Arthur D. Little, Inc., Cambridge 42, Massachusetts 

(Received June 8, 1957) 

Equations describing the flow of a Newtonian liquid on a rotating disk have been solved so that 
characteristic curves and surface contours at successive times for any assumed initial fluid distribution 
may be constructed. It is shown that centrifugation of a fluid layer that is initially uniform does not disturb 
the uniformity as the height of the layer is reduced. It is also shown that initially irregular fluid distributions 
tend toward uniformity under centrifugation, and means of computing times required to produce uniform 
layers of given thickness at given angular velocity and fluid viscosity are demonstrated. Contour surfaces 
for a number of exemplary initial distributions (Gaussian, slowly falling, Gaussian plus uniform, sinusoidal) 
have been constructed. Edge effects on rotating planes with rising rims, and fluid flow on rotating nonplanar 
surfaces, are considered. 

I T has been found possible in a number of applications 
to form uniform, solid films by applying the desired 

film material, in a fluid condition, to a rapidly spinning 
disk. A uniform film of fluid seems to form quickly 
under these conditions, and its corresponding solid 
film may be retained by evaporation of volatile con­
stituents (or by cooling, if a molten material is involved). 
Preparation of thin, uniform films of paint and varnish! 
and of asphalt,2 employing spinning disk techniques, 
have been reported. In one process employed in the 
production of color television screens, a solid film 
containing phosphor particles and photoresist polymer 
is prepared directly on the tube faceplate by applying 
a quantity of slurry at the center, distributing it by a 
combination of slow spinning and progressive inclina­
tion, removing excess slurry by rapid centrifugation, 
and, finally, drying while centrifugation continues. 
Three separate applications are required, since "dots" 
containing three kinds of phosphor are formed photo­
graphically from these solid films. Uniformity in the 
solid film can be achieved only if the rapid spinning 
operation can succeed in evening out the extreme 
thickness variations in the slurry covering introduced 
in the initial distribution stages. Uniformity in these 
films, in tum, is of great consequence, since residual 
thickness variations can result in nonuniformities in 
light intensity and chromaticity in the finished screen. 

Because of the above practical considerations, it is 
of interest to analyze the problem of viscous flow on 
a rotating plane. At the outset, for simplicity, we shall 
assume that 

1. the rotating plane is infinite in extent, 
2. the plane is horizontal, so that there is no radial 

gra vi ta tional component, 
3. the liquid layer is radially symmetric, and so thin 

that differences in gravitational potential normal to 
the surface of the disk have negligible effect in distribut-

• Work performed under contract to Radio Corporation of 
America, Tube Division, Lancaster, Pennsylvania. 

1 P. H. Walker and J. G. Thompson, Proc. Am. Soc. Testing 
Materials, 22, Part II, 464 (1922). 

2 L. R. Kleinschmidt, ASTM Bull. No. 193, 53 (October, 1953). 

ing the liquid3 compared with the effect of centrifugal 
forces, . 

4. the viscosity is independent of the rate of shear, 
i.e., the liquid is Newtonian, 

5. the liquid layer is everywhere so thin that shear 
resistance is appreciable only in horizontal planes, 

6. the radial velocity is everywhere so small that 
Coriolis forces may be neglected. 

We take cylindrical polar coordinates (r,U,z) rotating 
with the spinning disk at angular velocity w. The 
z dependence of the radial velocity v of the liquid at 
any point (r,U,z) can be found by equating the viscous 
and centrifugal forces per unit volume; 

a2v 
-.,,-= pw2r, 

az2 
(1) 

where 11 is the viscosity and p the density of the liquid. 
Equation (1) may be integrated employing the 

boundary conditions that v=O at the surface of the 
disk (z=O) and avjaz=o at the free surface of the 
liquid (z= h) where the shearing force must vanish. 
Thus 

1 
v=-( -!pw2rz2+pw2rhz). (2) 

11 

The radial flow q per unit length of circumference is 

f
h pw2rh3 

q= vdz=--. 
311 

(3) 

To obtain a differential equation for h we apply the 
equation of continuity, 

ah a (rq) 
r-=---. (4) 
at ar 

3 The interesting case of radial growth of liquid pools applied 
to stationary, horizontal plates has been studied by E. B. Bielak 
and E. W. J. Mardles, J. Colloid Sci. 9, 233 (1954). See also 
J. R. Philip, Australian J. Phys. 9, 570 (1956). 
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Thus, from Eq. (3) 

ah 1 a 
-=-K--(rW), (5) 
at rar 

where 
K = p"P/3T]. 

1. CASE OF INITIALLY UNIFORM DISTRIBUTION 

Before seeking a general solution to Eq. (5), it will 
be instructive to consider the striking fact that this 
equation has a special solution which depends only on t. 
In this case 

dh 
-=-2Kh3 

dt ' 
(6) 

whence 
ho 

h 
(1 +4KMt) t' 

(7) 

where the constant ho, independent oj r, corresponds to 
the initial height of a fluid layer. Since the solution 
of Eq. (5) is uniquely determined when h is given at 
time t= 0, it follows that Eq. (7) is the solution corre­
sponding to an initially uniform distribution, h= ho• 
Thus, if the initial distribution of fluid is everywhere 
uniform, it will remain so with time, as the thickness 
of fluid film is decreased by continuing application of 
centrifugal force. This conclusion immediately tells 
us that ultimate unformity in thin films is assured if 
an initial thick fluid distribution, before centrifugation, 
can somehow be made uniform. It does not tell us 
whether uniformity can be expected in the more 
practical case of an initial distribution that is irregular, 
however. 

Equation (7) shows that the fluid layer decreases in 
thickness by a factor 1/v'2 in a time 

r= 1/4Kh0
2, (8) 

which shows that a thick layer thins out much more 
rapidly than a thin one. This suggests, in turn, that a 
nonuniform layer should become increasingly more 
uniform as centrifugation continues. This conclusion 
is borne out by the general solution of Eq. (5), which 
we shall now derive. 

2. GENERAL SOLUTION 

The general solution can be obtained by considering 
instead of the first order partial differential Eq. (5) an 
equivalent set of two simultaneous first order ordinary 
differential equations. To do this we write Eq. (5) in 
the form 

ah ah 
-2Kh3=-+3Krh2-. (9) 

at ar 

Now imagine that the successive surface contours 
defined by Eq. (9) are given by the instantaneous 

FIG. 1. Characteristic 
curves and surface con­
tours for an arbitrary h 
initial fluid distribution. 

r 

positions of a set of points which move along a family 
of characteristic curves. Then the height h of anyone of 
these moving points varies according to the total 
derivative expression 

dh ah ahdr 
-=-+--. 
dt at ar dt 

(10) 

The differential equations for the characteristic curves 
can now be obtained by writing down the conditions 
for mutual consistency of Eqs. (9) and (10), namely 

dh/dt= -2Kh3, (11) 
and 

dr/dt=3Krh2• (12) 

The solution of the simultaneous Eqs. (11) and (12) 
is illustrated in Fig. 1. This figure schematically 
represents the fate of an arbitrary initial distribution 
at time t= to. The set of points A, B, C, D travel along 
characteristic curves a, b, c, d, and are found at positions 
A', etc., at time t=t1, A", etc., at time t=t2. The loci 
of points A', etc., and A", etc., represent the new 
surface contours at times t1 and t2. It is to be noted that 
the characteristic curves a, b, c, d are not the flow lines 
of particles on the surface of the liquid, but are simply 
a mathematical artifice for calculating the positions of 
successive surface con tours. 

Equation (11) integrates immediately to give 

ho 
h (13) 

On substituting this expression for h into Eq. (12) 
we obtain 

dr 3Kho2r 

dt 1 +4Kho2t' 
(14) 

which has the integral 

r= ro(1 +4Kho2t)f. (15) 

Equations (13) and (15) give the coordinates (r,h) 
after time t of a point on the surface in terms of its 
original coordinates (ro,ho). Thus, from any initial 
surface contour we can construct the new contour 
after any given time of centrifugation. 
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FIG. 2. Successive surface contours for an initially 
Gaussian fluid distribution. 

3. GAUSSIAN INITIAL CONTOUR 

2.0 

Figure 2 shows several successive surface contours 
calculated from Eqs. (13) and (15) for the case of a 
Gaussian-shaped initial distribution of the form 

(16) 

A single set of curves can be made to include all 
possible choices of a and a by plotting the graphs in 
terms of the dimensionless quantities hi a, ar, and ka2t, 
as has been done in this figure. 

The expected flattening of the surface with increasing 
t is clearly shown. For ka2t= 1 the liquid is remarkably 
uniform in thickness. Also to be noted, for large values 
of r, is the formation of a steep wave front and the 
eventual folding over of the top of the wave. Although 
effects of this kind undoubtedly occur with the spinning 
disk, and also in the case of a viscous liquid draining 
down a vertical wall,t the differential Eq. (5) certainly 
does not represent them accurately since it was derived 
on the basis of approximately horizontal flow. Wave 
fronts as steep as that shown at ka2t= 2.0 are physically 
improbable because of obvious mechanical considera­
tions. In fact, we cannot regard (5) or (9) as valid in 
the region of a vertical wave front. The condition for 
a vertical wave front is that dr= 0, in Eq. (15), for some 
fixed value of t. Now 

dr 1 + 2Khot[2ho+3ro(dhol dro) ] 

dro (1 +4Kho2t)t 
(17) 

This expression will become zero, for some value of t, 
if at any point on the initial contour, 

dho 2ho 
-<---. 
dro 3ro 

(18) 

t The problem of liquid draining down a vertical wall can also 
be solved in terms of the characteristic curves. In this case 
Eqs. (13) and (15) are replaced hy 

h=lzo 
x= xo+ gpito2t/"I, 

where x is a coordinate measured vertically downwards. Steep 
wavefronts will always occur if the initial contour has negative 
slope at any point. No smoothing action occurs in this case 
(recalling our assumption of Newtonian flow), because the 
characteristic curves all proceed parallel to the vertical wall. 

This means that any curve that falls off more rapidly 
than the inverse two-thirds power of ro will develop 
vertical fronts. For the contour represented by Eq. (16), 
condition (18) is satisfied when aro> l/YJ. 

4. SLOWLY-FALLING INITIAL CONTOUR 

Figure 3 shows the case of an initial contour 

a 
ho 

(1+a2ro2i 
(19) 

The surface flattens out smoothly without any sign of 
vertical fronts. This is in accord with condition (18) 
since the initial curve (19) falls off less rapidly than the 
inverse two-thirds power of roo 

5. GAUSSIAN PLUS UNIFORM INITIAL CONTOUR 

Figure 4 shows the behavior of a contour of the 
initial form 

1.0 

"fa 
0.8 

FIG. 3. Successive surface contours for a slowly 
falling initial surface. 

(20) 

In effect, this contour consists of a layer of fluid which 
is everywhere uniform, plus a second, superposed 
distribution which is Gaussian about the center of 
rotation. As shown, nonuniformity is reduced very 
effectively, and without establishment of wave fronts. 

6. SINUSOIDAL INITIAL CONTOUR 

Figure 5 shows the successive contours for the case 
of an initial surface of the form 

ho= a(1 +0.15 cos aro), (21) 

representing a level surface with a 15% ripple. Again 
we observe the smoothing effect produced by the flow 
and also the formation of vertical wave fronts. Condition 
(18) is satisfied for certain ranges of values of roo 

7. LIMITS OF VALIDITY OF THE FLOW EQUATIONS 

(a) Effects of Coriolis Force 

The Coriolis acceleration perpendicular to the radius 
is given by 

(22) 
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and the centrifugal acceleration by 

(23) 

Therefore, the condition for neglecting Coriolis accelera­
tion (our simplifying assumption 6) is 

or 
v «wr/2. 

(24) 

(25) 

Now from Eq. (2) we find the maximum (surface 
layer) value for v at a given radius r to be 

(26) 

Thus the condition becomes 

(27) 

In practice this means that the theory is restricted to 
relatively thin layers of fluid of high viscosity for any 
fixed value of angular velocity. For example, the con-

2.0 
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1.0 ~ 0.2 

0.5 1.0 

o 2 3 

h .a<;Zr.' 
~ = I+e • 

4 
ocr 

5 6 7 

FIG. 4. Successive surface contours for initial Gaussian 
superposed upon uniform contour. 

dition for validity for a fluid layer of density 1.0 g/cm3, 

of thickness 1 mm, and rotating at 471'" rad/sec, is that 
the fluid viscosity be much greater than 12 centipoise. 

(b) Influence of Gravitational Force 

The radial gravitational force per unit volume, when 
the rotational axis is vertical, is - gpiJh/ar. In order that 
the effects of this force may be neglected, the necessary 
condition is 

(28) 

This condition can be expressed in terms of the radius 
of curvature R of the liquid surface at the center of 
the tube face; 

(29) 

For example, at a rotational speed of 10 rad/sec 
("",100 rpm), the condition is that R»lO cm, which is 
easily met in practical cases. 

~ •• I + 0.15 cosQ(.r. 

0.8 
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00-

FIG. 5. Successive surface contours for initial 
surface containing a ripple. 

(c) Flow on Finite Planes and on 
Curved Surfaces 

Our simplifying assumption (1), that the rotating 
plane is infinite in extent imposes a restriction that is, 
of course, difficult to meet. For a finite disk the con­
siderations of our preceding paragraphs are unaltered, 
with the possible exception of disruptive action of 
surface forces on the fluid film at its edges. Formation 
of a thin film by rotation is obviously most readily 
accomplished on a disk which permits excess fluid to be 
thrown off horizontally.4 Where the rim rises above the 
plane of the disk, as is the case in the instance of color 
television phosphor screening, the situation is somewhat 
different. For relatively low values of 71 and high 
values of w, liquid will be thrown upward at the rim 
as it is transported to it under centrifugation. If 
adjustment of these parameters is such that the liquid 
remains at the rim, there will be thickening of the 
film at its outer edge to a distance depending upon the 
volume of fluid in excess and the angular velocity 
of the disk. The latter dependence arises because the 
height to which fluid will rise in the rim is determined by 
the equilibrium which becomes established between 
gravitational and centrifugal force components along 
the slanted boundary of contained fluid. The extent 
of such edge effects can obviously be minimized by 
application of high angular velocity. 

For a rotating disk that has a rising rim, our assump­
tion (2), that the plane is horizontal, may also inject 
practical difficulty. In the color television screening 
process previously described, for example, a considerable 
quantity of excess fluid must be removed from the rim 
before the permanent film may be dried. This is 
accomplished by carrying out the final rapid centrifuga­
tion step with the axis of rotation inclined to an angle 
in excess of 90° with respect to the vertical. This does 
not require significant alteration of our flow equations 
as long as w is large, so that centrifugal force per unit 
volume (pw2r) greatly exceeds gravitational force per 
unit volume (pg, for 90° inclination of axis). 

4 The fate of fluid after leaving the rim of a rotating disk has 
been studied by Dixon, Russell, and Swallow, Brit. J. Appl. 
Phys. 3, 115 (1952). 
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It is of interest to consider the extent to which 
curvature of the rotating surface may affect the ultimate 
theoretical uniformity of fluid films which may form 
on them. The color television faceplates we have referred 
to, for example, are not planar, but spherical, with 
radius of curvature of the order of 65 cm. On a spherical 
surface, the expression for force per unit volume 
becomes 

F= pw2r cos cp- pg sin cp, (30) 

where cp is the angle formed between the direction 
along the surface and the horizontal line, at any given 
point. Rigorous solution for the case of flow on a 
curved surface would require the introduction of the 
appropriate nonlinear terms into our Eqs. (1), (2), 
et seq. However, we can again see, by inspection of 
Eq. (30), that gravitational effects can be made 
inconsequential by appropriate adjustment of w. If 
this is done, the principal source of nonuniformity in 
this case is related to the angle cp itself. If the maximum 
value of cp were about 20°, for example, the ratio of 
force per unit volume at the edge to that for a flat 
disk of similar radius would be cos 20°, or 0.94. This 
might suggest that maximum ultimate thickness 
variation would be about 6%, although the problem is 
actually much more complicated than this. 

Experiments have been performed in these labora­
tories, employing spherical glass television faceplates 
having an angle cp of roughly 20°, in which phosphor 
suspension was added at the center of the previously 
wetted and slowly rotating faceplate, distributed by 
steadily increasing angular velocity, then thinned by 
rapid centrifugation. Excess suspension was removed by 
tilting the rotating faceplate, and the remanent film 
was then dried. Film thickness variations as low as 4% 
were observed by a light transmittance method of 
measuremen t. 

8. DISCUSSION 

The curves presented in Figs. 2-5 are perfectly 
general, and may be applied to any specific set of 
parameters of interest within the limitations discussed 
above. In addition, any other initial distribution of 
interest may be employed in our characteristic 
Eqs. (13) and (15) to obtain corresponding families of 
contour curves. 

To illustrate the use of our reported theoretical 
results, let us consider a fluid of density 1 g-cm-3 

and viscosity 1 poise, on a horizontal plane in an 
initially Gaussian distribution (Fig. 2). Let us further 

prescribe that a, the initial thickness at the center, 
has the value 0.1 cm, and that a, the reciprocal of 
the radius (r) at a position such that initial thickness 
is ae- I , has the value 0.1 cm- I . Using values of h/a and 
at calculated for the curve for which ka2t= 1.0, we find 
that for this particular initial Gaussian distribution 
h=0.0447 cm at r=O, and h=0.0431 cm at r=1.112/a 
= 11.12 cm. The thickness variation between the 
center and point P is thus ~h=0.0016 cm, or about 
3.6% of the value at the center. To find the time 
required to achieve this degree of uniformity, we must 
evaluate k= pw2/3Tf. For w= 1 rad/sec ("-'10 rpm), k 
has the value t for a liquid having the values of p 

and Tf we have arbitrarily selected; if w = 411" rad/ sec 
(120 rpm), k = 52.6. For the corresponding times, then, 
we find 300 sec (at 1 rad/sec), and 1.9 sec (at 471" 
rad/sec). 

Our last result indicates that removal of irregularities 
can be achieved very quickly, and that centrifugation 
could be effective in preparing uniform depositions of 
materials of very high viscosity, e.g., molten glass, 
whose flow properties are known to be Newtonian. 
It is interesting to compute the time required to obtain 
a very thin fluid film from a relatively thick layer of a 
highly viscous liquid. Let Tf= 100 poise, p= 1.0 g-cm-a, 
and a= 1 cm for an initially Gaussian distribution, 
and let us compute the time required to reduce this 
distribution to a film 100 J.I. (10--2 em) in thickness. 
From Eq. (13), 

(31 ) 

whence t= 1()4/4k. Since in this example k=0.528 for 
a rotational speed of 411" rad/sec, we find t to be approxi­
mately 8 minutes. 

Finally, we should note that the descriptions we have 
presented in this paper are essentially mathematical 
ones, and may differ from actual physical flow situations 
in a variety of respects, as can be seen particularly by 
reviewing the set of assumptions we have made. In 
particular, our assumption that the fluid exhibits 
Newtonian flow behavior will be readily violated in 
practical situations involving suspensions or some 
highly viscous fluids. Al though the phosphor suspensions 
employed in the color television process we have 
alluded to exhibit very nearly ideal flow behavior when 
their water content is relatively high, it is at least 
likely that non-Newtonian characteristics exert a 
strong influence on the consequences of centrifugation 
when h has become very small, because of such phenom­
ena as particle settling and moisture evaporation. 


