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Equations describing the flow of a Newtonian liquid on a rotating disk have been solved so that
characteristic curves and surface contours at successive times for any assumed initial fluid distribution
may be constructed. It is shown that centrifugation of a fluid layer that is initially uniform does not disturb
the uniformity as the height of the layer is reduced. It is also shown that initially irregular fluid distributions
tend toward uniformity under centrifugation, and means of computing times required to produce uniform
layers of given thickness at given angular velocity and fluid viscosity are demonstrated. Contour surfaces
for a number of exemplary initial distributions (Gaussian, slowly falling, Gaussian plus uniform, sinusoidal)
have been constructed. Edge effects on rotating planes with rising rims, and fluid flow on rotating nonplanar

surfaces, are considered.

T has been found possible in a number of applications
to form uniform, solid films by applying the desired
film material, in a fluid condition, to a rapidly spinning
disk. A uniform film of fluid seems to form quickly
under these conditions, and its corresponding solid
film may be retained by evaporation of volatile con-
stituents (or by cooling, if a molten material isinvolved).
Preparation of thin, uniform films of paint and varnish!
and of asphalt,? employing spinning disk techniques,
have been reported. In one process employed in the
production of color television screens, a solid film
containing phosphor particles and photoresist polymer
is prepared directly on the tube faceplate by applying
a quantity of slurry at the center, distributing it by a
combination of slow spinning and progressive inclina-
tion, removing excess slurry by rapid centrifugation,
and, finally, drying while centrifugation continues.
Three separate applications are required, since “dots”
containing three kinds of phosphor are formed photo-
graphically from these solid films. Uniformity in the
solid film can be achieved only if the rapid spinning
operation can succeed in evening out the extreme
thickness variations in the slurry covering introduced
in the initial distribution stages. Uniformity in these
films, in turn, is of great consequence, since residual
thickness variations can result in nonuniformities in
light intensity and chromaticity in the finished screen.
Because of the above practical considerations, it is
of interest to analyze the problem of viscous flow on
a rotating plane. At the outset, for simplicity, we shall
assume that

1. the rotating plane is infinite in extent,

2. the plane is horizontal, so that there is no radial
gravitational component,

3. the liquid layer is radially symmetric, and so thin
that differences in gravitational potential normal to
the surface of the disk have negligible effect in distribut-

* Work performed under contract to Radio Corporation of
America, Tube Division, Lancaster, Pennsylvania.

1 P. H. Walker and J. G. Thompson, Proc. Am. Soc. Testing
Materials, 22, Part 11, 464 (1922).

2 L. R. Kleinschmidt, ASTM Bull. No. 193, 53 (October, 1953).

ing the liquid® compared with the effect of centrifugal
forces,

4. the viscosity is independent of the rate of shear,
i.e., the liquid is Newtonian,

5. the liquid layer is everywhere so thin that shear
resistance is appreciable only in horizontal planes,

6. the radial velocity is everywhere so small that
Coriolis forces may be neglected.

We take cylindrical polar coordinates (,§,2) rotating
with the spinning disk at angular velocity w. The
z dependence of the radial velocity v of the liquid at
any point (r,6,7) can be found by equating the viscous
and centrifugal forces per unit volume;

o
—n—=pu'r, (1)
9z?

where 75 is the viscosity and p the density of the liquid.

Equation (1) may be integrated employing the
boundary conditions that v=0 at the surface of the
disk (2=0) and 0v/9z=0 at the free surface of the
liquid (z=#) where the shearing force must vanish.
Thus

1
v=—(~—Lpwtrz*+pwrhz). (2)
n
The radial flow ¢ per unit length of circumference is
h otk
qg= f vdz= . (3)
0 3

To obtain a differential equation for 4 we apply the
equation of continuity,

oh  3(rq)

r—=—

ot or

. 4)

3 The interesting case of radial growth of liquid pools applied
to stationary, horizontal plates has been studied by E. B. Bielak
and E. W. J. Mardles, J. Colloid Sci. 9, 233 (1954). See also
J. R. Philip, Australian J. Phys. 9, 570 (1956).
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Thus, from Eq. (3)

ok 19
—=— K= —(r¥), (s)
ot ror
where
K=pu?/39.

1. CASE OF INITIALLY UNIFORM DISTRIBUTION

Before seeking a general solution to Eq. (5), it will
be instructive to consider the striking fact that this
equation has a special solution which depends only on .
In this case

ah
—=—2KR, (6)
dat

whence
ko

b= (M
(1+4Khe)t
where the constant ko, independent of r, corresponds to
the initial height of a fluid layer. Since the solution
of Eq. (5) is uniquely determined when % is given at
time ¢=0, it follows that Eq. (7) is the solution corre-
sponding to an initially uniform distribution, /%= /.
Thus, if the initial distribution of fluid is everywhere
uniform, it will remain so with time, as the thickness
of fluid film is decreased by continuing application of
centrifugal force. This conclusion immediately tells
us that ultimate unformity in thin films is assured if
an initial thick fluid distribution, before centrifugation,
can somehow be made uniform. It does not tell us
whether uniformity can be expected in the more
practical case of an initial distribution that is irregular,
however,
Equation (7) shows that the fluid layer decreases in
thickness by a factor 1/v2 in a time

r=1/4Khe, (8)

which shows that a thick layer thins out much more
rapidly than a thin one. This suggests, in turn, that a
nonuniform layer should become increasingly more
uniform as centrifugation continues. This conclusion
is borne out by the general solution of Eq. (3), which
we shall now derive.

2. GENERAL SOLUTION

The general solution can be obtained by considering
instead of the first order partial differential Eq. (5) an
equivalent set of two simultaneous first order ordinary
differential equations. To do this we write Eq. (5) in
the form

oh ok
—2Kh¥=—+3Krh*—. (9)
at or

Now imagine that the successive surface contours
defined by Eq. (9) are given by the instantaneous
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F1c. 1. Characteristic
curves and surface con-
tours for an arbitrary
initial fluid distribution.

positions of a set of points which move along a family
of characteristic curves. Then the height % of any one of
these moving points varies according to the total
derivative expression

dh ok Ohdr
—=—t—— (10)
dt at ordt

The differential equations for the characteristic curves
can now be obtained by writing down the conditions
for mutual consistency of Egs. (9) and (10), namely

dh/dt=—2Kh?, (11)

dr/dt=3Krht. (12)

The solution of the simultaneous Eqs. (11) and (12)
is illustrated in Fig. 1. This figure schematically
represents the fate of an arbitrary initial distribution
at time ¢=t,. The set of points 4, B, C, D travel along
characteristic curves ¢, b, ¢, d, and are found at positions
A’, etc., at time {=1{;, A", etc., at time {=1£,. The loci
of points A’, etc., and A", etc., represent the new
surface contours at times £, and fs, It is to be noted that
the characteristic curves a, b, ¢, d are not the flow lines
of particles on the surface of the liquid, but are simply
a mathematical artifice for calculating the positions of
successive surface contours.
Equation (11) integrates immediately to give

ko
P —
(14+4Khi)?

and

(13)

On substituting this expression for % into Eq. (12)
we obtain

dr  3Khir
e (19)
dt 144Khet
which has the integral
r=ro(1+4Khot)i. (15)

Equations (13) and (15) give the coordinates (r,k)
after time ¢ of a point on the surface in terms of its
original coordinates (7o,k0). Thus, from any initial
surface contour we can construct the new contour
after any given time of centrifugation.
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F1G. 2. Successive surface contours for an initially
Gaussian fluid distribution.

3. GAUSSIAN INITIAL CONTOUR

Figure 2 shows several successive surface contours
calculated from Egs. (13) and (15) for the case of a
Gaussian-shaped initial distribution of the form

ho=a exp—alry.

(16)

A single set of curves can be made to include all
possible choices of a and « by plotting the graphs in
terms of the dimensionless quantities #/a, ar, and ka¥,
as has been done in this figure.

The expected flattening of the surface with increasing
¢ is clearly shown. For ka%t=1 the liquid is remarkably
uniform in thickness. Also to be noted, for large values
of 7, is the formation of a steep wave front and the
eventual folding over of the top of the wave. Although
effects of this kind undoubtedly occur with the spinning
disk, and also in the case of a viscous liquid draining
down a vertical wall,{ the differential Eq. (5) certainly
does not represent them accurately since it was derived
on the basis of approximately horizontal flow. Wave
fronts as steep as that shown at ka*=2.0 are physically
improbable because of obvious mechanical considera-
tions. In fact, we cannot regard (5) or (9) as valid in
the region of a vertical wave front. The condition for
avertical wave front is that dr=0, in Eq. (15), for some
fixed value of t. Now

df 1+2Khot[2hu+3ro(dho/d1’o)]

d?’o (1+4Kkgzt)%

. (17)

This expression will become zero, for some value of ¢,
if at any point on the initial contour,

dhy 2he
—
dro 31’()

t The problem of liquid draining down a vertical wall can also
be solved in terms of the characteristic curves. In this case
Egs. (13) and (15) are replaced by

Il—_—]lo

%= X0 goho't/n,
where «x is a coordinate measured vertically downwards. Steep
wavefronts will always occur if the initial contour has negative
slope at any point. No smoothing action occurs in this case
(recalling our assumption of Newtonian flow), because the
characteristic curves all proceed parallel to the vertical wall.

(18)
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This means that any curve that falls off more rapidly
than the inverse two-thirds power of 7 will develop
vertical fronts. For the contour represented by Eq. (16),
condition (18) is satisfied when ary>1/V3.

4. SLOWLY-FALLING INITIAL CONTOUR

Figure 3 shows the case of an initial contour

a

ho= .
(14-a?rg?)t

(19)

The surface flattens out smoothly without any sign of
vertical fronts. This is in accord with condition (18)
since the initial curve (19) falls off less rapidly than the
inverse two-thirds power of 7.

5. GAUSSIAN PLUS UNIFORM INITIAL CONTOUR

Figure 4 shows the behavior of a contour of the
iitial form

ho/a=14exp—ar¢. (20)

ho = T+ oaBrXy%
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F16. 3. Successive surface contours for a slowly
falling initial surface.

In effect, this contour consists of a layer of fluid which
is everywhere uniform, plus a second, superposed
distribution which is Gaussian about the center of
rotation. As shown, nonuniformity is reduced very
effectively, and without establishment of wave fronts.

6. SINUSOIDAL INITIAL CONTOUR

Figure 3 shows the successive contours for the case
of an initial surface of the form

ho=a(140.15 cos ary), (21)

representing a level surface with a 159, ripple. Again
we observe the smoothing effect produced by the flow
and also the formation of vertical wave fronts. Condition
(18) is satisfied for certain ranges of values of r,.

7. LIMITS OF VALIDITY OF THE FLOW EQUATIONS
(a) Effects of Coriolis Force

The Coriolis acceleration perpendicular to the radius
is given by
Qeor= 2w,

(22)
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and the centrifugal acceleration by 2
N Ratt Do 4o .
ac.ent=w2rv (23) Lol 0 7 =} ¥ 015 cosun
h
Therefore, the condition for neglecting Coriolis accelera- g :
tion (our simplifying assumption 6) is “j-03
Quv/w?r<1, (24) 02 >
or o4l
v <Kar/2. (25)
o2}
Now from Eq. (2) we find the maximum (surface

layer) value for v at a given radius 7 to be

v=pwirh?/2m. (26)
Thus the condition becomes
1> pwh?. (27)

In practice this means that the theory is restricted to
relatively thin layers of fluid of high viscosity for any
fixed value of angular velocity. For example, the con-

he . -ty
T =re
05 1.0
L ! L L 1 1 1
0 I 2 3 4 5 6 7
xr

F16. 4. Successive surface contours for initial Gaussian
superposed upon uniform contour.

dition for validity for a fluid layer of density 1.0 g/cm?,
of thickness 1 mm, and rotating at 47 rad/sec, is that
the fluid viscosity be much greater than 12 centipoise.

(b) Influence of Gravitational Force

The radial gravitational force per unit volume, when
the rotational axis is vertical, is — gpd4/d7. In order that
the effects of this force may be neglected, the necessary
condition is

— gp(ah/dr) Lpwr. (28)

This condition can be expressed in terms of the radius
of curvature R of the liquid surface at the center of
the tube face;

1
9%h/or*

R:

>>i (29)

w?

For example, at a rotational speed of 10 rad/sec
(~100 rpm), the condition is that R>>10 cm, which is
easily met in practical cases.

F16. 5. Successive surface contours for initial
surface containing a ripple.

(c) Flow on Finite Planes and on
Curved Surfaces

Our simplifying assumption (1), that the rotating
plane is infinite in extent imposes a restriction that is,
of course, difficult to meet. For a finite disk the con-
siderations of our preceding paragraphs are unaltered,
with the possible exception of disruptive action of
surface forces on the fluid film at its edges. Formation
of a thin film by rotation is obviously most readily
accomplished on a disk which permits excess fluid to be
thrown off horizontally.* Where the rim rises above the
plane of the disk, as is the case in the instance of color
television phosphor screening, the situation is somewhat
different. For relatively low values of » and high
values of w, liquid will be thrown upward at the rim
as it is transported to it under centrifugation. If
adjustment of these parameters is such that the liquid
remains at the rim, there will be thickening of the
film at its outer edge to a distance depending upon the
volume of fluid in excess and the angular velocity
of the disk. The latter dependence arises because the
height to which fluid will rise in the rim is determined by
the equilibrium which becomes established between
gravitational and centrifugal force components along
the slanted boundary of contained fluid. The extent
of such edge effects can obviously be minimized by
application of high angular velocity.

For a rotating disk that has a rising rim, our assump-
tion (2), that the plane is horizontal, may also inject
practical difficulty. In the color television screening
process previously described, for example, a considerable
quantity of excess fluid must be removed from the rim
before the permanent film may be dried. This is
accomplished by carrying out the final rapid centrifuga-
tion step with the axis of rotation inclined to an angle
in excess of 90° with respect to the vertical. This does
not require significant alteration of our flow equations
as long as o is large, so that centrifugal force per unit
volume (pw’r) greatly exceeds gravitational force per
unit volume (pg, for 90° inclination of axis).

4The fate of fluid affer leaving the rim of a rotating disk has

been studied by Dixon, Russell, and Swallow, Brit. J. Appl.
Phys. 3, 115 (1952).
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It is of interest to consider the extent to which
curvature of the rotating surface may affect the ultimate
theoretical uniformity of fluid films which may form
on them. The color television faceplates we have referred
to, for example, are not planar, but spherical, with
radius of curvature of the order of 65 cm. On a spherical
surface, the expression for force per unit volume
becomes

(30)

where ¢ is the angle formed between the direction
along the surface and the horizontal line, at any given
point. Rigorous solution for the case of flow on a
curved surface would require the introduction of the
appropriate nonlinear terms into our Egs. (1), (2),
et seq. However, we can again see, by inspection of
Eq. (30), that gravitational effects can be made
inconsequential by appropriate adjustment of w. If
this is done, the principal source of nonuniformity in
this case is related to the angle ¢ itself. If the maximum
value of ¢ were about 20°, for example, the ratio of
force per unit volume at the edge to that for a flat
disk of similar radius would be cos 20°, or 0.94. This
might suggest that maximum ultimate thickness
variation would be about 6%, although the problem is
actually much more complicated than this.

Experiments have been performed in these labora-
tories, employing spherical glass television faceplates
having an angle ¢ of roughly 20° in which phosphor
suspension was added at the center of the previously
wetted and slowly rotating faceplate, distributed by
steadily increasing angular velocity, then thinned by
rapid centrifugation. Excess suspension was removed by
tilting the rotating faceplate, and the remanent film
was then dried. Film thickness variations as low as 4%,
were observed by a light transmittance method of
measurement.

F= pw?r cos ¢—pg sin ¢,

8. DISCUSSION

The curves presented in Figs. 2-5 are perfectly
general, and may be applied to any specific set of
parameters of interest within the limitations discussed
above. In addition, any other initial distribution of
interest may be employed in our characteristic
Eqgs. (13) and (15) to obtain corresponding families of
contour curves.

To illustrate the use of our reported theoretical
results, let us consider a fluid of density 1 g—cm™
and viscosity 1 poise, on a horizontal plane in an
initially Gaussian distribution (Fig. 2). Let us further

BONNER, AND PECK

prescribe that @, the initial thickness at the center,
has the value 0.1 cm, and that a, the reciprocal of
the radius (r) at a position such that initial thickness
is ae™!, has the value 0.1 cm™. Using values of #/a and
ar calculated for the curve for which ka*=1.0, we find
that for this particular initial Gaussian distribution
h=0.0447 cm at =0, and £#=0.0431 cm at r=1.112/a
=11.12 c¢cm. The thickness variation between the
center and point P is thus A2=0.0016 cm, or about
3.69, of the value at the center. To find the time
required to achieve this degree of uniformity, we must
evaluate 2= pw?/3yn. For w=1 rad/sec (~10 rpm), &
has the value § for a liquid having the values of p
and 5 we have arbitrarily selected; if w=4x rad/sec
(120 rpm), £=52.6. For the corresponding times, then,
we find 300 sec (at 1 rad/sec), and 1.9 sec (at 4w
rad/sec).

Our last result indicates that removal of irregularities
can be achieved very quickly, and that centrifugation
could be effective in preparing uniform depositions of
materials of very high viscosity, e.g., molten glass,
whose flow properties are known to be Newtonian.
It is interesting to compute the time required to obtain
a very thin fluid film from a relatively thick layer of a
highly viscous liquid. Let n=100 poise, p=1.0 g-cm™3,
and ¢=1 cm for an initially Gaussian distribution,
and let us compute the time required to reduce this
distribution to a film 1004 (1072 cm) in thickness.
From Eq. (13),

1-+4Khet= (ho/h)?=10*, (31)

whence ¢t=10*/4k. Since in this example £=0.528 for
a rotational speed of 47 rad/sec, we find # to be approxi-
mately 8 minutes.

Finally, we should note that the descriptions we have
presented in this paper are essentially mathematical
ones, and may differ from actual physical flow situations
in a variety of respects, as can be seen particularly by
reviewing the set of assumptions we have made. In
particular, our assumption that the fluid exhibits
Newtonian flow behavior will be readily violated in
practical situations involving suspensions or some
highly viscous fluids. Although the phosphorsuspensions
employed in the color television process we have
alluded to exhibit very nearly ideal flow behavior when
their water content is relatively high, it is at least
likely that non-Newtonian characteristics exert a
strong influence on the consequences of centrifugation
when % has become very small, because of such phenom-
ena as particle settling and moisture evaporation.



