Interfacial Turbulence: Hydrodynamic

Instability and the Marangon: Effect

The origin of interfacial turbulence, spontaneous agitation of the interface between
two unequilibrated liquids, has been explained in terms of classical flow, diffusion, and
surface processes. The essence of the explanation is the long-known though much neg-
lected Marangoni effect, wherein movement in an interface is caused by longitudinal
variations of interfacial tension. It is proposed that interfacial turbulence is a manifesta-
tion of hydrodynamic instability, which is touched off by ever present, small, random
fluctuations about the interface.

A simplified mathematical model has been analyzed in order to detail the mechanism
of the ‘‘interfacial engine” which supplies the mechanical energy of interfacial turbulence,
In its present form the analysis incorporates several drastic simplifications, though ways
of removing some of these have been suggested. The groundwork has been laid for the
more elaborate analyses that are needed for a decisive test of the theory.

The analysis shows how some systems may be stable with solute transfer in one direction
yet unstable with transfer in the opposite direction, a striking result. It also suggests that
interfacial turbulence is usually promoted by (1) solute transfer out of the phase of higher
viscosity, (2) solute transfer out of the phase in which its diffusivity is lower, (3) large
differences in kinematic viscosity and solute diffusivity between the two phases, (4) steep
concentration gradients near the interface, (5) interfacial tension highly sensitive to solute
concentration, (6) low viscosities and diffusivities in both phases, (7) absence of surface-
active agents, and (8) interfaces of large extent.

That some of these effects have been ¢bserved in the laboratory lends credence to the

theory.

Strange are the effects when unequili-
brated liquids are brought into contact.
If a solution of 109, methanol in toluene
is placed quietly upon water, the water
remains clear, but in the organic phase
a turbid emulsion of water droplets
appears. With a solution of 409, metha-
nol in toluene the organic phase remains
clear, while an emulsion appears in
the water (19). Yet if pure toluene is
placed upon water containing methanol,
no spontaneous emulsification occurs.
If pure toluene is placed upon an aqueous
solution of butyric or valeric acid, there
arises intense though localized stirring
on the toluene side of the interface;
but if under the same conditions the
solute transferred is acetic or propionic
acid, there is no stirring action at all
26). If diglycol laurate is placed upon
water, streamers of the organic mate-
rial very slowly extend downward into
the water, bend round when they near
the bottom of the container, and then
slowly grow upward (19).

An extensive qualitative investigation
by Wei (27) points up the widespread
occurrence of these and similar effects.
Having noticed localized stirring at
the interface in certain liquid extraction
experiments which gave unexpectedly
high mass transfer coefficients, Wei went
on to test systematically for spontaneous
interfacial activity between many dif-
ferent liquids, some pure and others
containing a solute. No activity is seen
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when neither phase contains a solute.
Sometimes there is activity when a
single solute is extracted without chemical
reaction. There is pronounced activity
in almost every instance where the
two phases contain reacting solutes.
Wei distinguishes several general types
of disturbance, which at times occur
together: localized stirring with rippling
and twitching of the interface; slow
moving transparent streams leaving the
interface, evidently differing slightly in
composition or temperature from the
bulk through which they move; slower
moving opaque streams from the tips
of which tiny droplets disengage, often
forming an emulsion; and mistlike emul-
sions slowly forming about the interface.
The intensity of the activity varies
markedly from system to system. It
is usually greater for solute transfer
from organic to aqueous phase than for
transfer in the opposite direction. It is
also influenced by soluie concentration
and the presence of surface-active agents.
The greatest intensity it observed when
there is rapid and highly exothermic
reaction between two solutes near the
interface, especially in systems with
low interfacial tension (23, 27).

In some cases the bchavior is even
more bizarre; for example, when a
layer of wet isobutanol containing hydro-
chloric acid is gently placed upon water
saturated with isobutanol and containing
ammonia, not only is there rippling and
twitching of the interface but also, after
30 sec. or so, a water drop forms in
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the alcohol phase, grows, sags down
into the interface, and then bursts
through, acquiring in the process a thin
covering film of isobutanol. The double
drop is propelled several centimeters
into the aqueous phase, whereupon it
disintegrates, leaving a much smaller
droplet of isobutanol that descends
another 10 to 30 cm., reverses direction,
rises to the interface, and finally merges
with the upper phase. Meanwhile a
new drop forms above the interface,
and the sequence is repeated.

Although the experiments so far de-
scribed all involve nearly flat interfaces,
disturbances of the same sort occur at
rounded interfaces. When a drop of
liquid is formed at a capillary tip im-
mersed in a second immiscible liquid
and a solute is initially present in one
or the other phase, the interface is, in
many cases, disturbed by rippling, while
the adjoining liquid is turbulently agi-
tated (11, 14, 24). At times there are
localized eruptions at the interface (24).
If it is pendent, the entire drop often
pulsates violently and erratically (8, 7,
11); unattached drops behave in the
same way (11, 28, 24). As in Wei's
experiments the occurrence and intensity
of these effects depend on the solvents
and solute employed, upon solute con-
centration, and sometimes upon the
direction of solute transfer. Surface-
active agents tend to reduce the vio-
lence of the upsets, sometimes suppressing
them completely.

Convection develops spontaneously at
gas-liquid interfaces too. The clean sur-
face of an ether-water solution twitches
continuously during evaporation of the
ether. However, the Langmuirs (10)
observed that certain insoluble surface
films can arrest the motion, thereby
greatly reducing the rate of evaporation.

All these phenomena, with the possi-
ble exception of some cases of spon-
taneous emulsification (4), involve gross
fluid motions and therefore demand the
concepts of hydrodynamics for their
explanation. The situation is unusual,
however, in that the source of energy
for driving the flows surely is the dif-
ference in chemical potential between
the two phases. In a closed system such
a potential difference diminishes as ther-
modynamic equilibrium is approached;
accordingly, it is found experimentally
that as time passes after the phases are
first brought together, the disturbances
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ultimately subside. Furthermore no dis-
turbances are observed on contact of
phases already mnearly in equilibrium.
It is as though an engine were actuated
by concentration and temperature gra-
dients, more precisely by a gradient of
chemical potential in the neighborhood
of the interface. Many investigators have
suggested that the engine is the interface
itself (7, 10, 14, 18, 19, 24), but no
detailed theory of its action has been
advanced, except one of limited scope
recently proposed by Haydon (8). It
is well known that longitudinal varia-
tions of surface tension not only cause
movement in a liquid surface but also
bring forces to bear on the underlying
liquid, setting it in motion. This has
been called the Marangoni effect (1),
although it was first explained by James
Thomson (25). There are several very
familiar examples of surface-tension-
driven flows: tears of strong wine (16,
25), camphor dance, and crystal climbing
(2). It is therefore to be expected that a
synthesis of the dynamics of an inter-
face, hydrodynamics, and diffusional
transport will be required for a quan-
titative understanding of the interfacial
engine.

What is the practical significance of
the various kinds of spontaneous inter-
facial agitation, which collectively have
come to be called inierfactal turbulence?*
Rates of mass transfer tend to be ab-
normally high in those extraction systems
in which interfacial turbulence occurs;
this is evident from Lewis’s continuing
research with a variety of systems
(12, 13). Transfer rates may be several
times as great as predicted from measured
single-phase rate coefficients and current
theories which assume a stagnant inter-
face, as Sherwood and Wei found with
certain extraction systems involving
simultaneous chemical reaction (27).
Although reports of these effects have
thus far come only from laboratory
experiments under well-controlled condi-
tions, interfacial turbulence must also
oceur in industrial praectice, but when
and to what extent are unsettled. Thus
laboratory and pilot plant extraction
studies cannot be interpreted and are
of limited use in scale up unless the
state of the interface is known or can
be predicted.

INTERFACIAL TURBULENCE AND
HYDRODYNAMIC STABILITY

What is the mechanism of interfacial
turbulence? How can one recognize
beforehand the situations in which it
will arise? How can one predict its form
and magnitude from first principles?
Only when these queries have been
answered will it be possible to attack
the problem of great practical importance,

*Both highly irregular and more or legs ordered
flows originating in the interface are included under
the name.
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quantitative prediction of the effect of
interfacial turbulence on the rate of mass
transfer between phases.

The key to understanding interfacial
turbulence is the answer to the question
when is a given system unstable relative
to small perturbations in the vicinity
of the interface? This may be posed as
a problem of hydrodynamic stability with
diffusion and interfacial movement play-
ing indispensable parts. The methods of
conventional linearized stability theory
(18, 22d) may then be applied to deter-
mine the conditions for the onset of
instability and the nature of the dominant
disturbance. Unless simplifications are
made, the mathematical exposition be-
comes so overgrown that its connection
with physical reality is obscured. To lay
bare the path, attention is focused on a
highly pruned model that is not strictly
realizable. But if it displays the salient
behavior of actual systems—and it does—
the fruitfulness of the approach is esta-
blished. Moreover the resultant simpli-
fied theory then provides the needed
groundwork for handling more complete
models.

The authors’ approach parallels the
analysis of the stability of thermally
stratified layers -of fluid, begun by
Rayleigh, which has been successfully
applied to the prediction of onset of
convection in fluids heated from below
(16b, 21).

Description of the Model

The configuration to be studied is
two semi-infinite, quiescent fluid phases in
contact along a plane interface. The phases
are in thermal but not in chemical equi-
librium. A single solute, present in such
low concentration that fluid properties may
be taken as constant, is transferring be-
tween the phases. In at least two other
nonequilibrium situations interfacial turbu-
lence may arise. These are transfer of
heat between phases in chemical equi-
librium and transfer of materials which
can react chemically to release heat or
surface-active products near the interface.
The first of these is virtually the same as
the case selected because of the formal
similarities of mass and heat transport
and of the composition and temperature
dependencies of interfacial tension; the
second is but a combination of the mass
and heat transfer cases, with, to be sure,
added complications.

In the undisturbed state of the authors’
model there is steady transfer of solute.
This requires that the concentration gradi-
ent be linear throughout each phase.
Although such a state is not entirely
realistic, states closely resembling it in
the neighborhood of the interface do ob-
tain after two unequilibrated phases are
brought together and diffusion is allowed
to proceed.

The stability of this system is studied
relative to two-dimensional infinitesmal
disturbanees. It suffices to consider a single
Fourier component corresponding to the
roll eells shown in Figure 1, for any arbi-
trary infinitesmal disturbance can be repre-
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sented by superposition of such components.

The relevant set of linear, homogeneous,
partial differential equations contains time
only through derivatives with respect to

time. Hence the solutions contain an
exponential time factor; that is, the
disturbances either amplify or decay

exponentially. Thus one is led to a charac-
teristic-value problem with the growth-rate
constant as the parameter, the solution of
which gives the initial growth rate of a
disturbance of given cell size (wave length).
If the real part of the growth constant,
the amplification factor, is mnegative for
all values of cell size, the system is stable;
if it is positive for some values of cell
size, the system is unstable. The unstable
disturbances do not continue indefinitely
to grow exponentially in time, of course;
they eventually reach some fully developed
form of finite amplitude. The rigorous
deduction of the resultant finite flow is
such a formidable problem that approxi-
mate methods are in order. Of these the
most promising is the method applied by
Malkus and Veronis to the Rayleigh
problem (17). They have shown how to
relate the macroscopic flow to the solution
of the corresponding lincarized stability
problem. In any case one may reasonably
expect that the nature of the fully de-
veloped flow is closely connected with the
properties of that infinitesmal disturbance
which is dominant, that is for which the
amplification factor has the greatest posi-
tive value.

One point deserves special emphasis. In
this model interfacial turbulence may arise
spontaneously from ever-present small
fluctuations about the interface. Neither
the large-scale convection currents postu-
lated by Haydon (&) nor any other gross
upset originating at a distance from the
interface need necessarily be present in
the system.

Qualitative Behavior of the Disturbed System

If solute is diffusing from phase A
to phase B, the roll cell conveys liquid
rich in solute from phase A and liquid
lean in solute from phase B toward the
interface at point 1 (Figure 1). In the
case of a developing disturbance the
rates of convection differ in the two
phases, being higher in the phase of
greater kinematic viscosity.* Conse-
quently the net change in solute concen-
tration at point 1 depends, in part, on the
ratio of kinematic viscosities of the two
phases. The net change also depends on
the ratio of solute diffusivities in the
two phases, because molecular diffusion
alters the composition of each parcel
of liquid as it is conveyed toward the
interface, tending to restore the original
linear concentrafion gradients but acting
more strongly in the phase of higher
diffusivity.

If viscosity is higher in phase A, for
example, the convection current is
stronger there. If in addition the diffusiv-
ity is lower in phase 4, the flow-induced
concentration upset there is less affected
by diffusion than in phase B; hence the

*For an aceount of the effect of viscosity in
accelerating flows, see Schlichting (22¢).
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Fig. 1. Schematic diagram of flow dis-
turbance showing circulation pattern of
two-dimensional roll cells in cross section.

effect of the disturbance is greater on
the side of phase 4 and the interfacial
solute concentration is increased at 1.
Because of symmetry and the necessary
conservation of solute, the change in
solufe concentration is in the opposite
direction at 2. Thus variations in con-
centration, hence also in interfacial
tension, are induced along the interface.
The interface is no longer in mechanical
equilibrium and seeks a state of lower
free energy through cxpansion of regions
of low interfacial tension at the expense
of adjacent regions of higher tension
(the Marangoni effect). And because
there can be no discontinuity in velocity
at the inferface, motion in it induces
flows in the adjoining fluids.

Thus if interfacial tension increases
with increasing solute concentration, the
interface contracts at 1 and stretches
at 2, and this motion opposes the original
disturbance, causing it to be damped.
If, on the other hand, interfacial tension
decreases with increasing solute concen-
tration, the motion of the interface is
from 1 toward 2, which reinforces the
original disturbance and causes it to be
amplified.

Clearly if viscosity is lower and dif-
fusivity is higher in phase A, or if the
direction of solute transfer is reversed,
the flow in the surface between 1 and
2 is reversed, producing just the converse
of the effect described above. If the
viscosity and diffusivity are both higher
in the same phase, however, the direction
of motion in the interface cannot be
inferred except from the more detailed
analysis which follows, for in this case
convection and diffusion evidently are
competing effects.

From these intuitive arguments one
may anticipate that the stability of the
disturbed system depends on the vis-
cosity ratio, the diffusivity ratio, the
direction of solute transfer, and the sign
of the rate of change of interfacial ten-
sion with concentration. One sees that
instability, when it occurs, is driven by
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variations of surface tension; hence the
phenomenon might be called Marangoni
instability.

Synopsis of the Analysis

In dealing with an interface undergoing
deformation, one should recognize that
the interfacial tension under dynamie
conditions differs from that exhibited
under static conditions. In the following
section the stability problem is formu-
lated mathematically and its solution
found. Because the coupling of flow and
diffusion processes appears only in the
interfacial shear-stress boundary con-
dition on the flow and in the convective
transport terms of the diffusion equa-
tion, it is possible to solve the hydro-
dynamic equations first. The diffusion
equation describing the concentration
disturbance is then solved, and finally
the two solutions are combined by means
of the interfacial shear-stress boundary
condition to give the characteristic
equation for the system.

Succeeding sections are devoted to
the interpretation of the characteristic
equation, which is complicated by the
implicit nature of the equation and
the necessity of handling both stationary
and oscillatory instabilities, and to a
discussion of the theoretical results. In
this final section the consequences of
the simplifying assumptions are reviewed,
a program for generalizing the analysis
is outlined, and some practical impli-
cations of the theory for the planning,
reporting, and correlation of mass trans-
fer experiments are given.

DYNAMIC INTERFACIAL TENSION

Long ago Plateau discovered experi-
mentally, Marangoni explained qualita-
tively, and Gibbs deduced rigorously,
that in multicomponent systems exten-
sion of an interface produces an increase
and contraction a decrease from the
static interfacial tension, effects which
resemble the action of a dilational vis-
cosity operating in the surface (6). The
magnitude of the change increases with
rate of deformation and decreases with
the rate at which equilibrium between the
interface and the substrate phases is
reestablished by transport of heat and
material to or from the interface. This
phenomenon is vital to this analysis
because deformation of the interface
results when an initial flow disturbance
causes local variations in interfacial
tension. This effect might be included
in the analysis by computing the rates
of change of temperature and concen-
tration in and about a postulated sepa-
rate surface phase. However, the required
physical properties of the surface phase
are unknown, and the computation is
forbiddingly complex. Instead another
approach, to be explained shortly, is used.

Another aspect of interfacial deforma-
tion must be considered. When an

A.l.Ch.E. Journal

interface is subjected to shear wholly
in the plane of the interface, the surface
molecules must be reoriented even when
there is no change in area. The energy
dissipated increases with the rate of
shearing and is distinet from but anal-
ogous to the dissipation by ordinary
viscosity in three-dimensional fluids.
In many systems containing surface-
active agents this surface shear vis-
cosity is large and easily measured (9).

In classical fluid mechanics the sub-
strate phases are treated as continuous
media, and the phase interface is re-
garded as a mathematical surface sub-
jected to a membrane tension. This
approach is fruitful in physical problems
where system dimensions and charac-
teristic times are large compared with
molecular dimensions and relaxation
times, respectively. When these condi-
tions obtain, the viscouslike interfacial
effects described above are most con-
veniently incorporated into a hydro-
dynamic formulation by introducing
two coefficients of surface viscosity.
The stress, composition, and tempera-
ture of the substrate phases are assumed
to follow the classical equations of
motion and diffusion right up to a
mathematical surface located in the
phase interface. The two phases are
assumed to be in thermal and chemical
equilibrium at the interface. All depar-
tures of interfacial stress (tension) from
that existing in a static system are
attributed to surface viscosity regard-
less of their ultimate causes. The mathe-
matical statement of this idealization
of the interface is due to Boussinesq (3).
By a procedure analogous to that used
in deriving the Navier-Stokes equation
it can be shown that any arbitrary
surface deformation can be resolved
into an isotropic dilation superimposed
on a pure shear; likewise the stress
in a surface can be resolved into an
isotropic’ tension and a pure stress.*
The dilational surface viscosity « and
the surface shear viscosity ¢ are defined
as the ratios of the stress components
to the corresponding components of
the rate of deformation. These vis-
cosities depend upon the temperature
and composition of the substrate fluids
and generally on the past history of

*Actually, surface deformation and stress are
best represented as two-dimensional symmetric
tensors.
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Fig. 2. Shear-stress boundary condition at
the interface.
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surface deformation. One can, how-
ever, consider only the simple case
in which ¢ and € are independent of
the history of deformation. The corre-
sponding idealization for three-dimen-
sional fluids, which is actually the defi-
nition of a Newtonian fluid, proves to
be entirely satisfactory for gases and
many liquids. Nevertheless it is recog-
nized that interfaces may exhibit any
or all of the non-Newtonian effects that
have been encountered in bulk fluids.

Thus in the first approximation the
tension in the interface exceeds the
static (equilibrium) interfacial tension by
an amount ¢ times the rate of dilation
(rate of area increase per unit original
area per unit time), and the surface shear
stress is € times the rate of shearing in the
interface.

MATHEMATICAL FORMULATION
Equations of Motion

For two-dimensional flow of an incom-
pressible Newtonian fluid in the absence
of body forces the Navier-Stokes equa-
tions reduce to (22b)

aU | .aU | U
T Ut Voy
_ _lop ’U |9 U)
b oX ()ﬁ+aY- @
oV . .8 av
6t + L GY
LaP (V. &V

= ,er T (d)iz + dYZ) )

The continuity equation is

19
X
The development of flows of in-
finitesimal magnitude in an initially
quiescent system is being investigated—
that is, creeping flows; consequently
the nonlinear terms of Equations (1) and
and (2) are of the second order of small-
ness and may be neglected in comparison
with first-order terms. The pressure may
be eliminated by cross differentiation and
subtraction of Equation (1) from Equa-
tion (2):

14
3y = 0 (3)

V. U _ (63‘{
atoX  atay  “\ax®
PV *U a3U> v
T axar " axtey v’ W

It is convenient to introduce the stream
function so that the continuity equation
may be identically satisfied:

% V = Q_‘k_
Y’ 8X

A solution is sought for ¢ of the form
¥ = p(X)eiaveft, With this form for

U= —
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¥ one obtains from Equation (4) the
Orr-Sommerfeld equation for a two-
dimensional flow disturbance in an initi-
ally quiescent system:

rrrr

o = 20" 4 = ;@;(‘P” -9 (5

The solution of this equation when
B# 0is

@ = @lex + Qzeﬁ

where

+ @36”2 + @4e~pz

-1+
ay

When 8 = 0, the solution is

(6)

o = Q" -+ @6€h2
4+ @ze” + @zre” (6n)*

where the arbitrary constants @, through
@s are yet to be evaluated from the
boundary conditions.

For simplicity it is supposed that the
interfacial tension is sufficiently great
so that the interface remains substan-
tially planar. The eight boundary con-
ditions required to specify ¢ (and thereby
the velocities) in both phases are (i) to
(iv) the disturbance remains finite at
large distances from the interface; i.e.
U, and V, are finite as X — o and

likewise U, and V, as X — — «;
(v), (vi) the interface, which is the
plane X = 0, is a streamline; that is

U0, Y, 1) = U0, T, ©) = 0; (vil)
there is no slip at the inferface; that is
V.0, Y, = V0, Y, t); (viii) there
is continuity of tangential stress at the
interface. The essence of the analysis
lies in (viii), which requires that

aﬂ'yy

Y

(Figure 2), where the shear stress on
the upper side of the interface is given
by (22a)

alv v,

Txve = “”(ay aX ) ®
and similarly for the lower side. The
interfacial tension in Equation (7) is the
dynamic interfacial tension. In accord-
ance with the formulation of Boussinesq
(3), this tension depends upon the rate
of deformation of the surface:

Txyoe — TxYe = at X =0 (7)

av | oW

oor = ot 57+ )

v aW) -
+e<(ﬂ a7 ) & X=0 (9

It is assumed that the two phases are
in thermodynamic equilibrium at all
points of contact; hence oo may be
expressed in terms of the composition

*The letter n is used to identify formulas applying
to the special case of 8 = 0 (neutrally stable station-
ary disturbance).
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at X = 0 of either phase A or phase B.
By hypothesis the concentration varia-
tions along the interface are small;
hence with sufficient accuracy one can set

doyy (do’o)<6(7a>
oY — \dC,J/\aY

oV .
+ M(W) at X =0 (10)

where u, = x -+ € and the derivative
dW /dZ vanishes for the two-dimensional
formulation.

Boundary conditions (i) to (vii) require
that @.(®) = @ (—) = ¢,(0)
¢,(0) = 0 and ¢',(0) = ¢,(0), whence

x>0 (11

P @2(6—:0 . e"?’al‘),

1= a z pLT
Yo = _@2(1 _ z)(e =",

z <0

(12)

or, in the case 8 = 0

0. = Qgre ", x>0 (11n)

oy = Qgre’, <0 (12n)

At this point one has solved the equa-
tions of motion for a roll-cell disturbance
of wave length A = 2a/a and small
but unspecified (as reflected in the single
remaining arbitrary constant) initial
strength. The behavior with time of such
disturbances is examined next, and to
this end one considers the interfacial
shear-stress boundary condition (viii),
which with Equations (7 to 12) becomes

aC,
§ “(aY)X_O

Lo + ) + 2 (1L 4p) + “““]

azuaazez aY Bl(pa )

g =40 (13)
aC, 2 iaY
g‘a(ay>\ o 2a8ﬂaan
-(1 +ﬂ+%), =0 (13n)
Mo 2,

where {, = doo/dC,. These equations
enable one to calculate the growth con-
stant 3 for any given wave number « and
assignment of system properties. First
however one must determine the surface
concentration gradient (9C,/8Y) x-o.

Diffusion Equations

For simplicity of illustration it is
assumed that constant fluxes of solute
have been established in the undisturbed
system, at least within that region about
the interface within which interfacial
turbulence may arise. The undisturbed
concentrations are taken as

=49, +&£X, X>0 (14)
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=g, +&X X<0 (15

These concentration distributions are
perturbed by the flow disturbances
already treated. The concentration distur-
bance is governed by the equation for
diffusion in a constant-mass-density,
binary, two-dimensional system

LWivE v
- 9o(ZG 1+ 25)  as)
where now
U= —iap(X)e' """ a7
V — d‘p(x) 1zxYeﬂl (18)

ax

In the initial stages of growth of the
disturbances the concentration pertur-
bation is of the same order of small-
ness as the velocities. Therefore one sets

C=0CX)+GX, Y, 19

inserts this expression in Equation (16),
and neglects terms of the second order
of smaliness, thereby obtaining

@ (oG G)
9t ( x? + aY*?
dc?®

(/(—i)?

(20)

A solution is sought for the concentration
perturbation of the form G = H(X)ef=Y¢b?,
With this form for @ it follows from
Equations (14), (15), (17), and (20) that
H(X) must satisfy

"o B8
H ( aD

The solution of this equation is

2
)H = _;zo“’ (21)

LiL,'(0) —

3:1:(0)] — r’L[1,'(0) + ¢.1.(0)]

or
[ r’ _ 1 ]
A = (s + D(g» + p) (g + 1)(¢. + po) (30)
dﬂﬁb+wga+m+u+m+f
and
Ays = =1 g=0 (30n)

Table 1 gives the particular integral I
for the stream functions of Equations
(11) and (12). The arbitrary constants
@, and G (and ®s and & for the
second phase) are yet to be evaluated
from the boundary conditions.

The boundary conditions required to
specify H (and thereby the concentration)
in both phases are

ix, x. The concentration disturbance
vanishes at large distances from the
interface; that is €, — C2 as X — o
and C,— C)as X — —w»

xi. The two phases are in thermody-
namic equilibrium at the interface; that
is mCa(0, ¥, 1) = C4(0, ¥, t)

xii. There is conservation of solule at
the interface; that is, ©,(8C,/9X) =
D,(00,0X) at (0, Y, &). These conditions
lead to the relations

mubga = (‘\Ib
== £b; TZ == ‘J),,/i)b

(23)
(24)

for the undisturbed concentration distri-
butions and

mab[@m - la]a(O)]
7’2[@10% + laIa,(O)]
= —®yq, + 1LL,"0) (26)

for the constants of the perturbed con-
centration distributions. From these
expressions one finally obtains

L.,

= ®, — 1,1,(0) (25)

H0) ==

M@y + 740

(27)

from which the desired surface gradient
follows immediately, since

(...~ ()
0Y/xeo \3Y/xeo

= H (0Viac * "¢

(28)

Characteristic Equation

Substituting Equations (27) and (28)
in (13) gives

H =" + @oe™ — II (22
where
q = 4/1 + ”ﬁ
l=1iL/a®D
I — eq: f e—2a1f60x§0 (dx)z
< -1
g + D

_%—w
Go + P
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CRD
Ka 2u,

where

B = <§'a a) Band 4 = <%Z—;ia)a2

are dimensionless forms of the growth
constant and wave number, respectively.
It is convenient to introduce additional
dimensionless quantitics:

¢ = B/a’D, = B/d*A

d = \/'fDa/'v,,
e =V Va/Vb

Then in Equations (29) and (30)

.= V1I+te q=V1+rE
Po = \/1_+_—dj‘§; Dy = \/Tﬁgé%

For a given system all the properties,
d: €, T, Maby Hoy Moy Mo g‘a: "eu: and :Dar
arc assigned, and so Equation (29) de-
termines the complex growth constant
8 (in B) for each wave number « (in A)
of the disturbance. Unhappily this
characteristic equation is implicit in the
dependent variable B and besides con-
tains four vexatious radicals.

INTERPRETATION OF THE
CHARACTERISTIC EQUATION

The wave number of a disturbance is
real and positive. The growth constant
in €t is complex:

B=p5=xp
Disturbances for which B < 0 are

damped; those for which B > 0 are
amplified and instability sets in.

Regimes of Instability

There exist two kinds of instability.
The first is an oscillatory regime (some-
times named overstability), wherein the
growing disturbance displays temporal
periodicity with period 2r/8 and a
translatory motion with speed of pro-
pagation 8/a. The second is a stationary
regime (often called convective instability)
corresponding to § = 0, in which the
disturbance grows in place without
oscillation or translation. For each regime
there may exist certain wave numbers
for which 8 = 0, an indication of margi-
nal or neutral stability; that is the
disturbance neither grows nor decays in
time. Thus zeros of the function ﬁ(a)
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are of particular interest, since they
demarcate stable and unstable wave
numbers.

In some problems of hydrodynamic
stability, for example the Rayleigh
problem (186, 21), it has been possible
to prove the so-called “principle of ex-
change of stabilities,” which states that
8 < 0 for all 8 5% 0, whence all oscil-
latory disturbances decay and only the
stationary regime of instability need be
considered. However this principle does
not apply to this model, as is shown
below. The interpretation of Equation
(29) is complicated by the existence
of both regimes of instability; indeed

. Ans
A

e21>r%, 120 1>ef2rt

T

Stable ,l
A ANS

\

A
Stable ANS

r>t2ef, 120

rizels)

réalsel, 10 o

Fig. 4. Amplification factor vs. wave number (in dimensionless
form). Solid curves denote stationary regunes, broken curves,

in some cases they ma set\ in simul- oscillatory regimes. e? = v,/v,; 12 = 3) /Dy ; f given by Equation
taneously with one or the other domi- (34); B = (1./6:L.)83 A = (. /5.L)@
nating in time.
. . Maki f th i -

Making we of e soproriats omar

It is instructive to regard £ temporarily  gome manipulation, ’ ’
as the independent variable in Equations | r 1 My + 1
(29) and (30) and to let p, be zero, limit B f= 2 + .
since the equations are explicit from o . . (——;ﬁ + 1)
this point of view. The equations define = " =1 £ r
two complex functions, 4 = a4+ <a mab Hp o,
and B = B + 4B, of the complex vari- +1 e +1+ 2, (“b e L 1)
able = £+ if. In seeking conditions \ +

+ 0F) 31)
- ) ( (Mb +1+ aNS‘ﬂx)

limit B = el e 62) w1

e a Mo reo — 1

(r + e)(r + de)(d + 1)( > >(—e + 1>
Ua + JTE— (34)
i also, from Equation (30), d

for instability one may restrict £ and £ an
to nonnegative values; for if £ < 0, then o * — &)
either 8 < 0 and the disturbance is limit 4 = .
damped or else a2 < 0, which is physi- &> del(d <+ 1 ( ab )< )
cally meaningless, and on physical & + o) + de)(d + 1) +1 Ha e+ 1
grounds B and A are both even functions
of £ The functions A(£) and B(%) are f — 1 Ii& r 4+ de) + d + 1]
analytic on the quadrant £ > 0, £ > 0. + ( ) ( ) £ 4 0 (35)

Because wave number must be real,
only real values of A have physical
meanmg Therefore one looks for paramet-
ric curves of A = 0 in the quadrant
of interest. One such curve is the real
axis, inasmuch as A(, 0) is identically
zero. This curve corresponds to a sta-
tionary regime of instability, since
B(£, 0) is also identically zero.

Information about the stationary re-
gime (and oscillatory regimes too) may
be gained by an examination of the
limiting behavior of A(¢) and B(%).

i ¢

80.8) - 0

B(0.0) = 0
B(&.0)

Bl{wm.0) = D ,0) =
N 4

B(0,0) = 8

limit A
£~0

(-1
Sdz(mab+ 1)<ub+ |4 )

(1 = &) + 0"
= ANS<1 - ff) + 0(52)

(33)

(a) e®21>r?, £20
12, £20

(b} e*>r2i
e?>I>r?, f<0

B(0,0} - 0 B(w.0) - 0
n[ h;
t £

{c) rize’>1
1> ef2pt

ri>ise’, Ko
12rt>e?

Fig. 3. The function A on the £ plane.
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Thus two zeros of the characteristic
function B(A) are

B = 0 fOI' A = ANS
[£ = 0; cf. Equation (30n)]
B=0 for 4=0 (§— »)

and these represent neutrally stable sta-
tionary disturbances of wave numbers
a = ayg and a = 0, respectively.

There may exist a third distinet zero
of B(§) by virtue of a zero of the numer-
ator of Equation (29) for real £ It can
be proved that there exists exactly one
such additional zero, at £ = &, where
0 < & < o, if, and only if, the quan-
tities (r2 — 1) and (r* — €?) are of opposite
signs.* If B(Eo) = 0, then A(Eo) = 0,
and the point

B=0 for A=0 (¢=£§)

*See Appendix, which has been deposited =as
document No. 6048 with the American Documentation
Institute, Photoduplication Service, Library of Cun-
gress, Washington 25, D, C., and may be lobtained
for $1.25 for photoprints or 35-mm,! miecrofilm.
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Fig. 5. Resulis of computation.

represents another neutrally stable sta-
tionary disturbance of wave number
a = 0. Whenever this is the case, the
function B(A) is evidently double valued
on some interval of A which contains
A=0.

To establish the existence of oscil-
latory regimes, one looks for zeros of
A, §, which must lie on parametric
curves of A = 0. Moreover these zeros
are also zeros of B(O, £) and therefore
represent ncutrally stable oscillatory
disturbances (provided £ s 0). The
argument hmges on the limiting behavior
of A, which is easily inferred from
Equatlons (33) and (35) and is given
in Table 2. There it is seen that in the
limit E =0 £E— 0, A has the same
sign as —(r? — 1)f; in the limit £=0,
§— o, it has the same sign as (ez2 — 1).
It follows immediately that if (7‘2 — 1)
and (e2 — 1) have the same sign, there
exists an odd number of zeros of A(0, £),
and there is at least one wave number
ayo for which the system is neutrally
stable relative to an oscillatory distur-
bance. On the other hand, if (r2 — 1)
and (e2 — 1) are of opposite signs an
even number of zeros of A(0, §) exist,
and so it is at least possible that the
system is stable relative to oscillatory
disturbances.

The oscillatory and stationary reglmes
are connected if 6A/6£ = 04/6$
at some point (5, 0), that is if there is
a saddle point on the real axis. At such
a saddle point A has a local extremum,
and the curve of A = 0 lying on the
real axis and representing stationary
instability is intersected perpendicularly
by a second curve of A = 0 representing
oscillatory instability. It can be shown
that there is a saddle point on the real
axis if (72 — 1) and (2 — e€2) are of
opposite signs [note that this is the same
criterion as applies to the existence of
a third zero of B(£)] or if f is negative
and (2 — 1) and (12 — ¢?) have the
same sign.*

Not every curve of oscillatory in-
stability, however, intersects the real
axis. For if (e — 1) and (r2 — ¢?) have
the same sign, there may be no saddle

*See footnote p. 519,
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point on the real axis, but there 8 a
curve of A = 0 which approaches
asymptotically a parabola, £ proportional
to E2 and terminates at the branch
point, § = . Furthermore, if (e2 — 1)
and (r2 — e2) are of opposite signs, there
is no branch of A == 0 in the far reaches
of the quadrant.*

It may be concluded from all this
information that three possible pictures
of A(E, £) = 0, contingent on the relative
magnitudes of 72, €2, and unity and on
the sign of f, are as shown schematically
in Figure 3. In thesec three pictures,
which encompass all possible combi-
nations of the parameters, the heavy
lines are loci of unstable disturbances.
Although the possibility of additional
curves of A = 0 intruding across the
imaginary axis has not been rul:d out
entirely,* such curves would require the
existence of morc than one neutrally
stable oscillatory disturbance, which
seems unlikely on physical grounds.
Furthermore, none have been found in
the course of extensive numerical solu-
tions of the characteristic equation.

Criteria for Instability

The physical behavior of the system
for any given set of parameters may be
inferred from the dependence, implicit
in Figure 3, of amplification factor on
real wave number. This dependence is
clear in Figure 4, where the dimensionless
amplification factor B = Blu/t.L) is
plotted as a function of the dimensionless
wave number 4 = al(vau,,/ ¢.L,) for all of
the loci of instability in Figure 3. Both
B and 4 can be either positive or negative
depending on the signs of £, (which
defines the direction of transfer) and
¢. (which gives the change of interfacial
tension with concentratign). Now for in-
stability both B and a® are posmve, and
therefore B and A have the same sign; in
other words, only the first and third quad-
rants of the plots in Figure 4 can contain
instability curves. From the figure it
may be seen that the location of such
curves, in one or the other or both
quadrants, depends on the viscosity and
diffusivity ratios and the related param-

*See foutnote p. 519,
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Fig. 6. Results of computation.

eter f. It is further seen that regardless
of the parameter values there is at least
one instability curve in every case. Once
physwal properties have been assigned,
the sign of A depends solely on the
direction of solute transfer (sign of £,).
Thus one is led to a remarkable con-
clusion: the system studied here is always
unstable relative to roll-cell disturb-
ances—if not with solute transfer from
phase A to phase B, then with transfer in
the opposite direction. Moreover if
kinematic viscosity and solute diffusivity
are both lower in one phase (that is,
e2> land > lore2< land 2 < 1
in Figure 4) the system is unstable with
transfer in either direction. This result
decides the point left unsettled in the
preliminary deseription of the behavior
of the disturbed system: how does the
system behave when convection and
diffusion are competing effects? Although
these effects appear to be in competition,
the system responds to the one promoting
instability in a given situation. It should
be remarked here that systems in which
viscosity and diffusivity are both lower
in the same phase are not often en-
countered.

Interfacial tension commonly de-
creases with increasing solute concentra-
tion in a two-phase system; that is, the
concentration coefficient of interfacial
tension {, is usually negative. When this
is the case, instability arises whenever
solute is being transferred out of the
phase in which kinematic viscosity is
higher or out of the phase in which
solute diffusivity is lower.

If the kinematic viscosities are equal
(e2 = 1), the ouset of instability clearly
is controlled by the restorative action of
molecular diffusion. Conversely, if the
diffusivities are equal (r2 = 1), the flow
effects are paramount. It is on this basis
that the distinetion is drawn in Figure 4
between diffusion-limited and flow-
limited modes, labeled DL and FL,
respectively.

It is evident from Figure 4 and the
preceding investigation of functional
behavior that even when instability
oceurs the system remains stable relative
to all disturbances with wave number
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TasLE 1. QuanTITIES APPEARING IN EQUATIONS (22) TO (28)

@ (x)/a 1(x)/a 1{0) /o 1'(0)fe H,(0)/a
Bfo (e" e-pax) (p§<1) (l-p‘)(qi&pu) ‘{liu(vl.r) Il %2
-X =P, X A= - —_—
et e €1 a2l (a2-1)(a?-p2) (2-1N@2-02) | BReara,) Vogtp, ap,
l'Pa) X ppx ﬁxg i Po* _(l’pn (p:-l) (1.pa)(q§+pb)
s o) P (e - ) ) @) | @
8 =0
&£ 1(1-r?)
Phase a ~X _ x(x+1) o-X o TR a
x20 * / vl 1)
}:tha:s(e> b xe X x(x-1) x ° A
TasLe 2. LimiTiNg BEHAVIOR OF EQUATIONS (29) AND (30),
INugRENTLY Posirive CoNsTANTS ARE OMITTED
£ [ A i 5
-0 =0 (r® - 1) o (r2 - 1)E
=0 -0 (r® - 1) - (- L1t (r® - 1) @
=G o - (r®? - ez).g_2 (e® - l)E'S/Q - (# - 1).5-3/2
e =C (r? - e2)i2 6 (r® - A

. (e - 1)E/2

- (r? eZ)E'z BT eZ)E‘l

greater than some finite value, ay(ans
or ayo). Furthermore, the unstable
disturbances with very small wave num-
bers are amplified least rapidly; hence
there is one wave number ap, where
0 < ap < ay, which is amplified most
rapidly and ultimately dominates the
system. Now wave length or cell size is
inversely proportional to wave number;
that is, A = 2r/«. Thus in small cells
the motive force in the interface is more
than offset by the viscous shear forces
opposing motion, and the initial motion
is damped. The contrary is true when
cell size is larger than Ay = 27/ay, and
the motion is amplified; the rate of
amplification is vanishingly small in
extremely large cells because of the
inertia of the greater volume of fluid per
cell.

Whereas the onset of instability is
governed by the signs of the quantities
v, — ¥, D, — Dy, {a, and £, the cell size
and the rate of amplification of the
dominant disturbance are also influenced
by the magnitudes of these quantities
and of the ordinary viscosities p, and
4y, the surface viscosity u,, the Schmidt
number d-2, and the solute distribution
coefficient m,, as well. The qualitative
effects may be summarized as follows:
stronger variation of interfacial tension
with concentration and steeper concen-
tration gradients promote smaller cells
and more rapid amplification, and so
also do greater disparities of viscosity
and diffusivity between phases. Higher
diffusivities and viscosities in both phases
lead to larger cells and slower amplifica-
tion, and this tendency is more pro-
nounced in the range of small cell sizes.
The qualitative effects of d* and m,;, are
not directly evident and hence must be
found by calculation.

Vol. 5, No. 4

Results of Computation

That the authors’ simplified model is
subject to Marangoni instability is now
established. Yet it may be that the wave
lengths are so great, or the amplification
rates so slow that the instability cannot
manifest itself within the space and time
available in the laboratory. Accordingly,
values of a and 8 have been computed
for four typical cases, selected to include
all the regimes and modes of instability
which are described above. The param-
eters which do not strongly affect the
kind of instability, d, ., ps/ma, and p.,
were assigned the same values in all four
cases. So also was the ratio of kinematic
viscosities, at e = 2. The cases were
distinguished by four different values of
the diffusivity ratio, 2= 0.5, 1, 1.5, and 4.

The results of the computations are
shown in dimensionless form in Figurcs 5
through 8, where an unusual coordinate
scale is employed for clarity of presenta-
tion.* Of greatest consequence are the
points corresponding to neutrally stable
and dominant disturbances; these are
labeled N and D, respectively, in Figures
5 through 8 and are also given in Table
3.* Note that the dominant disturbance
is of much smaller wave length (greater
wave number) and is amplified far more
rapidly in the diffusion-limited modes
than in the flow-limited modes. Note
also the curious contrast between the
cases in Figures 6 and 7. In both when-
ever the direction of transfer is such as
to make A negative (reverse direction of
transfer), stationary and oscillatory dis-
turbances set in simultaneously. A
stationary disturbance prevails if the
solute diffusivities are equal (Figure 6),
whereas an oscillatory disturbance pre-

*The computations themselves are tabulated in
the Appendix. See footnote on p. 519.
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dominates if the diffusivity ratio is 1.5
(Figure 7).

To convert the calculated dimension-
less quantities to the desired wave
lengths and amplification factors, it is
necessary to assign magnitudes to certain
physical properties. Let u, = 102
g./(em.)(sec.) and p, = 1 g./cc. Then
v, = 1072 sq. cm./sec. and, because the
Schmidt number d-2 = 5 X 102, it
follows that O, = 2 X 10-5 sq. em./sec.
Let the concentration coefficient of
interfacial tension {, = —102 (g./sec)/
(g./ce.), a value typical of such systems
as toluene-water with acetic acid as the
consolute (28). Let the undisturbed con-
centration gradient £, = 1(g./cc.)/em.,
a value that obtains at the interface
0.4 sec. after a phase 4 containing 19, of
solute is contacted with a phase B
initially devoid of solute, if m,; = 1 and
D, = 2 X 107% sq. ecm./sec. The magni-
tudes of A and B are then as given in
Table 4. It should be emphasized that
Table 4 contains the results of sample
calculations. By choosing other values
for the physical properties, it is possible
to obtain values of A and 8 which differ
from those shown by severalfold or even,
in extreme cases, by a few orders of
magnitude.

Neither the tabulated wave lengths
vor amplification factors are so large as
to refute the explanation of interfacial
turbulence in terms of Marangoni in-
stability. The flow-limited modes are
characterized by dominant disturbances
which have cells a few millimeters in
breadth and which double in intensity
every second or so. In marked contrast
are the dominant disturbances of the
diffusion-limited modes, which are of
much smaller cell size and are amplified
far more rapidly. The microscopic scale
of the latter type of disturbance and the
rapidity with which it develops suggest
a possible explanation for the lack of
visible convective motion in some in-
stances of spontaneous emulsification

(4, 19).

DISCUSSION

The conception of Marangoni in-
stability has led to a credible explanation
of interfacial turbulence. The analysis
shows clearly how it is possible for some
systems to be unstable with solute
transfer in one direction yet stable with
transfer in the opposite direction, and
others to be unstable with either direction
of transfer. The analysis also shows that
instability may be contingent upon other
parameters heretofore unsuspected. These
are the direction in which interfacial
tension changes with solute concentra-
tion and the signs of differences between
the solute diffusivities and kinematic
viscosities of the two phases. The theo-
retical results suggest several variables
whose influence may account for observed
contrasts in intensity of interfacial
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turbulence from one system to the next. centrate on consequences of solute mnormal to the interface, which simulates
1

The importance of two of these is already
confirmed by experiment; they are the
steepness of the concentration profile
near the interface, which is related to
the initial difference of solute concentra-
tions, and the magnitude of the surface
viscosity, which reflects the presence of
highly surface-active agents.

The explanation is not completely
convineing however. At present the
analysis is based on a model too simplified
to be reproduced in the laboratory;
therefore direct, quantitative compari-
sons with experiment are impossible.
Although many new experiments come
to mind, the additional evidence that
they will provide cannot be used for a
decisive test of the theory until several
of its deficiencies have been removed.

First one may ask to what extent
temperature variations along the inter-
face contribute to the Marangoni effect.
Some investigators have speculated that
interfacial agitation is caused by varia-
tions of interfacial tension occurring as
a result of uneven release of heat of
solution when solute passes through the
interface (2, 14). This effect is easily
incorporated in the authors’ simplified
treatment. The interfacial flux boundary
condition on the diffusion equation is
altered to include a heat-source term,

and an appropriate undisturbed tempera- _

ture profile is assumed. The interfacial
shear-stress boundary condition on the
flow equation is recast to account for
the dependence of interfacial tension on
temperature as well as on concentration.
The resulting characteristic equation for
B(A) includes a term that represents
the solution heat effect, a term involving
the heat of transfer, the relative rates of
change of interfacial tension with tem-
perature and concentration, and the ratio
of mass to thermal diffusivities.. By
inserting in this term the properties of
one typical system, benzene-acetone-
water, one finds the interfacial forces
generated by temperature variations to
be roughly a thousandfold less than those
simultaneously generated by concentra-
tion variations. This comparison, though
by no means settling the matter, suggests
that it will be most profitable to con-
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transfer in isothermal systems.

Other troublesome complications which
are not included in the simplified theory
but which are of importance in experi-
ments are

1. The disturbances are not two di-
mensional.

2. The interface does not remain fixed
in position; rather, it is free to twitch.

3. The system does not consist of
two semi-infinite slabs; very often one
phase is in the form of nearly spherical
drops.

4. Solute transfer is not steady in the
undisturbed state.

5. Not only is there transfer of solute,
but the solvents themselves interdiffuse.

6. The diffusivities, rather than being
constants, usually depend strongly on
concentration.

Analyses that take the first four items
into account are in progress and will be
reported in detail later, but some remarks
about them are apt here. A pattern of
cylindrical convection cells oriented

square or hexagonal cell patterns, leads
to the same characteristic equation as
given above for the two-dimensional,
roll-cell pattern. The present prosecription
on motion of the interface normal to
itself, which amounts to a tacit assurmp-
tion of great interfacial tension, is
easily removed by allowing the interface
to be deformed by the normal fluid
stresses. When this is done, an additional
parameter that involves the magnitude
of interfacial tension appears in the
characteristic equation. It will probably
be possible in this way to explain the
more intense interfacial turbulence in
systems of lower interfacial tension. The
formulation of the stability problem for
a spherical drop suspended in a second
phase is straightforward. Solutions of
stability problems in which the undis-
turbed system is not at steady state are
hard to find. However, if the undisturbed
diffusion changes the systemn much less
rapidly than the nascent disturbances
do, one can use the artifice of freezing
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the concentration profile in its shape at
any arbitrary instant and examining the
stability of the system in that state. This
scheme was recently applied to the
Rayleigh problem by Morton (20).

The above list is ordered roughly in
increasing mathematical difficulty. The
ordering is also nearly that of increasing
physical importance, the matter of
variable diffusivities being greatest con-
sequence for linking experiment with
theory. But the fruitfulness of the
simplified treatment justifies more elabo-
rate analyses, for which the ground work
is now laid.

Recommendations

Although the goal of a full under-
standing of interphase mass transfer is
still a long way off, the following recom-
mendations may hasten its attainment.
Since interfacial turbulence unquestion-
ably enhances the rate of mass transfer,
experimenters studying extraction should,
whenever possible, report direct obser-
vations of the phase interface with their
extraction data. In any case the direction
of transfer, concentration levels, and
presence or absence of surface-active
contamination should be noted. Viscos-
ities, diffusivities, and the variation of
interfacial tension with composition
should be estimated or, preferably,
measured. This information will be
needed not only for the proper inter-
pretation of simple laboratory experi-
ments, but also for the rational scale up
of bench and pilot plant extraction
equipment.

Good empirieal correlations of mass
transfer rates in liquid-liquid extraction
are lacking, partly because interfacial
effects have been overlooked. (The same
is true of flooding-point and capacity
correlations.) More trustworthy cor-
relations can be made by the conservative
expedient of simply rejecting data known
or suspected to be affected by interfacial
turbulence. But sooner or later, in order
to exploit fully the effect when it does
occur, a correlation should be developed
which accounts for those parameters that
influence the onset and intensity of
interfacial turbulence.
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NOTATION

(Vabta/E2La)e?, dimensionless
wave number

constant of integration
(a/C.£.)B,  dimensionless
growth constant

constant of integration
solute concentration [M L-3]
\/ D,/v., dimensionless
solute diffusivity [L6~]
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Subscripts

[

[t

no= e

Superscripts

0

V/'»,/v;, dimensionless

function defined by Equa-
tion (34), dimensionless

= concentration perturbation

(ML)

X part of the concentration
perturbation [M L~
V-1

particular integral in Equa-
tion (22)

undisturbed interfacial con-
centration [M L9

(7/ D)L [M L0}
undisturbed concentration
gradient [M 1]

C,/C, at equilibrium, dis-
tribution coefficient, dimen-
sionless

= V1 + (8/a”%), dimension-
less

= pressure [M L1979
= V1 + (8/a’D)dimension-
1

ess
vV D,/ D, dimensionless

time coordinate [6]

X, Y, and Z components of
velocity [L6-1]

spatial coordinates [L}

wave number [L™]

growth constant [6—1]
circular frequency
amplification factor for the
disturbance

= surface-shear viscosity

[M6—]

concentration coefficient of
interfacial tension [L3672]
dilational surface viscosity
[M6-3]

wave length [L]

ordinary viscosity [ML91]
€ -+ k, composite surface
viscosity [M8-1]

kinematic viscosity [L26-]
B/a2D,, dimensionless
density [ML-3]

equilibrium interfacial ten-
sion [M6~2]

Y component of the longi-
tudinal surface stress [M6-7
Y component of the fluid
shear stress [ML~10~7]

= X part of the stream func-

tion [L20-1]

= stream function [L2g-1]

phase A(X > 0)

phase B(X < 0)

dominant unstable disturb-
ance

neutrally stable disturbance
oscillatory disturbance
stationary disturbance

value in the undisturbed
state

A.l.Ch.E. Journal

- = real part in a complex
variable

~ == imaginary part of a complex
variable

primes = differentiation with respect
to dimensionless quantity

z = aX
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