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The origin of interfacial turbulence, spontaneous agitation of the interface between 
two unequilibrated liquids, has been explained in terms of classical flow, diffusion, and 
surface processes. The essence of the explanation is the long-known though much neg- 
lected Marangoni effect, wherein movement in an interface is caused by longitudinal 
variations of interfacial tension. It is proposed that interfacial turbulence is a manifesta- 
tion of hydrodynamic instability, which is touched off by ever present, small, random 
fluctuations about the interface. 

A simplified mathematical model has been analyzed in order to detail the mechanism 
of the “interfacial engine” which supplies the mechanical energy of interfacial turbulence. 
In its present form the analysis incorporates several drastic simplifications, though ways 
of removing some of these have been suggested. The groundwork has been laid for the 
more elaborate analyses that are needed for a decisive test of the theory. 

The analysis shows how some systems may be stable with solute transfer in one direction 
yet unstable with transfer in the opposite direction, a striking result. It also suggests that 
interfacial turbulence is usually promoted by (1) solute transfer out of the phase of higher 
viscosity, (2) solute transfer out of the phase in which its diffusivity is lower, (3) large 
differences in kinematic viscosity and solute diffusivity between the two phases, (4) steep 
concentration gradients near the interface, (5) interfacial tension highly sensitive to solute 
concentration, (6) low viscosities and diffusivities in both phases, (7) absence of surface- 
active agents, and (8) interfaces of large extent. 

That some of these effects have been observed in the laboratory lends credence to the 
theory. 

Strange are the effects when unequili- 
brated liquids are brought into contact. 
If a solution of 1Oy0 methanol in toluene 
is placed quietly upon water, the water 
remains clear, but in the organic phase 
a turbid emulsion of water droplets 
appears. With a solution of 40% metha- 
nol in toluene the organic phase remains 
clear, while an emulsion appears in 
the water (19). Yet if pure toluene is 
placed upon water containing methanol, 
no spontaneous emulsification occurs. 
If pure tolucne is placed upon an aqueous 
solution of butyric or valeric acid, there 
arises intense though localized stirring 
on the toluene side of the interface; 
but if under the same conditions the 
solute transferred is acetic or propionic 
acid, there is no stirring action at all 
(26). If diglycol laurate is placed upon 
water, streamers of the organic mate- 
rial very slowly extend downward into 
the water, bend round when they near 
the bottom of the container, and then 
slowly grow upward (19). 

An extensive qualitative investigation 
by Wei (27) points up the widespread 
occurrence of these and similar effects. 
Having noticed localized stirring at 
the interface in certain liquid extraction 
experiments which gave unexpectedly 
high mass transfer coefficients, Wei went 
on to test systematically for spontaneous 
interfacial activity between many dif- 
ferent liquids, some pure and others 
containing a solute. No activity is seen 
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when neither phase contains a solute. 
Sometimes there is activity when a 
single solute is extracted n ithout chemical 
reaction. There is pronounced activity 
in almost every instance where the 
two phases contain re:tcting solutes. 
Wei distinguishes severa L general types 
of disturbance, which :it times occur 
together: localized stirring with rippling 
and twitching of the interface; slow 
moving transparent streams leaving the 
interface, evidently differing slightly in 
composition or temperature from the 
bulk through which they move; slower 
moving opaque streams from the tips 
of which tiny droplets disengage, often 
forming an emulsion; and mistlike emul- 
sions slowly forming about the interface. 
The intensity of the activity varies 
markedly from system to system. It 
is usually greater for solute transfer 
from organic to aqueous phase than for 
transfer in the opposite direction. It is 
also influenced by solul c concentration 
and the presence of surfave-active agents. 
The greatest intensity is observed when 
there is rapid and highly exothermic 
reaction between two solutes near the 
interface, especially in systems with 
low interfacial tension (23, 27). 

In  some cases the bchavior is even 
more bizarre; for example, when a 
layer of wet isobutanol containing hydro- 
chloric acid is gently placed upon water 
saturated with isobutanol. and containing 
ammonia, not only is th:re rippling and 
twitching of the interface but also, after 
30 see. or so, a water drop forms in 
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the alcohol phase, grows, sags down 
into the interface, and then bursts 
through, acquiring in the process a thin 
covering film of isobutanol. The double 
drop is propelled several centimeters 
into the aqueous phase, whereupon it 
disintegrates, leaving a much smaller 
droplet of isobutanol that descends 
another 10 to 30 cm., reverses direction, 
rises to the interface, and finally merges 
with the upper phase. Meanwhile a 
new drop forms above the interface, 
and the sequence is repeated. 

Although the experiments so far de- 
scribed all involve nearly flat interfaces, 
disturbances of the same sort occur a t  
rounded interfaces. When a drop of 
liquid is formed at a capillary tip im- 
mersed in 5 second immiscible liquid 
and a solute is initially present in one 
or the other phase, the interface is, in 
many cases, disturbed by rippling, while 
the adjoining liquid is turbulently agi- 
tated (11, 14, 24). At times there are 
localized eruptions a t  the interface (24). 
If it is pendent, the entire drop often 
pulsates violently and erratically (6, 7 ,  
11) ; unattached drops behave in the 
same way (11, 23, 24). As in Wei’s 
experiments the occurrence and intensity 
of these effects depend on the solvents 
and solute employed, upon solute con- 
centration, and sometimes upon the 
direction of solute transfer. Surface- 
active agents tend to reduce the vio- 
lence of the upsets, sometimes suppressing 
them completely. 

Convection develops spontaneously at 
gas-liquid interfaces too. The clean sur- 
face of an ether-water Solution twitches 
continuously during evaporation of the 
ether. However, the Langmuirs (10) 
observed that certain insoluble surface 
films can arrest the motion, thereby 
greatly reducing the rate of evaporation. 

All these phenomena, with the possi- 
ble exception of some cases of spon- 
taneous emulsification (d), involve gross 
fluid motions and therefore demand the 
concepts of hydrodynamics for their 
explanation. The situation is unusual, 
however, in that the source of energy 
for driving the flows surely is the dif- 
ference in chemical potential between 
the two phases. In  a closed system such 
a potential difference diminishes as ther- 
modynamic equilibrium is approached; 
accordingly, it is found experimentally 
that as time passes after the phases are 
first brought together, the disturbances 
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ultimately subside. Furthermore no dis- 
turbances are observed on contact of 
phases already nearly in equilibrium. 
It is as though an engine were actuated 
by concentration and temperature gra- 
dients, more precisely by a gradient of 
chemical potential in the neighborhood 
of the interface. Many investigators have 
suggested that the engine is the interface 
itself (7, 10, 14, i8, 19, 24), but no 
detailed theory of its action has been 
advanced, except one of limited scope 
recently proposed by Haydon (8). It 
is well known that longitudinal varia- 
tions of surface tension not only cause 
movement in a liquid surface but also 
bring forces to bear on the underlying 
liquid, setting i t  in motion. This has 
been called the Marungoni e$ect (I), 
although i t  was first explained by James 
Thomson (25). There are several very 
familiar examples of surface-tension- 
driven flows: tears of sfrong wine (16, 
26), camphor dance, and crystal climbing 
(1 ) .  It is therefore to be expected that a 
synthesis of the dynamics of an inter- 
face, hydrodynamics, and dzusional 
transport will be required for a quan- 
titative understanding of the interfacial 
engine. 

What is the practical significance of 
the various kinds of spontaneous inter- 
facial agitation, which collectively have 
come to be called interfacial turbulence?* 
Rates of mass transfer tend to be ab- 
normally high in those extraction systems 
in which interfacial turbulence occurs; 
this is evident from Lewis’s continuing 
research with a variety of systems 
(12, I S ) .  Transfer rabes may be several 
times as great as predicted from measured 
single-phase rate coefficients and current 
theories which assume a stagnant inter- 
lace, as Sherwood and Wei found with 
certain extraction systenis involving 
simultaneous chemical reaction ($7). 
rllthough reports of these effects have 
thus far come only from laboratory 
experiments under well-controlled condi- 
tions, interfacial turbulence must also 
occur in industrial practice, but when 
and to what extent are unsettled. Thus 
laboratory and pilot plant extraction 
studies cannot be interpreted and are 
of limited use in scale up unless the 
stafe of the interface is known or can 
be predicted. 

INTERFACIAL TURBULENCE AND 
HYDRODYNAMIC STABILITY 

What is the mechanism of interfacial 
turbulence? How can one recognize 
beforehand the situations in which i t  
will arise? How can one predict its form 
and magnitude from first principles? 
Only when these queries have been 
answered will it be possible to attack 
the problem of great practical importance, 

*Both highly irregular and more or less ordered 
flows originating in the interface are included under 
the name. 

quantitative prediction of the effect of 
interfacial turbulence on thc rate of mass 
transfer between phases. 

The key to undersfanding interfacial 
turbulence is the answer to the question 
Nhen is a given system unstable relative 
to small perturbations in the vicinity 
of thc interface? This may be posed as 
a problem of hydrodynamic stability with 
diffusion and interfacial movement play- 
ing indispensable parts. The methods of 
conventional linearized stability theory 
(15, 2Zd) may then be applied to deter- 
mine the conditions for the onset of 
instability and the nature of the dominant 
disturbance. Unless simplifications are 
made, the mathematical exposition be- 
comes so overgrown that its connection 
with physical reality is obscured. To lay 
bare the path, attention is focused on a 
highly pruned model that  is not strictly 
realizable. But if i t  displays the salient 
behavior of actual systems-and it does- 
the fruitfulness of the approach is esta- 
blished. Moreover the resultant simpli- 
fied theory then provides the needed 
groundwork for handling more complete 
models. 

The authors’ approach parallels the 
analysis of the stability of thermally 
stratified layers of fluid, begun by 
Rayleigh, which has been successfully 
applied to the prediction of onset of 
convection in fluids heated from below 
(16b, 21). 

Description of the Model 

The configuration to be studied is 
two semi-infinite, quiescent fluid phases in 
contact along a plane interface. The phases 
are in thermal but not in chemical equi- 
librium. A single solute, present in such 
low concentration that fluid properties may 
be taken as constant, is transferring be- 
tween the phases. In a t  least two other 
nonequilibrium situations interfacial turbu- 
lence may arise. These are transfer of 
heat between phases in chemical equi- 
librium and transfer of materials which 
can react chemically to release heat or 
surfare-active products near the interface. 
The first of these is virtually the same as 
the case selected because of the formal 
similarities of mass and heat transport 
and of the composition and temperature 
dependencies of interfacial tension; the 
second is but a combination of the mass 
and heat transfer cases, with, to be sure, 
added complications. 

In the undisturbed state of the authors’ 
model there is steady transfer of solute. 
This requires that the concentration gradi- 
ent be lincar throughout each phase. 
Although such a state is not entirely 
realistic, states closely resembling it in 
the neighborhood of the interface do ob- 
tain after two unequilibrated phases are 
brought together and diffusion is allowed 
to proceed. 

The stability of this system is studied 
relative to two-dimensional infinitesmal 
disturbances. It suffices to  consider a single 
Fourier component corresponding to the 
roll cells shown in Figure 1, for any arbi- 
trary infinitesmal disturbance can be repre- 

sented by superposition of such components. 
The relevant set of linear, homogeneous, 

partial differential equations contains time 
only throiigh derivatives with ~rspect to 
time. Ncnce the solutions contain an 
exponential time factor; t,hat is, the 
disturbances either amplify or decay 
exponentially. Thus one is led to a charac- 
terist.ic-value problem wit.h the growth-rate 
constant as the parameter, the solution of 
which gives the initial growth rate of a 
disturbance of given cell size (wave length). 
If the real part of the growth constant, 
the amplification factor, is negative for 
all values of cell size, the system is stable; 
if it is positive for some values of cell 
size, the system is unstable. The unstable 
disturbances do not continue indefinitely 
to grow exponentially in time, of course; 
they eventually reach some fully developed 
form of finite amplitude. The rigorous 
deduction of the resultant finite flow is 
such a formidable problem that, approxi- 
mate methods are in order. Of these the 
most promising is the method applied by 
Malkus and Veronis to the Rayleigh 
problem (I?’). They have shown how to 
relate the macroscopic flow to the solution 
of the corresponding linearized stability 
problem. In any case one may reasonably 
expect that the nature of thc frilly de- 
veloped flow is closely connected with the 
properties of that infinitesmal disturbance 
which i s  dominant, that is for which the 
amplification factor has the greatest posi- 
tive value. 

One point deserves special emphasis. In 
this model interfacial turbulence may arise 
spontaneously from ever-present small 
fluctuations about the interface. Neither 
the large-scale convection current.s postu- 
lated by Haydon (8) nor any other gross 
upset originating at a distance from the 
interface need necessarily be present in 
the system. 

Qualitative Behavior of the Disturbed System 

If solute is diffusing from phase A 
to phase B, the roll cell conveys liquid 
rich in soIute from phase A and Iiquid 
lean in solute from phase B toward the 
interface a t  point 1 (Figure 1). In the 
case of a developing disturbance the 
rates of convection differ in the two 
phases, being higher in the phase of 
greater kinematic viscosity.* Conse- 
quently the net change in solute concen- 
tration a t  point I depends, in part, on the 
ratio of kinematic viscosities of the two 
phases. The net change also depcnds on 
the ratio of solute diffusivities in the 
hwo phases, because molecular diffusion 
alters the coniposition of each parcel 
of liquid as it is conveyed towa.rd the 
interface, tending to  restore the original 
linear concentration gradients but  acting 
more strongly in the phase of higher 
diffusivi ty. 

If viscosity is higher in phase A ,  for 
example, the convection current is 
stronger there. If in addition the diffusiv- 
ity is lower in phase A ,  the flow-induced 
concentration upset there is less affected 
by diffusion than in phase B ;  hence the 

*For an account of the effect of viscosity in 
acceIerating flows, see Schliohting tssc). 
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Fig. 1. Schematic diagram of flow dis- 
turbance showing circulation pattern of 
two-dimensional roll cells in cross section. 

effect of the disturbance is greater on 
the side of phase -4 and the interfacial 
solute concentration is increased a t  1. 
Because of symmetry and the necessary 
conservation of solute, the change in 
solu€e concentration is in the opposite 
direction a t  2. Thus variations in con- 
centration, hence also in interfacial 
tension, are induced along the interface. 
The interface is no longer in mechanical 
equilibrium and seeks a state of lower 
free energy through cxpansion of regions 
of low interfacial tension a t  the expense 
of adjacent regions of higher tension 
(the Marangoni effect). And because 
there can be no discontinuity in velocity 
at the interface, motion in it induces 
flows in the adjoining fluids. 

Thus if interfacial tension increases 
with increasing solute concentration, the 
interface contracts at I and stretches 
a t  2, and this motion opposes the original 
disturbance, causing it to be damped. 
If, on the other hand, interfacial tension 
decreases with increasing solute concen- 
tration, the motion of the interface is 
from 1 toward 2, which reinforccs the 
original disturbance and causes i t  to be 
amplified. 

Clearly if viscosity is lower and dif- 
fusivity is higher in phase A, or if the 
direction of solute transfer is reversed, 
the flow in the surface between 1 and 
2 is reversed, producing just the converse 
of the effect described above. If the 
viscosity and diffusivity are both higher 
in the same phase, however, the direction 
of motion in the interface cannot be 
inferred except from the more detailed 
analysis which follows, for in this case 
convection and diffusion evidently are 
competing effects . 

From these intuitive arguments one 
may anticipate that the stability of the 
disturbed system depends on the vis- 
cosity ratio, the diffusivity ratio, the 
direction of solute transfer, and the sign 
of the rate of change of interfacial ten- 
sion with concent,ration. One sees that 
instability, when it occurs, is driven by 

variations of surface tension; hence the 
phenomenon might be c:tlled Marangoni 
instability. 

Synopsis of the Analysis 

In  dealing with an interface undergoing 
deformation, one should recognize that 
the interfacial tension under dynamic 
conditions differs from tha t  exhibited 
under static conditions. In the following 
section the stability problem is formu- 
lated mathematically and its solution 
found. Because the coupling of flow and 
diffusion processes appe:m only in the 
interfacial shear-stress boundary con- 
dition on the flow and in the convective 
transport terms of the diffusion equa- 
tion, it is possible to solve the hydro- 
dynamic equations first. The diffusion 
equation describing the concentration 
disturbance is then solved, arid finally 
the two solutions are combined by means 
of the interfacial shear-stress boundary 
condition to give the characteristic 
equation for the system. 

Succeeding sections are devoted to 
the interpretation of thv characteristic 
equation, which is complicated by the 
implicit nature of the equation and 
the necessity of handling both stationary 
and oscillatory instabilities, and to a 
discussion of the theoretical results. In  
this final section the consequences of 
the simplifying assumptioiis are reviewed, 
a program for generalidrig the analysis 
is outlined, and some practical impli- 
cations of the theory fox the planning, 
reporting] and correlation of mass trans- 
fer experimedts are given. 

DYNAMIC INTERFACIAL TENSION 

Long ago Plateau discovered experi- 
mentally, Marangoni explained qualita- 
tively, and Gibbs deduced rigorously, 
that in multicomponent systems exten- 
sion of an interface produves an increase 
and contraction a decreme from the 
static interfacial tension, effects which 
resemble the action of a dilational vis- 
cosity operating in the surface (6). The 
magnitude of the change increases with 
rate of deformation and decreases with 
the rate a t  which equilibrium between the 
interface and the substrate phases is 
reestablished by transport of heat and 
material to or from the interface. This 
phenomenon is vital to this analysis 
because deformation of the interface 
results when an initial flow disturbance 
causes local variations in interfacial 
tension. This effect might be included 
in the analysis by computing the rates 
of change of temperature and concen- 
tration in and about a postulated sepa- 
rate surface phase. However, the required 
physical properties of the surface phase 
are unknown, and the computation is 
forbiddingly complex. Instead another 
approach, to be explained shortly, is used. 

Another aspect of interfacial deforma- 
tion must be considered. When an  

interface is subjected to shear wholly 
in the plane of the interface, the surface 
molecules must be reoriented even when 
there is no change in area. The energy 
dissipated increases with the rate of 
shearing and is distinct from but anal- 
ogous to the dissipation by ordinary 
viscosity in three-dimensional fluids. 
In  many systems containing surface- 
active agents this surface shear vis- 
cosity is large and easily measured (9). 

In  classical fluid mechanics the sub- 
strate phases are treated as continuous 
media, and the phase interface is re- 
garded as a mathematical surface sub- 
jected to a membrane tension. This 
approach is fruitful in physical problems 
where system dimensions and charac- 
teristic times are large compared with 
molecular dimensions and relaxation 
times, respectively. When these condi- 
tions obtain, the viscouslike interfacial 
effects described above are most con- 
veniently incorporated into a hydro- 
dynamic formulation by introducing 
two coefficients of surface viscosity. 
The stress, coqposition, and tempera- 
ture of the substrate phases are assumed 
to follow the classical equations of 
motion and diffusion right up to a 
mathematical surface located in the 
phase interface. The two phases are 
assumed to be in thermal and chemical 
equilibrium a t  the interface. All depar- 
tures of interfacial stress (tension) from 
that existing in a static system are 
attributed to surface viscosity regard- 
less of their ultimate causes. The mathe- 
matical statement of this idealization 
of the interface is due to Boussinesq (3). 
By a procedure analogous to that used 
in deriving the Navier-Stokes equation 
it can be shown that any arbitrary 
surface deformation can be resolved 
into an isotropic dilation superimposed 
on a pure shear; likewise the stress 
in a surface can be resolved into an 
isotropic tension and a pure stress.* 
The dilational surface viscosity K and 
the surface shear viscosity E are defined 
as the ratios of the stress components 
t o  the corresponding components of 
the rate of deformation. These vis- 
cosities depend upon the temperature 
and composition of the substrate fluids 
and generally on the past history of 

*Actually, surface deformation and stress are 
best represented as two-dimensional symmetric 
tenaora. 
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Fig. 2. Shear-stress boundary condition at 
the interface. 
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surface deformation. One can, how- 
ever, consider only the simple case 
in which K and E are independent of 
the hisbory of deformation. The corre- 
sponding idealization for three-dimen- 
sional fluids, which is actually the defi- 
nition of a Newtonian fluid, proves to 
be entirely satisfactory for gases and 
many liquids. Nevertheless it is recog- 
nized that interfaces may exhibit any 
or all of the non-Newtonian effects that 
have been encountered in bulk fluids. 

Thus in the first approximation the 
tension in the interface exceeds the 
static (equilibrium) interfacial tension by 
an amount K times the rate of dilation 
(rate of area increase per unit original 
area per unit time), and the surface shear 
stress is E times the rate of shearing in the 
interface. 

MATHEMATICAL FORMULATION 

Equations of Motion 

For two-dimensional flow of an incom- 
pressible Newtonian fluid in the absence 
of body forces the Navier-Stokes equa- 
tions reduce to (22b) 

a r -  au a ~7 - -+I;-+v-  
d l  ax a Y  

The continuity equation is 

The development of flows of in- 
finitesimal magnitude in an initially 
quiescent system is being investigated- 
that is, creeping flows; consequently 
the nonlinear terms of Equations (1) and 
and (2) are of the second order of small- 
ness and may be neglected in comparison 
with first-order terms. The pressure may 
be eliminated by cross differentiation and 
subtraction of Equation (1) from Equa- 
tion ( 2 ) :  

+,----- a3 \- a3 GI- 
aX aY2 dX"Y dY3 

It is convenient to introduce the stream 
function so that the continuity equation 
may be identically satisfied: 

(-J = -- a +  T ' = -  a#  
d Y '  ax 

A solution is sought for + of the form 
= cp(X)eiayep6. With this form for 

# one obtains from Equation (4) the 
Orr-Somnierfeld equation for a two- 
dimensional flow disturbance in an  initi- 
ally quiescent system: 

The solution of this equation when 
PZ Ois 

cp = ale" + @Le-z + &ePz + a4e-" (6) 
where 

7- 

p = dl + -5 
C t V  

When 0 = 0, the solution is 

cp = &e" + ase-' 
+ &xeZ + age-' (Gn)* 

where the arbitrary constants a, through 
a, are yet to be evaluated from the 
boundary conditions. 

For simplicity it is supposed that the 
interfacial tension is sufficiently great 
SO that the interface remains subsfan- 
tially planar. The eight boundary con- 
ditions required to specify cp (and thereby 
the velocities) in both phases are (i) to 
(iv) the disturbance remains finite a t  
large distances from the interface; i.e. 
U, and V, are finite as X + a and 
likewise ub and vb as x 3 - m ;  

(v), (vi) the interface, which is the 
plane X = 0, is a streamline; that is 

there is no slip a t  the inberface; that is 
Va(O, Y ,  t )  = Vb(O, Y ,  t ) ;  (viii) there 
is continuity of tangential stress a t  the 
interface. The essence of the analysis 
lies in (viii), which requires that 

U,,(O, Y ,  t )  = Ub(?, T ,  t )  = 0 ;  (Vii) 

T X Y b  - TXYo = - at x = 0 (7) a Y  
(Figure 2), where the shear stress on 
the upper side of the interface is given 
by (3W 

and similarly for the lower side. The 
interfacial tension in Equation (7) is the 
dynamic interfacial tension. In  accord- 
ance with the formulation of Uoussinesq 
(5)' this tension depends upon the rate 
of deformation of the surface: 

It is assumed that the two phases are 
in thermodynamic equilibrium a t  all 
points of contact; hence uo may be 
expressed in terms of the composition 

* rhe letter n is used to identify formulas applying 
to the special case of 6 = 0 (neutrally stable station- 
ary ilisturbance). 

at X = 0 of either phase A or phase B. 
By hypothesis the concentration varia- 
tions along the interface are small; 
hence with sufficient accuracy one can set 

a2 V + ""(Z) at x = 0 (10) 

where p, = K + E and the derivative 
a W/dZ vanishes for the two-dimensional 
formulation. 

Boundary conditions (i) to (vii) require 
that pa(..) = p b ( - m )  = cp,(O) = 
cpb(0) = 0 and cp',(O) = p'b(O) ,  whence 

cp, = a,(e-" - e-'"z), R: 2 0 (11) 

TC 5 0 (12) 

or, in the case0 = 0 

cpn = z >_ 0 (11%) 

A t  this point one has solved the equa- 
tions of motion for a roll-cell disturbance 
of wave length X = 29/a and small 
but unspecified (as reflected in the single 
remaining arbitrary constant) initial 
strength. The behavior with time of such 
disturbances is examined next, and to  
this end one considers the interfacial 
shear-stress boundary condition (viii), 
which with Equations (7 to 12) becomes 

where J. = duo/dCa. These equations 
enable one to calculate the growth con- 
stant /3 for any given wave number a and 
assignment of system properties. First 
however one must determine the surface 
concentration gradient (aC,/aY) X=~. 

Diffusion Equation$ 

For simplicity of illustration it is 
assumed that constant fluxes of solute 
have been established in the undisturbed 
system, a t  least within that region about 
the interface within which interfacial 
turbulence may arise. The undisturbed 
concentrations are taken as 
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cbo = + CbX x' 5 0 (15) Or 

These concentration distributions are r2 
perturbed by the flow disturbances 
already treated. The concentration distur- 
bance is governed by the equation for 

' 1 (30) 

diffusion in a constant-mass-density, P a  

binary, two-dimensional system and 

-+1,iz+v- d c a C' a C' 
at dY 

(r2 - I) A , , =  - , 

1- -, 
where 

(30n) 

Table 1 gives the particular integral I 
for the stream functions of Equations B = AL p arid A = 
(11) and (12). The arbitrary constants 

second phase) are yet be constant and wave number, respectively. 
It is convenient to introduce additional from the boundary conditions. 

specify H (and thereby the concentration) 
in both phases are 

vanishes at large distZlnces from the 

where now 

LT = - i a p ( ~ ~ e ' ~ ' e ' '  (17) @Q and a10 (and 6 3 9  and 6 3 1 0  for the are d~ensionless forms of the growth 

dP(X) el a Ye'f v=- d X  (18) The boundary conditions required to dimensionless quarltitics: 

In  the initial stages of growth of the 

bation is of the same order of mdl -  
ness as the velocities. Therefore one sets intRrface; is ca + c; as + 

,$ = fi/a2sa), = l?/dZA4 
disturbances the concentration pertur- ix, x. The concentration disturbance ,- 

d = V D D , / v ,  

e =  a 
c = C"X) + G(X, Y ,  t )  (19) and -+ c: as -+ - 

xi. The two phases are in therniody- 
namic equilibrium a t  the interface; that 
is mnbCa(0, y, t )  = cb(ol y ,  t )  

= diGl3, xii. There is conservation of solute a t  
the interface; that is, Q,(aC,/dX) = p a  
a)b(dcbax) a t  (0, Y ,  t ) .  These Conditions 
lead to the relations 

Then in Equations (29) and (30) 
inserts this expression in Equation (16), 
and neglects terms of the second order 
of smallness, thereby obtaining 

aG 
d i  

q. = v"Fi, qb = v'1 + r2t 
__-- 

p b  = 6+ d'e't 

For a given system all the properties, 
d ,  e,  7 ,  %b, PbJ Pa,  Pel  r., c,, and 4, 
are assigned, and so Equation (29) de- 

mab& = :jb (23) termines the complex growth constant 
P (in B)  for each wave number a (in A )  
of the disturbance. Unhappily this (24) ?*a, = & b ,  r2 = :!>"/%)b 

(20) 
dCO = -[l- ax 

A solution is sought for the concentration 
perturbation of the form G = H(X)eiaYes' .  

for the undisturbed concentration distri- 
butions and 

With this form for G it follows from 
Eauations (14), (15), (17), and (20) that  '%b[Q.io - lardojl = & - z b l d 0 )  (25) 
H ( X )  must-satisfy 

= - @ S q b  + lhIb'(0) (26) 

for the constants of the perturbed con- 
The solution of this equation is centration distributions. From these 

expressions one finally obtains 

from which the desired surface gradient 
H = egear + aloe-'' - 11 (22) follows immediately, sincv 

where 

q = .&.g 
1 = iC/CuD 

r r Characteristic Equation 

Substituting Equations (27) and (28) I = ear J e-"= J eaZp (dxj2 
in (13) gives 

characteristic equation is implicit in the 
dependent variable B and besides con- 
tains four vexatious radicals. 

INTERPRETATION OF THE 
CHARACTERISTIC EQUATION 

The wave number of a disturbance is 
real and positive. The growth constant 
in ePt is complex: 

p = $ = t i 8  
Disturbances for which 8 ,  < 0 are 
damped; those for which /3 > 0 are 
amplified and instability sets in. 

Regimes of Instability 

There exist two kinds of instability. 
The first is an oscillatory regime (some- 
times named overstability), wherein the 
growing disturbance displays _temporal 
periodicity with period 2n/P and a 
translatory motion with speed of pro- 
pagation p/a. The second is a stationary 
regime (often called convective instability) 
corresponding to p = 0, in which the 
disturbance grows in place without 
oscillation or translation. For each regime 
there mayA exist certain wave numbers 
for which f i  = 0, an indication of margi- 

(29) nal or neutral stability; that is the 
disturbance neither grows nor decay; in 

PO P a  1 time. Thus zeros of the function P(u) 

- B =  (y q b  + qa([- (1 + p b )  f (1 + pa) -k 
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are of particular interest, since they 
demarcate stable and unstable wave 
numbers. 

In  some problems of hydrodynamic 
stability, for example the Rayleigh 
problem (15b, 21), it has been possible 
to prove the so-called "principle of ex- 
2hange of stabilities," which states that 
p < 0 for all ,t? # 0, whence all oscil- 
latory disturbances decay and only the 
stationary regime of instability need be 
considered. However this principle does 
not apply to this model, as is shown 
below. The interpretation of Equation 
(29) is complicated by the existence 
of both regimes of instability; indeed 
in some cases they may set in simul- 
taneously with one or the oeher domi- 
nating in time. 

Functional Behavior 

It is instructive to regard f temporarily 
as the independent variable in Equations 
(29) and (30) and to let pa be zero, 
since the equations are explicit from 
this point of view. The equatioGs define 
two complex func_tions, A = A + i A  
and B = B + iB,  of the complex vari- 
able f = t + it. In seeking conditions 

rz+>, r',,w ,?O r',,x' fro rl t *  

Fig. 4. Amplification factor vs. wave number (in dimensionless 
form). Solid curves denote stationary regimes; broken curves, 
oscillatory regimes. ea = ua/vb; Y*-= nDa/33b; f given by Equation 

(34); B = (~~(./.bC,)a; A = (ww'sSa)a2 

Making use of the appropriate expan- 
sions in Equation (29), one finds, after 
some manipulation, 

limit B 0 

where 

f=- r"++ , mab + 1 

for instability one may restri;t f and g 
to nonmgative values; for if t < 0, then 
either p < 0 and the disturbance is 
damped or else a2 < 0, which is physi- 
cally rneaningl:ss, and on physical 
grounds B and A are both even functions 
of g .  The functions A ( [ )  Aand B ( f )  are 
analytic on the quadrant t 2 0, 2 0. 

Because wave number must be real, 
only real values of A have physical 
meaning. Theretore one looks for paramet- 
ric curves of A = 0 in the quadrant 
of interest. One sushAcurve is the real 
axis, inasmuch as A(,$, 0) is identically 
zero. This curve corresponds to a sta- 
tioqary regime of instability, since 
B( El 0) is also identically zero. 

Information about the stationary re- 
gime (and oscillatory regimes too) may 
be gained by an examination of the 
limiting behavior of A(,$) and B(E). 

also, from Equation (30), 
and 

t - 2  
(r2 - e') 

l imit  A = / + l ) ( e e  Pa + 1) 

(e2 - 1) (r + de) + d + 1 + [,. f -5 '2  + o(t-3) (35) 1 
d3(e + l)(r + de)(d + I)(? + 1 ) ( h e  + 1) 

P a  

Thus two zeros of the characteristic 
limit A function B(A) are 

B = 0 for A = Ajvs 2-0 

and these represent neutrally stable sta- 
tionary disturbances of wave numbers 

There may exist a third distinct zero 
of B ( f )  by virtue of a zero of the numer- 
ator of Equation (29) for real $. It can 

- tf) + O ( t 7  
= AiVs(1 - f f )  + O(t7 (33) a! = C Y N ~  and a! = 0, respectively. 

k! 7 
I 

tities (r2 - 1) 9nd (r2 - e2) are ofppposite 
signs.* If B(,$o) = 0, then A(,$o)  = 0, 

B(O.0) 0 and the point 
0 B = o for ,4 = o (f = go) 

(a1 e ? l > r ~ ,  I?O (b) e*>r'.?i (el r?e'>l 
rz> 1 ?el, I'O & I > # ,  N O  1,e"r' 

P 5 l X 2 ,  KO *See Appendix, which has been deposited as 
document No. 6048 with the American Documentation 
Institute, Photoduplication Service, Library of Con- 
gress, Washington 25, D. C., and may be 'obtained 
for $1.25 for photoprints or 35-mm.l microfilm. Fig. 3. The function a on the plane. 
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Fig. 5. Results of computation. 

represents another neutrally stable sta- 
tionary disturbance of wave number 
a: = 0. Whenever this is the case, the 
function B(A) is evidently double valued 
on some interval of A which contains 
A = 0. 

To establish the existence of oscil- 
latory regimes, one looks for zeros of 
A(0, g ) ,  which must lie on parametric 
curves of A = 0. pIore_over these zeros 
are also zeros of B(0, 4) and therefore 
represent neutrally statle oscillatory 
disturbances (provided { # 0). The 
argument hinges on the limiting behavior 
of A ,  which is easily inferred from 
Equations (33) and (35) and is given 
in Tabk 2. There it is Fen  that in the 
limit [ = 0, -+ 0, A has th: same 
sign as -(rZ - 1)f; in the limit .$ = 0, 

-+ a, it  has the same sign as (e2 - 1). 
I t  follows immediately that if (r2 - 1)f 
and (e2 - 1) have the same sign, the_re 
exists an odd number of zeros of A(0, 0, 
and there is a t  least one wave number 
aNO for which the system is neutrally 
stable relative to an oscillatory distur- 
bance. On the other hand, if (r2 - 1)f 
and (eZ - 1) are of oppo_site egns an 
even number of zeros of A(0, E )  exist, 
and so it is at least possible that the 
system is stable rehttve to oscillatory 
disturbances. 

The oscillatory an_d sltationary r!gimes 
are connected ifAaA/a( = &4/a.$ = 0 
at some point ( 5 ,  0), that is if there is 
a saddle point on the real axis. At such 
a saddle point A h5s a local extremum, 
and the curve of A = 0 lying on the 
real axis and representing stationary 
instability is intersected perpendicularly 
by a second curve of A = 0 representing 
oscillatory instability. It can be shown 
that there is a saddle point on the real 
axis if (72 - 1) and (r2 - e 2 )  are of 
opposite signs [note that this is the same 
criterion as applies to the existence of 
a third zero of B(.$)] or if f is negative 
and (r2 - 1) and (rz - e2) have the 
same sign.* 

Not every curve of oscillatory in- 
stability, however, intersects the real 
axis. For if (e2 - 1) and (r2 - ez) have 
the same sign, there may be no saddle 

I Forward Transfer I 

point on tke real axis, but there is a 
curve of A = 0 which approaches 
asyqptotieally a parabola, .$ proportional 
to .$2, and terminates at the branch 
point, 5 = 03. Furthermore, if (e2 - 1) 
and (rz - ez) are_of opposite signs, there 
is no branch of A = 0 in the far reaches 
of the quadrant.* 

It may be concluded from all this 
info_r%ation that three possible pictures 
of A( .$, <) = 0, contingent on the relative 
magnitudes of r2, e2, and unity and on 
the sign of f ,  are as shown schematically 
in Figure 3. In these three pictures, 
which encompass all possible combi- 
nations of the parameters, thc heavy 
lines are loci of unstable disturbances. 
Although t&e possibility of additional 
curves of A = 0 intruding acrow the 
imaginary axis has not been r d  d out 
entirely,* such curves would require the 
existence of more than one neutrally 
stable oscillatory disturbance, which 
seems unlikely on physical grounds. 
Furthermore, none have been found in 
the course of extensive numerical solu- 
tions of the characteristic equation. 

Criteria far instability 

The physical behavior of the system 
for any given set of parameters may be 
inferred from the dependence, implicit 
in Figure 3, of amplification factor on 
real wave number. This dependence is 
clear in Figure 4, wherf the $imensionless 
amplification factor B = /3(pL,/l&) is 
plotted as a fu;ction of the dimensionless 
wave number A = a~(v,po/{&) for all of 
the lociof instability in Figure 3. Both 
B and A can be either positive or negative 
depending on the signs of C, (which 
defines the direction of transfer) and 
la (which gives the change of interfacial 
tension with cycenttakkn). Now for in- 
stability bpth @ ?nd a2 are positive, and 
therefore B and A have the same sign; in 
other words, only the first and third quad- 
rants of the plots in Figure 4 can contain 
instability curves. From thc figure it 
may be seen that the location of such 
curves, in one or the other or both 
quadrants, depends on the viscosity and 
diffusivity ratios and the related param- 

*See footnote p. 519. 
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eter f. It is further seen that regardless 
of the parameter values there is a t  least 
one instability curve in every case. Once 
physical propeJties have been assigned, 
the sign of A depends solely on the 
direction of solute transfer (sign of &). 
Thus one is led to a remarkable con- 
clusion: the system studied here is always 
unstable relative to roll-cell dist,urb- 
ances-if not with solute transfer from 
phase A to phase B, then with transfer in 
the opposite direction. Moreover if 
kinematic viscosity and solute diffusivity 
are both lower in one phase (that is, 
e2 > 1 and r2 > 1 or e2 < 1 and r2 < 1 
in Figure 4) the system is unstable with 
transfer in either direction. This result 
decides the point left unsettled in the 
preliminary description of the behavior 
of the disturbed system: how does the 
system behave whcn convection and 
diffusion are competing effects? Although 
these effects appear to be in competition, 
the system responds to the one promoting 
instability in a given situation. It should 
be remarked here that systems in which 
viscosity and diffusivity are both lower 
in the same phase are not often en- 
countered. 

Interfacial tcnsion commonly de- 
creases with increasing solute concentra- 
tion in a two-phase system; that is, the 
concentration coefficient of interfacial 
tension fa is usiially negative. When this 
is the case, instability arises whenever 
solute is being transferred out of the 
phase in which kinematic viscosity is 
higher or out of the phasc in which 
solute diffusivity is lower. 

If the kinematic viscosities are equal 
(e2 = l), the onset of instability clearly 
is controlled by the restorative action of 
molecular diffusion. Conversely, if the 
diffusivities are equal (r2 = l), the flow 
effects are paramount. It is on this basis 
that the distinction is drawn in Figure 4 
between diffusion-limited and flow- 
limited modes, labeled D L  and FL, 
respectively. 

It is evident from Figure 4 and the 
preceding investigation of functional 
behavior that even when instability 
occurs the system remains stable relative 
to all disturbances with wave number 
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Phase a 

Phase b 

0 . 0  

Phase a 

Phase b 
r < o  

TABLE 1. QUANTITIES APPEARING IN EQUATIONS (22) TO (28) 

I I I I 
I I 

greater than some finite value, aN(aA8 
or aNo) .  Furthermore, the unstable 
disturbances with very small wave num- 
bers are amplified least rapidly; hence 
there is one wave number aD, where 
0 < cyD < aN, which is amplified most 
rapidly and ultimately dominates the 
system. Now wave length or cell size is 
inversely proportional to wave number ; 
that is, X = 27r/a!. Thus in small cells 
the motive force in the interface is more 
than offset by the viscous shear forces 
opposing motion, and the initial motion 
is damped. The contrary is true when 
cell size is larger than X N  = 27r/aN, and 
the motion is amplified; the rate of 
amplification is vanishingly small in 
extremely large cells because of the 
inertia of the greater volume of fluid per 
cell. 

Whereas the onset of instability is 
governed by the signs of the quantities 
vo - vb, Q, - Db, la, and C,, the cell size 
and the rate of amplification of the 
dominant disturbance are also influenced 
by the magnitudes of these quantities 
and of the ordinary viscosities p. and 
pb, the surface viscosity p,,  the Schmidt 
number d-2, and the solute distribution 
coefficient mob as well. The qualitative 
effects may be summarized as follows: 
stronger variation of interfacial tension 
with concentration and steeper concen- 
tration gradients promote smaller cells 
and more rapid amplification, and so 
also do greater disparities of viscosity 
and diffusivity between phases. Higher 
diffusivities and viscosities in both phases 
lead to larger cells and slower amplifica- 
tion, and this tendency is more pro- 
nounced in the range of small cell sizes. 
The qualitative effects of dz and mab are 
not directly evident and hence must be 
found by calculation. 

Vd. 5, No. 4 

Results of Computation 

That the authors' simplified model is 
subject to Marangoni instability is now 
established. Yet it may be that the wave 
lengths are so great, or the amplification 
rates so slow that the instability cannot 
manifest itself within the space and time 
available in the laboratory. Accordingly, 
values of a! and 0 have been computed 
for four typical cases, selected to include 
all the regimes and modes of instability 
which are described above. The param- 
eters which do not strongly affect the 
kind of instability, d, mob, pb/p,,, and p., 
were assigned the same values in all four 
cases. So also was the ratio of kinematic 
viscosities, at e2 = 2. The cases were 
distinguished by four different valucs of 
the diffusivity ratio, r2 = 0.5,1,1.5, and 4. 

The results of the computations are 
shown in dimensionless form in Figurcs 5 
through 8, where an unusual coordinate 
scale is employed for clarity of presenta- 
tion.* Of greatest consequence are the 
points corresponding to neutrally stable 
and dominant disturbances; these are 
labeled N and D, respectively, in Figures 
5 through 8 and are also given in Table 
3.* Note that the dominant disturbance 
is of much smaller wave length (greater 
wave number) and is amplified far more 
rapidly in the diffusion-limited modes 
than in the flow-limited modes. Note 
also the curious contrast between the 
cases in Figures 6 and 7. In both whcn- 
ever the direction of transfer is such as 
to make A negative (reverse direction of 
transfer), stationary and oscillatory dis- 
turbances set in simultaneously. A 
stationary disturbance prevails if the 
solute diffusivities are equal (Figure 6), 
whereas an  oscillatory disturbance pre- 

*The computations themselves are tabulated in 
the Appendix. Boo footnote on p. 519. 

A.1.Ch.E. Journal 

dominates if the diffusivity ratio is 1.5 
(Figure 7). 

To convert the calculated dimension- 
less quantities to the desired wave 
lengths and amplification factors, it is 
nccessary to assign magnitudes to ccrtain 
physical properties. Lct pa = 10-2 
g./(cm.)(sec.) and pa = 1 g./cc. Then 
v, = 10-2 sq. cm./sec. and, because the 
Schmidt number d-* = 5 X 102, it 
follows that 9, = 2 X 10-5 sq. cm./sec. 
Let the concentration coefficient , of 
interfacial tension J6 = - 102 (g./sec.*)/ 
(g./cc.), a value typical of such systems 
as toluene-water with acetic acid as the 
consolute (28). Let the undisturbed con- 
centration gradient e,, = l(g./cc.)/cm., 
a value that obtains a t  the interface 
0.4 sec. after a phase A containing 1% of 
solute is contacted with a phase B 
initially devoid of solute, if mab = 1 and 
a)b = 2 x sq. cm./scc. The magni- 
tudes of X and p are then as givcn in 
Table 4. It should be cmphasized that 
Table 4 contains the results of sample 
calculations. By choosing other values 
for the physical properties, it  is possible 
to obtain values of X and /3 which differ 
from those shown by scveralfold or even, 
in extreme cases, by a few orders of 
magnitude. 

Neither the tabulated wave lengths 
nor amplification factors are so large as 
to refute the explanation of interfacial 
turbulence in terms of Marangoni in- 
stability. The flow-limited modes are 
characterized by dominant disturbances 
which have cells a few millimeters in 
breadth and which double in intensity 
every second or so. In  marked contrast 
are the dominant disturbances of the 
diffusion-limited modes, which are of 
much smaller cell size and are amplified 
far more rapidly. The microscopic scale 
of the latter type of disturbance and the 
rapidity with which it develops suggest 
a possible explanation for the lack of 
visible convectivc motion in some in- 
stances of spontaneous emulsification 
(4 ,19) .  

DISCUSSION 

The conception of Marangoni in- 
stability has led to a credible explanation 
of interfacial turbulence. The analysis 
shows clearly how it is possible for some 
systems to be unstable with solute 
transfer in one direction yet stable with 
transfer in the opposite direction, and 
others to be unstable with either direction 
of transfer. The analysis also shows that 
instability may be contingent upon other 
parameters heretofore unsuspected. These 
are the direction in which interfacial 
tension changes with solute concentra- 
tion and the signs of differences between 
the solute diffusivities and kinematic 
viscosities of the two phases. The theo- 
retical results suggest several variables 
whose influence may account for observed 
contrasts in intensity of interfacial 
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Fig. 7. Results of computation. 

Case 

'aIVb 

BaPb 
Transfer from Phase B t o  

Mode 

Neutrally s t a b l e  wave length ,  $, cm 
Temp,.ral period, 2n/ONl sec  

Speed of prnpsgation, PN/aN, cm/scc 

Dominant wave length ,  h, cm 
Amplificatiori f ac to r ,  PD, sec-' 

Teinporal period, 2 n  / B D ,  sec 

turbulence from one system to the next. 
The importance of two of these is already 
confirmed by expcrinient ; they are the 
steepness of the concentration profile 
near the interface, which is related to 
the initial difference of solute concentra- 
tions, and the magnitude of the surface 
viscosity, which reflects the presence of 
highly surface-active agents. 

The explanation is not completely 
convincing however. At present the 
analysis is based on a model too simplified 
to be reproduced in the laboratory; 
therefore direct, quantitative compari- 
sons with experiment are impossible. 
Although many new experiments come 
to mind, the additional evidence that 
they will provide cannot be used for a 
decisive test of the theory until several 
of its deficiencies have been removed. 

First one may ask to what extent 
temperature variations along the inter- 
face contribute to the Marangoni effect. 
Some investigators have speculated that 
interfacial agitation is caused by varia- 
tions of interfacial tension occurring as 
a result of uneven release of heat of 
solution when solute passes through the 
interface (g, 14). This effect is easily 
incorporated in the authors' simplified 
treatment. The interfacial flux boundary 
condition on the diffusion equation is 
altered to include a heat-source term, 
and an  appropriate undisturbed tempera- 
ture profile is assumed. The interfacial 
shear-stress boundary condition on the 
flow equation is recast to account for 
the dependence of interfacial tension on 
temperature as well as on concentration. 
The resulting characteristic equation for 
B(A)  includes a term that represents 
the solution heat effect, a term involving 
the heat of transfer, the relative rates of 
change of interfacial tension with tem- 
perature and concentration, and the ratio 
of mass to thermal diffusivities. By 
inserting in this term the properties of 
one typical system, benzene-acetone- 
water, one finds the interfacial forces 
generated by temperature variations to 
be roughly a thousandfold less than those 
simultaneously generated by concentra- 
tion variations. This comparison, though 
by no means settling the matter, suggests 
that it will be most profitable to con- 

0 eor e ero re0 

2 2 2 2 
r 

C.3 1 1.5 4 
Phase A ,  ,fa = -1.0 (grn/cm3)/cm 

S tab le  S tab le  DL DL 
,0018 ,00063 

m m 

- C 0 

,0039 .0014 
64 350 
m m 

centrate on consequences of solute 
transfer in isothermal systems. 

Other troublesome complications which 
are not included in the simplified theory 
but which are of importance in experi- 
ments are 

1. The disturbances are not two di- 
mensional. 

2. The interface does not remain fixed 
in position; rather, it is free to twitch. 

3. The system does not consist of 
two semi-infinite slabs; very often one 
phase is in the form of nearly spherical 
drops. 
4. Solute transfer is not steady in the 

undisturbed state. 
5. Not only is there transfer of solute, 

but the solvents themselves interdiffuse. 
6. The diffusivities, rather than being 

constants, usually depend strongly on 
concentration. 
Analyses that take the first four items 
into account are in progress and will be 
reported in detail later, but some remarks 
about them are apt here. A pattern of 
cylindrical convection cells oriented 

Speed of propagation, pD/aD, cm/sec 1 - 

Fig. 8. Results of computation. 

0 0 

normal to the interface, which simulates 
square or hexagonal cell patterns, leads 
to the same characteristic equation as 
given above for the two-dimensional, 
roll-cell pattern. The present proscription 
on motion of the interface normal to 
itself, which amounts to a tacit assump- 
tion of great interfacial tension, is 
easily removed by allowing the interface 
to be deformed by the normal fluid 
stresses. When this is done, an  additional 
parameter that involves the magnitude 
of interfacial tension appears in the 
characteristic equation. It will probably 
be possible in this way to explain the 
more intense interfacial turbulence in 
systems of lower interfacial tension. The 
formulation of the stability problem for 
a spherical drop suspended in a second 
phase is straightforward. Solutions of 
stability problems in which the undis- 
turbed system is not a t  steady state are 
hard to find. However, if the undisturbed 
diffusion changes the system much less 
rapidly than the nascent disturbances 
do, one can use the a r t i c e  of freezing 

Mode DL FL 

Neutrally s t a b l e  wave length,  \, cm .0024 .070 

Temporal per iod ,  2n/pN' s ec  19 
Speed of propagation, BN/zN, cm/sec 0 0037 

Dominant wave length ,  j,, ;m .005J .27 

Amplification f ac to r ,  pD, sec-' 71 .99 
Temporal period, 2n/PD, s ~ i c  m m 

Speed of propagation, BDlaD, cm/sec 0 0 

FL FL 
.082 ,086 

.77 .45 

.ll .19 

.25 .20 

.43 .32 
2.4 1.0 
.10 .20 
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the concentration profile in its shape a t  
any arbitrary instant and examining the 
stability of the system in that state. This 
scheme was recently applied to the 
Rayleigh problem by Morton (90). 

The above list is ordered roughly in 
increasing mathematical difficulty. The 
ordering is also nearly that of increasing 
physical importance, the matter of 
variable diffusivities being greatest con- 
sequence for linking experiment with 
theory. But the fruitfulness of the 
simplified treatment justifies more elabo- 
rate analyses, for which the ground work 
is now laid. 

Recommendations 

Although the goal of a full under- 
standing of interphase mass transfer is 
still a long way off, the following recom- 
mendations may hasten its attainment. 
Since interfacial turbulence unquestion- 
ably enhances the rate of mass transfer, 
experimenters studying extraction should, 
whenever possible, report direct obser- 
vations of the phase interface with their 
extraction data. In  any case the direction 
of transfer, concentration levels, and 
presence or absence of surface-active 
contamination should be noted. Viscos- 
ities, diffusivities, and the variation of 
interfacial tension with composition 
should be estimated or, preferably, 
measured. This information will be 
needed not only for the proper inter- 
pretation of simple laboratory experi- 
ments, but also for the rational scale up 
of bench and pilot plant extraction 
equipment. 

Good empirical correlations of mass 
transfer rates in liquid-liquid extraction 
are hcking, partly because interfacial 
effects have been overlooked. (The same 
is true of flooding-point and capacity 
correlations.) More trustworthy cor- 
relations can be made by the conservative 
expedient of simply rcjecting data known 
or suspected to be affected by interfacial 
turbulence. But sooner or later, in order 
to exploit fully the effect when it does 
occur, a correlation should be developed 
which accounts for those parameters that  
influence the onset and intensity of 
interfacial turbulence. 
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NOTATION 

A = (vapa/{&)a2, dimensionless 
wave number 

a = constant of integration 
B = (p,/{,&)P, dimensionless 

growth constant 
a = constant of integration 
C = solute concentration [ML-,] 
d = d a ,  dimensionless 
a, = solute diffusivity [L2O-l1 

e = +v,/vb,  dimensionless 
= function defined by Equa- 

tion (34), dimensionless 
f 

G = concentration perturbation 
LML-31 

€1 = X part of the concentration 
perturbation [ML-a] 

i = 417 
I 

3 
1 = (i/aa>)d: [ML-sOI 
6: = undisturbed concentration 

gradient [ML-a] 
ma b = C,/C, at equilibrium, dis- 

tribution coefficient, dimen- 
sionless 

= d1 + (P/a2v),  dimension- 
less 

= particular integral in Equa- 

= undisturbed interfacial con- 
tion (22) 

centration [ML-a] 

P 

P = pressure [ML-W2] 
Cl = d1 + (P/a2a))dimension- 

T = d-, dimensionless 
t = time coordinate [O] 
U ,  V ,  W = X ,  Y ,  and Z components of 

velocity [LO-11 
X ,  Y ,  2 = spatial coordinates [L] 

less 

Greek letters 

ff 

p_ 
$ 
E 

.i- 

K 

x 
P 
P. 

V 

t 
P 
Go 

U Y Y  

T X Y  

(a 

fi 
Subscripts 

= wave number [L-l] 
= growth constant [O-l] 

= circular frequency 
= amplification factor for the 

disturbance 
= surface-shear viscosity 

[Me -11 
= concentration coefficient of 

interfacial tension [LaO-*] 
= dilational surface viscosity 

[Me-%] 
= wave length [L] 
= ordinary viscosity [ML-W’] 
= e + K ,  composite surface 

viscosity [MO-lI 
= kinematic viscosity [L2Oe-l] 
= P/aQ,, dimensionless 
= density [ML-3] 
= equilibrium interfacial ten- 

sion [ M W ]  
= Y component of the longi- 

tudinal surface stress 
= Y component of the fluid 

shear stress [ML-W2] 
= X part of the stream func- 

tion [L%F] 
= stream function [Lze-ll 

a = phase A(X > 0)  
6 = phase B(X < 0) 
D = dominant unstable disturb- 

N = neutrally stable disturbance 
0 = oscillatory disturbance 
s = stationary disturbance 

ance 

Superscripts 

,. = real part in a complex 

= imaginary part of a complex 
variable 

variable 
primes = differentiation with respect 

to dimensionless quantity 
2 = ax 

- 
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