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 THE STABILITY OR INSTABILITY OF THE STEADY MOTIONS
 OF A PERFECT LIQUID AND OF A VISCOUS LIQUID. PART II.:
 A VISCOUS LIQUID.

 By WILLIAM M'F. ORR, M.A.,

 Professor of Mathematics in the Royal College of Science for Ireland.

 Read JUNE 24. Ordered for Publication JUNE 26. Published OCTOBER 28, 1907.

 INTRODUCTION AND SUMMARY OF CONTENTS.

 IN Part I.* reference was made to a well-known difficulty in reconciling
 theory and experiment in the case of the steady motion of liquids. The
 flow through pipes and between concentric cylinders, one of which is
 rotated, had been found experimentally to be unstable if the velocity is
 great enough; while, on the other hand, Lord Rayleigh had shown that, in
 these cases, if the effect of viscosity be neglected in the disturbed motion,
 the fundamental free disturbances are strictly periodic, the values of the
 "free periods" being real. An explanation of the difficulty was given by
 showing that it is necessary to push Lord Rayleigh's investigations a step
 farther by resolving a disturbance into its constituent fundamental ones
 by quasi-Fourier analysis, and that, when this is done for disturbances of
 initially simple type in somne of the most important and simplest cases
 of flow, it is found that the disturbance will, for suitable values of the
 constants, increase very much, so that the motion is practically unstable.

 The present investigation attempts to discover how far this conclusion
 must be modified when viscosity is taken account of.

 It may be stated at once that I have not succeeded in throwing much
 additional light on this matter; but a good deal of the work had been done
 before I discovered that the slight extension of Lord Rayleigh's analysis which

 is contained in Part I. would explain the difficulty, at least qualitatively ;t and
 I therefore decided to carry the investigation as far as I could: I may
 moreover plead that I found some portions of the analysis interesting on
 their own account.

 *Proc. R.I.A., vol. xxvii., Section A, No. 2.
 f I consider that a proof of instability for a perfect liquid is a proof of instability also for a

 viscous liquid if the viscosity be small enough.
 R. I. A, PROC., VOL. XXVII., SECT, A. [10]
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 Chapter I., pp. 80-94, deals with Lord Kelvin's inivestigations.*
 The two problems which he discussed having been described in Art. 1,

 p. 80, an abstract is given in Art. 2, pp. 80-83, of one of his proofs
 that an infinitely wide stream of finite depth and uniform vorticity is stable;

 this solution, following Lord Rayleigh, I describe as a "special" solution
 in contradistinction to another which he indicated in a subsequent paper.
 As far at least as the velocity-component in the direction of the depth
 is conicerned, Lord Kelvin first obtai-ns a solution, (v), of the differential
 equation which satisfies the most general initial conditions throughout, but
 violates the permanent boundary-conditionls at the top and bottom of the

 stream; he then adds to this solution a " forced " disturbance, (4), which
 would be- caused throughout the streani by exactly reversing this outstanding
 boundary disturbance, and, by addition, thus obtains a solution which does
 satisfy the boundary-coinditions. The "forced" disturbance is obtainable
 as an integration of an infinity of constituents each of which is simply
 periodic in -the time, and the constituents are to be chosen by a Fourier
 analysis, valid between the times t = - to and t = + so so as to satisfy
 the boundary-conditions 0 - 0 from t - co till t = 0, and i = - v from
 t 0 till t- oo. The v solution is composed of one or more terms, each
 of which has a factor which involves the time exponentially, the index
 being essentially negative, and eventually varying as the cube of the time;
 thus v diminishes indefinitely; and Lord Kelvin states that hence the "forced"
 disturbance i, which rises gradually from zero at t = 0, also diminishes
 indefinitely, and concludes that the steady motion is stable.

 Art. 3, p. 83, contains a brief account of another proof of stability in
 the same motion, which Lord Kelvin indicates in his discussion of the second
 of the two problems which he discnssed.

 Art. 4, p. 84, gives Lord Rayleigh's adverse criticism of the second solution,
 in which he points out that Lord Kelvin has merely shown the possibility
 of obtaining forced vibrations of arbitrary (real) frequency, and that this
 constitutes no proof of stability, it being possible to do this in the case of
 a pendulum displaced from a position of unstable equilibrium.

 Art. 5, pp. 84-85, gives remarks by Lord Rayleigh onl the "special"
 solution in which he appears to accept it.

 In Art. 6, p. 85, it is pointed out, however, that the " special solution
 involves a tacit assumption that the " forced " disturbance, t, vanishes
 everywhere throughout the liquid at the time t= 0.

 In Art. 7, p. 86, it is argued that this assumption is legitimate if

 Phil, Mag., August and September, 1887.
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 OuR-Stability or Instability of Motions of a Viscous Liquid. 71

 is known that the fundamental free disturbances have stabi]ity of the
 common exponential type, but that it would not be true if the contrary were
 the case; and in Art. 8, pp. 86-88, a siimple instance is taken of a system
 having only one coordiniate in which this argument is seen to be correct.

 In Art. 9, p. 88, it is pointed out besides, that, except at the boundaries,
 it is not known that the " forced " disturbance, i, does diminish indefinitely.

 It is accordingly held that Lord Kelvin has not proved stability, even for
 infinitesimal disturbances.

 As the funidamental modes of disturbance do, as is shown in Chapter II.,
 possess stability of the simple exponenitial character, the " special" solution

 is, I believe, as a matter of fact, the solution for a given initial disturbance;
 if this be a simple trigonometrical function of the coordinates, the form of v is

 simple; but that of the " forced " disturbance, ~, in no case appears capable
 of being readily calculated. It is urged, however, in Art. 10, pp. 88-90, that
 this solution actually proves that for sufficiently small viscosity or sufficiently
 great velocity the motion is unstable ; for under such circumstances V,
 considered alone, will increase very much if the constants are properly
 chosen, the possible ratio being limited only by friction; and it is held
 that the fact that v violates the boundary-conditions is of little importance
 if the wave-lengths in all directions are sufficiently small. The boundary
 conditions being that the velocity perpendicular to the depth of the stream
 and its gradient in the same direction should vanish, it is seen moreover
 that it is quite easy to add to v a term which gives a soluition satisfying
 either one of these conditions or the other, but not both. (If the former
 be chosen, the solution thus obtained includes as a limiting case that given
 in Part I. for the same problem in the absence of viscosity.)

 In Art. 11, pp. 90-92, numerical values corresponding to the circumstances
 under which instability has been actually observed to set in under somewhat
 similar circumstances are substituted in the two-dimensioned form of the first
 of these two modifications of the " special" solution; it appears that it would
 not be possible for the kinetic energy of the relative motion of any disturbance

 of the simple type in question to increase to more than about four times its
 original value.

 And in Art. 12, p. 93, the same is done for the second modification; and
 it is seen that an initial disturbanice of the same type, but with different
 constants, might increase about ten-thousand-fold.

 In Chapter II., pp. 95-121, the fundamental free disturbances of this same
 steady motion are discussed.

 The preliminary analysis is, of course, substantially that given by Lord
 Kelvin in the "special" solution: supposing the plane boundaries to be

 [10-]
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 y ? a, and the steady velocity to be j3y in the x-direction, the y-velocity
 in the disturbed motioni is taken to be v = VePti(1z+haz), where I and n are
 arbitrarily assigned and p is to be found. The differential equation shows
 that V2V iS of the form:

 ui(AJ4(n) + BJ4+(u)} where X is of the form (Cy + C)2;
 if the boundary-conditions should include the vanishing of VWv, it is thus seen
 that the investigation is very much simpler than for the natural conditions

 v = 0, dv/dft = 0 j and accordingly this case is discussed in detail.
 In Art. 13, p. 95, the equation giving the values of p (the period-equation)

 is derived.
 In Art. 14, p. 96, in view of a remark of Lord Rayleigh's which appears

 to suggest that it may not be possible to obtain disturbances which do vary
 as 6t, it is first proved, or rather rendered probable-for the demonstration is
 not rigorous-that this equation has an infinite number of roots; this follows
 by making use of the approximate forms of the Bessel functions for large
 values of the variable.

 In Art. 15, p. 99, it is proved directly fiom the differential equation that
 all possible values of p must have a real negative part, and that the imaginary
 part lies between the extreme limits found when there is no viscosity.

 Art. 16, p. 100, gives a rigorous proof that for all values of 1, n, there are
 an infinite number of real values of p:

 Art. 17, p. 101, indicates briefly a proof that if la is small enough, all the
 values of p are real, and given approximately by a comparatively simple
 algebraic equation; this proof is developed rigorously in Art. 18, p. 102, which
 contains as a necessary step an investigation of the number of roots inside a
 circular contour of large radius having the origin as centre, this investigation
 and its result holding good, whatever the value of la.

 In Art. 19, p. 106, the double roots are considered; it is shown that a
 double root occurs when, and only when, a certain multiple of (Ipa'/v)a is a
 root of J (Q) = 0, v denoting the kinematic viscosity; and, in Art. 20, p. 108,
 it is proved that, as 1 increases through such a value, two real roots do actually

 disappear; while in Art. 21, p. 111, approximate expressions are obtained for
 the complex roots. It is seen that all the roots, real and complex, are
 accounted for. There are thus a definite finite number of complex roots, ana
 for them the values of p + v (12 + ni2) lie close to two straight lines which
 contain an angle of 27r/3. When the disturbance is oscillatory, its time is
 independent of it.

 In Art. 22, p. 111, it is proved that, in the most persistent disturbance, v
 is a function of y only; i.e., I and i are zero.
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 Art. 23, p. 113, contains two fundamental equations showing how to
 discover the coefficients of the quasi-Fourier expansion of an arbitrary
 function of y in a series consisting of the infinity of V's which correspond to
 given values of 1, n; it seems reasonable to assume the possibility of such an
 expansion; I am quite unable to prove it. I have failed in the endeavour to
 apply this analysis quantitatively to the case of a disturbance of simple type,
 as was done in Part I., Chap. I., Arts. 4-8.

 In Art. 24, p. 115, a brief reference is made to the case in which the
 boundary-conditions Wv = 0 are replaced by d/dy. V2v = 0.

 The much more difficult case in which the boundary-conditions are

 v=0, dv/dy=0
 is taken up in Art. 25, p. 117; it is proved that the imaginary part
 of p lies between the same limits as before. I have failed, however, to
 obtain any direct proof from the differential equation itself that p has a
 negative real part, and also to obtain any equations by the aid of which
 the Fourier analysis of an arbitrary disturbance can be performed. There
 is frequently a connexion between these two questions ; a fundamental
 equation of Bessel-Fourier analysis,* for instance, serves equally to prove
 that all zeroes of the Bessel function of order greater than - 1 are real;
 and, though equation (63) of Art. 23 does not show the roots to have a real
 negative part with the boundary-conditions VWv = 0, the two results have
 been obtained by similar methods. Probably some simple proof that p has
 a negative real part in the present case will be discovered; but it seems
 possible that no simple theorem relating to Fourier expansion may hold.
 Similar difficulties may arise to a certain extent, even for a system having
 only a finite number of coordinates; in some such cases the proof of stability
 for fundamental disturbances is much more difficult than that of the reality
 of the roots of the determinantal equation which is met in the corresponding
 problem of displacement from equilibrium, and the period equation may
 have to be examined as carefully as any other algebraic equation, the fact
 that it arises in a dynamical problem being regarded as a mere accident;
 also, when, in steady motion, the fundamental determinant is unsymmetrical,
 and there exist forces of resistance proportional to the velocities, no rule
 appears to be known for abbreviating the labour of solving the simultaneous
 simple equations which determine the coefficients of the fundamental
 disturbances making up a given initial one.

 * I. e. the equation

 r JT(Kr) J,,(Ar) rdr = 0,

 where ica, Aa are diffeient zeioes of Jn(x), and ta + 1 is positive.
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 In Art. 26, the period equation is expressed in terms of integrals which
 involve V2v, a function whose form has been already found. On the
 supposition that the approximate forms of the Bessel functiolns, for large
 values, may be used in this case also, I have given an approximate form
 of the equation appropriate to the region in which the roots actually lie.
 In this portion of the investigation somewhat intricate questions arose fron
 the fact that the approximations assume different forms in different regions.
 Fortunately, in the region in which the roots actually occur, the difficulty
 is not met with in its entirety. As I am quite unable to solve this
 equation in the most general case, it seems undesirable to give this portion
 of the investigation, which is somewhat long, in full.

 In Art. 27, p. 119, some results are stated. It appears that for none
 of the roots can the disturbance be unstable, but owing to the way in
 which approximations have been used, the proof indicated is not rigorous.
 The result of an investigation of the number of roots inside a circle of
 large radius round the origin is stated. The period-equation for a liquid
 at rest, a problem discussed by Lord Rayleigh, is obtained as a special case.
 A reference is made to the case in which a (12 + n2)i is large; for the
 smaller values of p the roots are very nearly the same as with the boundary
 conditions V'v = 0. Some reference is made to the general case; for such
 of the real roots as are remote from the complex ones, an equation is given,
 which, if the values of the constants were given, could be readily solved;
 for the others, especially the complex ones, the form is very complicated.
 In all cases, however, there are an infinity of real roots, and a finite, but
 undetermined number, which may be zero, of complex; and, roughly speaking,

 for these the values of p + v(l2 + n2) lie in the neighbourhood of the same
 two lines as with the boundary-conditions _v = 0. An approximate form
 of the period-equation is given suitable to the case in which a (i2 + nt)i is
 indefinitely small, the form of the period-equation previously taken now
 becoming an identity; the equation giving the complex roots is still
 complicated.

 It will be seen that, except in the case of very slow motion and in
 that of large values of a (1i + ntt)b, the discussion is- very incomplete and
 unsatisfactory when the boundary-conditions are that v and dv/dy should
 vanish.

 Owing to the failure to use Fourier analysis in the simplest case7* the
 whole investigation elucidates the question of stability but little; for it seems
 unjustifiable as a mathematical proposition to infer that the steady motion of

 * I. e. that in which the boundary-conditions include the vanisling of v2ev

This content downloaded from 
������������128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC������������� 

All use subject to https://about.jstor.org/terms
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 a system possessing an infinite niumber of coordinates is stable for an arbitrary
 disturbance, however small, from the stability, even when of an exponential
 character, of the fundamental ones into which it can be resolved;, an infinite
 series of the type

 Xei0rt(Cr cos trt + Sr sin wrt),

 like one in which no exponential factor occurs, may at some times have a
 value which is exceedingly great compared with its initial one, and may even
 become infinite. To discover how far the motion is stable for any particular
 disturbance, it may be necessary to obtain completely the corresponding solu
 1tion, whether by Fourier analysis or otherwise. Possibly, it rarely happens
 ,t,hat stability for the fundamental disturbances is associated with instability

 Ioi those of a more general type: but this is the case in the problem under
 .discussion, as far at least as practical stability is concerned ; this is sufficiently
 evident from the results of Part I., and Chap. I., Arts. 11, 12, below. It would
 seem improbable that any sharp criterion for stability of fluid motion will
 ever be arrived at mathematically. Indeed, in simpler cases of steady motion
 where there are only a few coordinates, although such a criterion has been
 laid down, it has been shown that it cannot always be relied on. It has been
 proved by Kleint and by Bromwich+ that where there is exponential insta
 bility, but only slight, there may be practical stability, and vice versa. There
 is, however, this difference between such cases and the present one, that in
 them recourse has to be had to the terms of the second order, while here the
 motion is unstable, if terms of the first order only are taken into account.
 :;Chapter III., pp. 122-138, consists of some applications of the method of
 Osb'orne Reynolds.

 The method is explained in Art. 28, p. 122. Taking an arbitrary distur
 bance, Reynolds? found an expression for the rate of increase of the kinetic
 energy of the relative motion; this is made up of two terms, of which one is
 essentially negative, and is the dissipation function for the relative inotion;
 the other may be positive or negative. On equating the sum to zero, a value

 of the coefficient of viscosity, ,u is obtained for which the disturbance would be
 stationary for an instant; if the disturbance is chosen so as to make this M as

 great as possible, then for any greater p every initial disturbance must decrease;

 there is thus obtained an inferior limriit to that valile of it wlich would permit

 That is, if the viscosity is small enough.
 ' * ! t " The Mathematical Theory of the Top " (Princeton Lectures, 1896).

 J "Note on Stability of Motion with an Application to Hydrodynamics," Proc. Lond. Matli. Soc,
 xxxiii., Feb. 1901.

 ? " On the Dynamical Theory of Incompressible Viscous Fluids, and the Determination of the
 Criterion," Phil Trans. A, 186, Part I., 1895; Scientific Papers, ii.
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 a given motion to be unstable. Previous investigators by this method have
 selected the type of disturbance to some extent arbitrarily. .

 In Art. 29, p. 124, however, the method of variation is used to assist in
 discovering the proper type; it is shown that when the value of p, is the
 greatest for which it is possible that a disturbance should remain stationiary,
 the velocity components in the disturbance satisfy certain differential
 equations.

 These are applied in Art. 30, p. 124, to the uniformly-shearing stream for
 a two-dimensioned disturbance, supposed of definite but undetermined wave
 length in the direction of flow. The differential equation to be solved in all
 such cases is linear and of the fourth order; in this particular instance it has
 constant coefficients. The boundary-conditions lead to equations determining

 ,u; as in the other cases to be discussed, y so determined, has an infinite
 nunmber of values; the greatest of these is taken; finally, the wave-length in
 the direction of flow is so chosen that this value shall be the greatest possible.

 The final result is BpD2/p 177, where p is the density, D the distance
 between the planes, and the steady velocity is U = By. H. A. Lorentz, who
 discussed a species of elliptic whirls, obtained the number 288 instead.*

 Two cases of other boundary-conditions are discussed in Art. 31, p. 129.
 Art. 32, p. 130, takes up the case of a stream flowing between fixed

 parallel planes, the second of the two problems discussed in such a different
 manner by Lord Kelvin, and the numerical investigations by Reynolds
 himself and by Sharpe are briefly described.

 in Art. 33, p. 131, the more general plan which I have indicated of
 using Reynolds' method is applied to this case, again in two dimensions.

 When the velocity perpendicular to the boundaries is expanded in powers
 of the distance from the central plane, the differential equation gives a
 linear relation among the coefficients of three successive terms; there are
 two independent solutions in series containing only odd powers, and two
 in series containing only even; reasons are given justifying the choice of
 the latter (I confess I shrank from the labour of the double investigation).

 The equation which determines It when developed from the boundary
 conditions is easily solved with sufficient accuracy. Choosing the wave
 length in the direction of flow so as to make this value of p as great as
 possible, there results the criterion D Up/p = 117, U being the mean velocity.
 Reynolds obtained the number 517, Sharpe 167.

 Art. 34, p. 134, goes on to the case of a circular pipe, and refers to
 Sharpe's investigation.

 * See p. 124,
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 And in Art. 35, pp. 135-138, the more general method is applied to a
 symmetrical disturbance. The differential equation is of a similar type to
 that in the preceding case, and is solved in a similar manner; the final
 result is D Up/l = 180, D being the diameter of the pipe; the inumber
 obtained by Sharpe is 470. The law of velocity in this instance being
 U = C'(a2 - r2), and that in the last U = C (a2 _ y2), the value I have found
 for C' is almost double that for C.

 It is claimed that in each case the numbers I have found are true
 least values (but with some reservation as to the effect of end-conditions);
 that below them every disturbance must automatically decrease, and that
 above them it is possible to prescribe a disturbance which will increase
 for a time.

 The numbers obtained above give velocities very much below those at
 which observers have found motions actually to become unstable; this is
 to be expected.

 Although I cannot profess to have examined the records of the experiments

 carefully, it seems that the results of Reynolds' and of Couettet are to
 some extent contradicted by Mallock's.3 The general result of each is that,
 up to a certain velocity, the motion is certainly stable, and the frictional
 resistance varies as the velocity: beyond this comes a region in which the
 motion appears at times to be stable, and at times to be unstable, the average
 resistance on the whole now increasing more rapidly than the first power
 of the velocity: if the velocity is still further increased, the motion is
 permanently eddying and turbulent, and the resistance is, approximately
 at least, proportional to the square of the velocity. Reynolds found, from
 experiments made on pipes of different diameters, and in which the viscosity
 was varied by varying the temperature, that the motion was certainly stable

 until DUp/y p 1900. Couette gives results of experiments4 on eight pipes
 of different diameters, the temperature being approximately constant. The
 mean value of D U is very nearly 25 4 in C. G. S. units, the range being from

 22 to 28; taking P/P at 13`8 C. (the mean temperature) to be '0118, this
 gives PDUp/y = 2150. Moreover, some of Reynolds' experiments were made
 with colour-bands-a method which might be expected to reveal eddies which
 might otherwise escape detectioni, and thus to give a lower limit for U.

 1 "An experimental investigation of the circumstances which determine whether the motion of
 water shall be direct or sinuous, and of the law of resistance in parallel channels," Phil. Trans. 1883 ;
 Scientific Papers, ii.

 2 " Etudes sur le frottement dea liquides," Annales de Chimie et de Physique, 6e S?rie xxi., 1890.
 3 " Experiment?? on Fluid Viscosity," Phil. Trans., 187, 1896.
 *L.c, p. 488.
 R. I. A. PROC., VOL. XXVII., SECT. A. [l 1]
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 Couette founld that when a cylinder of radius 14%6395 cm. was rotated
 in water at 16.70C. outside a concentric one of radius 14L3930 cm., the
 motion ceased to be thoroughly stable when the speed exceeded about
 56 revolutions per minute; taking p to be *011, this corresponds to a value
 of BpD2/M = 1940 for liquid shearing at the same rate as that in contact
 with the fixed cylinder. In Mallock's experiments, when a cylinder of
 radius 9-943 cm. was rotated outside one of 7t632 cm., it appears from a
 diagram that, at the temperature 00 C., the motion was not thoroughly stable
 when the speed exceeded about 75 revolutions per inilute; this corresponds

 to a value of BPD2 = 204, or, taking $ = 018, BpD'1/p . 11300. When
 ainother outer cylinder of 8'687 cm. radius was substituted, the corresponding

 number of revolutions was about 78, giving, BpJi/p . 4500. (Up to these
 speeds the resistance varied as the velocity.) Moreover, Mallock states that
 the critical velocity he found at different temperatures was not proportionlal
 to the viscosity. "At a temperature of 50? C. the viscosity of water is only
 about a third of what it is at QO C., but, at the former temperature, instability
 begins at a speed only of 11 or 12 per cent. less than at the latter." (His
 diagrams seem to indicate 15 to 20 per cent. less.)

 In the experiments with different cylinders, the conditions of dynamical
 similarity are not satisfied; but they would appear to be practically satisfied
 with the same cylinders at different temperatures; (apparently conditions
 concerning pressure and gravity may be disregarded). Unless Mallock's
 results are rejected altogether, Reynolds' conclusion that in similar systems

 eddies appear when ULp/y exceeds some definite limit depending on the
 form of the apparatus (L denoting the linear dimensions), would seem to be
 open to doubt, despite the strong confirmation it receives from Couette's
 experiments.

 Mallock attempted experiments in which the outer cylinder was fixed
 and the inner one rotated, and states that, in these circumstances, the motion
 seemed essentially unlstable at all speeds. I have great difficulty in accepting
 this conclusion; and apparently the fact may just as well have been that it
 was found impossible to establish the steady motion starting from rest.

 It seems remarkable too that the values of the coefficient of viscosity
 which Mallock deduced from his two sets of experiments differ from one
 another, and exceed the usually accepted values, one set being, throughout
 the whole range of temperatures, not much less than twice that given by
 Poiseuille.

 In earlier expelinieiits of a similar type by Mallock,' it was found that at

 J u Determination of the Viscosity of Water," Proc. Roy. Soc. xlv., 1888, p. 126.
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 all speeds the resistance could be represented as the sum of two terms, one
 varying as the velocity and the other as its square; the latter was attributed
 to the action of the ends of the rotating cylinder, and was found to become
 smaller and smaller as the ratio of the length to the width of the annulus
 increased.

 [I take this opportunity of making a few corrections in Part I.:

 p. 15, 1. 8, for " n " read " m2 ".

 p. 15, 1. 3 from foot, for "a" read "any ".

 p. 25, 1. 25, for "B " read "9 ".

 p. 31, 1. 19, for "4* " read "=".

 p. 35, 1. 17, for "E"read" ".

 p. 35, last line, for "(vi/5 - 1)2" read "(/5 - 1)/2".

 p. 40, I would withdraw the opinion expressed in the final sentence whicl
 begins on this page.

 p. 42, 1. 21. In keepilng with the last change, I would inisert "lb and"
 before "nb ".

 p. 47, et seq. Just as the analysis of Art. 21 is simpler than that of
 Art. 20, so, in the disturbance discussed in Art. 18, the
 investigation is simpler when ka is very small, the other
 extreme case from that chosen.

 The following electric analogy may illustrate instability of fluid motion
 In two dimensions vorticity represents electric density-stream-function,
 potential. Take a shearing stream with embedded positive and negative
 electric charges, arranged, as an extreme and simple case, like rectangles oln a
 chess-board, the sides parallel to the direction of the stream being much
 longer than those across it, and the bounding-planes being kept at zero
 potential. Let the charges, like the vorticity, flow with the stream. When
 sheared so that original diagonals run right across the stream, the potential
 at most points towards mid-stream is much greater than originally, owing to
 the altered distribution of the charges.]
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 CHAPTER 1.

 LORD KELVIN'S INVESTIGATIONS, ESPECIALLY THE CASE OF A STREAM WHICH
 IS SHEARING UNIFORMLY.

 ART. 1. The Problems which Lord Kelvin discussed.

 THE stability or instability of steady laminar motion, when viscosity is
 taken into account in the disturbed motion, has been discussed by Lord

 Kelvin for two cases. Onie of these is that of a fluid undergoing simple
 shear, the problem which, when viscosity is ignored, fornmed the chief subject
 of Part I.> Chap. I., of the present paper ; in the other, the st-eady velocity is
 a quadratic function of the distance from a plane bounldary, as with a viscous
 fluid which is moved between two fixed parallel infinite planes by gravity or
 by applied pressure.

 As somewhat subtle controversial matters are to be touched on in what
 follows, it appears desirable, with a view to facilitate the reader's compre
 hension of the points at issue, to give to some extent an outline of the
 suibstance of his investigation.

 Lord Kelvin, in one paper,t discussed the former of the two problems
 alluded to; in another,+ he attacked the latter problem on somewhat
 different lines, and in a foot-note indicated that this method applies equally
 to the former, and thus constitutes a second solution of it. It will be
 convenient to allude to the former solution as his "special" solution.

 ART. 2. Abstract of his Special Solution in the case of the Stream

 shearing uniformly.

 Referring, then, to his first paper, if we denote the plane boundaries by
 y = 0, y = b, suppose that the former is reduced to rest, that the velocity in
 the steady motion is U - fy, and that in the disturbed U + u, v, w, and

 * Proc. R.I.A., xxvii., A. No. 2, p. 9.
 t "Stability of Fluid Motion?Rectilinear Motion of Viscous Fluid between two Parallel Planes,"

 Phil. Mag., Aug. 1887.
 { "Stability of Motion?Broad River flowing down an Inclined Plane lied," Phil. Mag., Sept.,

 1887.
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 ORR-Stability or Instability of Motions of a Viscous Liquid. 81

 denote the kinematic viscosity, or quotient of viscosity by density, by v, the
 fundamental equations are

 du/dt + j3yduldx + 3v = vV2 _ - p dp/dx,)

 dv/dt + (3ydv/dx = vV2V - p-ldp/dy,

 dwldt + fydw/dx IV2Vw - wId/dz V (1)
 duldx + dv/dy + dw/dz - 0

 and from these we obtain, by elimination,

 (d/dt + 3yd/dx - VV2) a = 0, (2)
 where

 a V2V. (3)
 Ignoring, for the sake of brevity, any further reference to u, w, it is

 desired to obtaini an expression for v, satisfying (2) and also the following
 initial and boundary conditions:

 when t = 0, v to be a given arbitrary fuinction of x, y, z; (4)

 when y = 0, and when y = 1, for all values of x, z, t, both v

 and dv/dy to vanish. (5)
 Lord Kelvin first proceeds to find a particular solution, v, of (2) whichl

 satisfies the initial conditions (4) irrespectively of the boundary conditions (5),
 except as follows:

 v=0 when t=0, and y=O ory=b. (6)
 He next finds another particular solution, t, satisfying the following

 initial and boundary conditions:

 1 = O, dt/dy = 0, when t = 0, (7)
 J = -VJ d/dy= - dv/dy, when y = O, y = b. (8)

 The required complete solution will then be

 v =v?+i. (9)
 To find v, Lord Kelvin remarks, that if v were zero, the complete integral

 of (2) would be
 =f(x - 3yt, y, z), (10)

 where f is a perfectly arbitrary function, and takes therefore as a trial for a
 type of solution with v not zero,

 af - rei(lz+(7n1$Qy+fZ), (1 1)
 where T is a function of t. Substituting in (2), one obtains

 T =Ce-vt [12 + m +n a_m6t +llg2t!131 (12)
 and hence, from (3),

 Tei (P (mn - 1#t)y + nz)

 VM12 ?(fn-jt)2+n2 (13)

This content downloaded from 
������������128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC������������� 

All use subject to https://about.jstor.org/terms



 82 Proceedings of the Royal Irish Academny.

 Realizing by adding solutions of this type for ? i and ? mi with proper
 values of C, one obtains types of complete real solution

 -Excp.J- Vt(11 + nb2 + qi2 _ lMwat + 1202 t'/3)1 COS v = ik .{ lx + (v - l/3t)y + nz] 11 + (m + 70 ~sin I
 Exp. - vt(12 + MA2 + n2 + lMft + 12f2t2/3s COS [lx - ( + )+ nz]

 2 + (m * lot), + - 2 sin
 (14)

 where k is an arbitrary constant. This gives, when t = 0,

 V = v F + Sin coy (lx + nz), (15)

 which fulfils (6) if sin nb = 0, and allows us, by proper summation, for the
 different admissible values of mi, and summation or integration with reference
 to I anld n, with properly determined values of k, after the manner of Fourier,

 to give any arbitrarily assigned initial value to v for every value of x, y, z
 from x=-oo to x=+oo y=O to y=b, and z=-oo to +oo. Thesame
 suimmation and integration applied to (13) gives v for all values of x, y, z, t.

 It remains to 'finid the value of t which must satisfy (2), (7), (8). To
 do this Lord Kelvin first finds a real (simple harmoilic) periodic solution
 of (2), fulfilling the conditions

 v = Ccos wt + D sin wt

 dv= C'Gos wt D'sin t when y = O, (16)
 dy
 v = (i cos wt + t sin wt

 dv =FC t Zsi d when y =1b, (17)
 = z'cos wt + tI'sin w t)3 Y(7 dGy

 where C, D, C', 1, (i, Z, ri', Z' are eight assigned arbitrary functions of x, z.

 Then, by taking J dwf(w) of each of these after the manner of Fourier,
 0

 one solves the problem of determiniing the motion produced throughout
 the fluid, by giving to every point of its plane boundaries an infinitesimal
 displacement, of which each of the three components is an arbitrary function

 of X, z2 t7 Lastly, by taking these functions each = 0, from t - -c to t = 0,
 and each equal to minus the value of v or dv/dy, as the case may be, for every
 point of each boundary, when t > 0, we find t4 of equations (2), (3), (7), (8).

 * As far as v is concorned we have only to deal with arbitrary boundary -values of v and of dvldy,
 the latter being obtained from those of u, w by the equation of continuity.
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 The value of v satisfying (2), (3), (16), (17) is obtained by first findinsg
 an imaginary type solution.* Assume

 v = ei(wt + lx + Iz) V (18)
 a- = eit+lx+nz)Sz (19)

 Equatioin (2) then becomes

 dy S =1+ len + i(w+l/Y)) (20)
 This may be solved by series proceeding in ascending powers of

 12 + n2 + i(w + lj3y)/v

 which are seen to be essentially convergent for all values. The form of
 S having thus been found, the solution of (2) can be expressed by using
 integral forms, and it involves four arbitrary constants; by the aid of these
 arbitrary constants, any prescribed values can be given to v and to dv/dy
 for y = 0 and y = b. Thus a real value of v satisfying (2), (3), (16), (17) may
 be obtained.

 Now, the v solution, expressed by (13), comes essentially to nothing
 asymptotically as time advances. Hence, Lord Kelvin states, the t of
 (2), (3), (7), (8), which rises gradually from zero at t = 0, comes asymptotically
 to zero again. He concludes that the steady motion is stable.

 ART. 3. His Solution of the Second Problem and its modification to

 suit the First Problem.,

 In the second paper, which, as stated above, deals with the case in which
 the steady velocity is expressed by a quadratic function of y, Lord Kelvin
 writes as in (18), above,

 v = ei (wt+t+z+z) V

 and obtains the differential equation satisfied by V, which is of the fourth
 order. He shows how four independent solutions of it may be obtained in
 the form of series in ascending powers of y, convergent for all values of y,
 unless v be zero. The rest of his discussion is by no means full; I trust I do
 not misiinterpret it in the following statemnents. He appears to indicate that
 by means of the four arbitrary constants which occur in the value of V, any
 values desired can be assigned to V and to d V/dy for y = 0 and y = I, and
 that by integration or summation with respect to w, 1, ni, one can thus obtain

 the motion produced in the fluiid by giving the plane boundaries y = 0, y = b,

 * At this stage of Lord Kelvin's work, in his equation (49), there occurs an error which is noted
 in an " erratum " prefixed to the bound volume of the Phil. Mag.
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 displacements which are arbitrary functions of x, z, t, indicating in a footnote

 that this same method may be used as affording a complete discussion of the
 former problem without any introduction of the v which satisfies (2), (3), (6).
 He states that the essential convergence of these series proves that the steady
 motion is stable, however small be v, provided that it is not zero.

 If v be zero, the series become divergent in a certain region, thus givilng
 rise to the " disturbing infinity " alluded to in Part I., Chap. I., p. 19.

 ART. 4. Lord Rayleigh's Criticism of the latter Solution.

 Commenting on these investigations, Lord Rayleigh writes-" . . . I must
 confess that the argument does not appear to me deinonstrative. No attempt
 is made to determine whether in free disturbances of the type eint (in his
 notation eiwt) the imaginary part of n is finite, anid if so whether it is positive
 or negative. If I rightly uniderstand it, the process consists in an investiga
 tion of forced vibrations of arbitrary (real) frequency, and the conclusioin
 depends upon a tacit assumption that if these forced vibrations can be
 expressed in a periodic form, the steady motion from which they are
 deviations cannot be unstable. A very simple case suffices to prove that such
 a principle cannot be admitted. The equation to the motion of the bob of a
 pendulum situated near the highest point of its orbit is

 d2x/dt2_ -2m = X

 where X is an impressed force. If X = cospt, the corresponding part of x is

 - cospt
 but this gives no inidication of the inherent instability of the situation
 expressed by the free ' vibrations,'

 x = Aewnt + Bo

 This criticism is evidently directed against the argument in the second of
 the two papers to which I have referred.

 ART. 5. Lord Rayleigh,'s Remarks on the Special Solution.

 In a later paper Lord Rayleigh, referring evidently to Lord Kelvin's first
 investigation, wrotet:

 In the particular case where the original vorticity is uniform, the
 problem. of small disturbances has been solved by Lord Kelvin, who shows

 * "On the question of the Stability of the Flow of Fluids," Phil. Mag?, xxxiv., 1892, p. 67.
 Collected Papers, iii., p. 582.

 t " On the Stability or Instability of certain Fluid Motions," Proc. Lond. Math. Soc. xxviu,
 1895 ; Collected Papers, iv., p. 209.
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 that the motion is stable by the aid of a special solutionl not proportional to
 a simple exponential function of the time. If we retain the supposition of
 the present paper that the disturbance as a functionl of the time is pro
 portional to ei"%, we obtain an equation [(52) in Lord Kelvin's paper] which
 has been discussed by Stokes. From his results it appears that it is not
 possible to find a solution applicable to an unlimited fluid which shall be
 periodic with respect to x, and remain finite when y = ? oo, and this whether
 .n be real or complex. The cause of the failure would appear to lie in the
 fact indicated by Lord Kelvin's solution, that the stability is ultimately of a
 higher order than can be expressed by any simple exponential function of the

 time."

 ART. 6. No Proof of Stability in either Solution. A tacit Assumption in the
 special one,

 Lord Rayleigh's objection to the argument in Lord Kelvin's latter paper
 appears unanswerable. The precise point of failure in the solution is that it

 does not in reality satisfy the most genoral conditions which may be assigned,
 just as, in the problem of the pendulum which Lord Rayleigh instances, the

 most general conditions cannot be satisfied without the introduction of the
 terms

 Aemt + Be-mt.

 When the values of v and dv/dy are assigned at the bounding planes for all
 values of x, Z, t, Lord Kelvin's solution is evidently an absolutely determinate
 one; but the initial state of things in the interior may be -arbitrarily pre
 scribed; and to allow this to be done there must evidently be added solutions
 which make v and dv/dy always zero at the bounding places: in other words,
 free disturbances.

 Now, the special solution which Lord Rayleigh accepts in the second
 passage quoted (Art. 5), contains no reference to the free disturbauces any
 more thani does the solution which he rejects; and, on examination, it must,
 I think, be held that neither does it afford a proof of the stability of the
 notion. The value of t in it, like that of v in the other, is completely deter

 mined by the boundary coniditions (8) without any referenice to the initial
 condition (7); and the statement in the penultimate sentence of Lord Kelvin's
 first investigation that t' rises gradually from zero at t = 0 thus involves an
 unjustified assumption that the solution which satisfies (2), (3), (8) will
 satisfy (7) also.

 R. I. A. PROC., VOL. XXVII., SECT. A. [12]
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 ART. 7. The Assumption is valid, if Steady Motion exponentially Stable; Iot if
 exponentially Unstable.

 On consideration, it appears that this assuimption may be shown to be
 correct, provided the free disturbances have stability of the ordinary expo
 nential character; but that it would be incorrect if, for instance, any of thetn
 were exponentially unstable or neutral; this being so, the argument begs the
 question at issue. For, if a system in an exponentially stable state, whether
 of equilibrium or motion, be subjected to a simply harmonic disturbing force,
 (or motion affecting a definite coordinate), of any definite period, the solution
 in which the disturbance is simply harmonic and of the same period is known
 to become asymptotically correct as the time increases indefinitely, whatever

 may be the initial conditions (at least if the number of coordinates is finite).
 'When the disturbing force is expressed as a Fourier integral, each element of

 which is simply periodic in time, and the elementary periodic disturbances
 which correspond to each in the fashion just described are combined by inte
 gration, it seems reasonable to infer that a similar statement would hold good
 for the resulting integral disturbance. When the range of time through which

 this resolution of the disturbing force is effected extends (say) from - to to + 00,

 then, at any instant, t, this force has been in operation for a time t t to, even
 though it may have been zero through a great portion of this interval, and
 accordingly the solution obtained in this manner is, if the state be exponen
 tially stable, sufficiently accurate, provided t + to is sufficiently great, whatever

 may have been the disturbance (supposed finite) at the time - to. But if the
 disturbing force is zero from t = - to to t 0 O, then if the state is exponentially
 stable, and to is great enough, whatever finite disturbance may exist at the
 time - to, it must be sensibly reduced to zero at t = 0; so that in this mode
 of procedure we do, indeed, obtain the solution in which there is no distur
 bance at the time zero. We have only to suppose to increased indefinitely to
 obtain the case with which we have here to deal; and hence it appears that
 the value of t determined from (2), (3), (8) does indeed satisfy (7). But this
 argument fails, unless it is known that the state is exponentially stable.

 ART. 8. Mathematical Investiqation of a simple example illustrating Validity
 of this Objection.

 A simple instalnce of many which could be cited in which the analysis
 is simple may serve to illustrate the argument, and especially to show
 that the result need not hold for an unstable state; the elaboration of a
 formal proof applicable to a case in which the number of independent

This content downloaded from 
������������128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC������������� 

All use subject to https://about.jstor.org/terms



 ORR-Stabtlity or Instability of Motions of a Vi8cous Liquid. 87

 coordinates is infinite would probably be a problem of considerable difficulty.
 Consider a system possessing only one coordinate, and governed by the equation

 d2x/dt2 + (a + b) dx/dt + abx = X, (21)

 wherc, when t is negative, X is zero, and, when t is positive, X = e-t, c being
 positive, or having its real part positive. The solution in which at t = 0
 x and dx/dt are zero, is known to be, for positive values of t,

 (a - b) (b -) (c - a)x = (b - a) e-t + (c - b) eat? +(a - c)erbt. (22)

 By mieans of the equation

 f (t) = 7r-1 de { (fQ) cos a (it - t) du, (23)

 Fourier analysis of the disturbing force gives

 o swt?a,sin t0t. (24)
 The solution of

 d2x/dt2 + (a + b) dcx/dt + abx = c cos wt + a sin wt, (25)

 which is of the same period as the disturbing force, being

 (b - a)x (ac - a,2) cos Wt + (a + c)w sin wt (be - a,2) cos wt + (b + c) o sin at
 a2 + W2 22+ W2 -

 (26)
 the integral solution obtained in the way indicated is accordingly

 (b6- a)7rxX (ac -to2) cOS lWt + (a + c) c sin tdw

 a (b2 + w2) (c + or
 co c COS wt + w sin wt

 (a - b) (b - c) (c -a) xrx = (b - a) J 2 + 2 d

 X a cos wt + w sin ct b cosa t + a sin wt
 -b) - --- 2& + W Ad+(a - c)j bZ +W2 d.

 (27)
 The first integral on the right is zero when t is negative, and 7re-? when t is

 positive; if the real part of a is positive, the second integral is zero when t is
 negative, and 7reOt when t is positive; but, on the other hand, if the real part of

 a is negative, it is zero when t is positive, and 7reat when t is negative ;* while
 it is infinite if the real part of a is zero; and, similar statements hold for the
 third term. Thus the value of x as given by (27) agrees with the correct

 r ?helee statLentus are equivalent to equationi (24), a and c being initerchanged where necessary.

 [12*J
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 value given in (22) if the real parts of a, b are both positive, but ntot if either
 or both are negative or zero.

 A systemn subject to an equation of the type

 dx/dt + ax = X

 affords a still simnpler illustration, anid mnight be held to be nmore appropriate

 to the problem in view.

 ART. 9. Other Objections to the special Solttion as a Proof of Stability.

 The same penultimate sentence of Lord Kelvini's investigation also containis
 another unproven assumption, viz.: that t comes asymptotically to zero as t
 increases to so. This statement, like the preceding one (i.e., that it rises
 gradually from zero at t = 0), is only known to be true for the boundary
 values of %. This objection to the second statement may be expressed as
 follows :-In the first place, the fact that the value of v, simply-periodic in
 time which satisfies (2), (3), (16), (17), can be expanded in a convergent series
 of powers of y, does not preclude the impossibility of so choosing w, 1, m, n,
 that v could, through some portion of the interior, be made very great, or
 even as great as we please, compared with its values at the boundaries ;* and
 in the second, the mere fact that the resultant value of t is obtained as the
 integral effect of such solutions corresponding to different values of a, wheni
 viewed in the light of the known possibilities of Fourier analysis, so far from
 showing that it eventually diminishes indefinitely, is seen to impose no limit
 whatever on its value.

 Again, the tacit assumption that, if the steady motion is stable for distur
 bances in which v varies as sin my, it is alscr stable for those of a more general
 type, appears to require justification.

 ART. 10. The Special Solttion contains a Proof that the Motion, if rapid enough,
 will be practically Unstable. Two Modifications of the Solution
 partially satisfying the Boundary-Conditions.

 Thus, Lord Kelvin's special solution, equally with that included in his
 discussion of the more difficult problem, appears unacceptable as a proof of
 the stability of the steady motion. We have seen, however, that if it be
 admitted, as will be proved in Chap. II. below, that the infinitesimal prin
 cipal disturbances have stability of the ordinary simple exponential type,
 it does provide an investigation of the propagation of an arbitrary initial

 # It nmay be held that this remark, if it stood alone, would not affect Lord Kelvin's inference that
 the, steady motion is stable if the initial disturbance be of the type he chooses and 8uficieftty sinall.
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 disturbance. And although the function ti of equations (2), (7), (8) is not
 easily obtainable in a form which enables us to calculate numerical values,
 important conclusions miay be drawn from the fornm which this solution gives
 for v without any regard whatever to x. Whetlher the infinitesimal distur
 bances are stable or not, it fuirnishes, in fact, a proof that the motion may be
 practically unistable, aind shows qualitatively, and to some extent quantita
 tively, the circumstalnces in which instability may be expected. (In short, I
 cannot make any substantial advance in the matter of showing that there
 will be instability beyond pointing out what may be inferred from this
 solution.) There is good reason for supposing that, if lb, min, nb are large,
 the precise conditions which prevail at the boundaries cannot modify the
 disturbance appreciably at ainy seinsible distance, and thus cannot much affect
 the question of stability for disturbances of small wave-lengths in the x and z
 directions. It is seen that, if the viscosity is sufficiently small, just as when
 it is altogether neglected,* the initial disturbance may, owing to the expres

 sion 12 + (ln - 1/3t)2 + n2 in the denominator of v, as given by (13), (14),
 increase very much in spite of the exponential multiplier. We may, more
 over, easily amend the expression for v, by adding to it the proper solution
 of the equation VWv = 0, so as to obtain a solution which shall satisfy either
 of the boundary-conditions v- 0, dv/dy = 0, but not both.t If we select
 the fornmer alternative, such a solution corresponding to an initial disturbance
 in which

 v = V = B cos lx sin my cos nz (28)
 is

 2v sinh Ab ELp t- vt (X2 + i2 _ 1M4t + 12(321t/3))

 (X2 + m/2) B cos nz A2 + (m _ 1)3t)2

 x (sinh Ab sin[lx + (n - lo3t) y]- sinhX (b - y) sin Ix - sinhAysin[lx+(n -1 ot)b]

 ELp [_ Vt(X2 + m2 + Imnt + l2(2t12/3]
 12 + (n + l3t)2

 x (sinh Ab sin[lx -(i + 1j3t)y]-.sinhA (b -y)sin lx-sinhAysin[lx -(in+ 1l3t) b] },
 (29)

 in which V2 = 12 t n". The solution in the case of a two-dinmensioned dis
 turbance, in which n = 0, A = 1, can be completed by writing down the

 C Compare Part I., Arts. 4-8, with Arts. 10, 11 here.
 t Of course, Lord Kelvin's typical iniitial disturbance of (15) violates the boundary condition

 dv/dy = 0; the conditions v 0, d2v/dy2 = 0 are somewhat simpler; but even in that case I cannot
 complete the solution in a form which gives results suitable for quantitative comparisons.
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 corresponding value of u. It is

 2lu sinh lb EXp I - vt (12 + i n2 - lltft + 12f2t2/3))

 (11 + ml) B 12 t (m _ 10t)2
 x (-(m- l3t) sinh lb sin[lx+ (mn-lt) y]+l cosh l(b -y) cos lx-1 cosh ly cos[lx? (m-lt) b]

 EXp [- vt(12 + We + 1n3t + ltf32tt/3)]
 12 + (in + 1lt)2

 x I (nmljt) sinh lbsin[lx-- (mrlpt)y]+I cosh I (b-y) cos lx-cos lycos[lx -(m?+lt) b]).
 (30)

 It is seen that these expressions differ from those obtained when viscosity
 is ignored (Part I., equations (28), p. 26; (38), p. 28;) only by the presence
 of the exponential multipliers, and become identical with them if v is equated
 to zero. There thus appears to be no necessity for the suggestion thrown out
 by Lord Rayleigh that, in these questions of stability, investigations in which
 viscosity is altogether ignored may possibly be inapplicable to the limiting
 case of a viscous fluid when the viscosity is supposed infinitely small.*

 ART. 11. For suitable Values of Constants in First Modification the Disturbance
 will Increase greatly. Substitution of a numerical Vatlue suggested
 by Experiment.

 Taking then the values of u, v given by (29), (30), they are derivable from
 a stream function, ,, given by

 212 s+ h lb EXp [- Vt (12 + n2 _ iMft + 1232 t2/3]

 sinhlb cos [lx + (n - lo3t)y] - sinhl (b - y) cos lx - sinhly cos [lx + (m - lot) b]
 12 + (m_ 10t)2

 - another term derivable by changing the sign of mn. (31)
 Here

 - 21V24,
 -+ 2)B = Exp [- Vt(12 + mY - Impt + 12o3t2/3] . cos [lx + (m - lZt)y]

 another term derivable by changing the sign of i. (32)

 If T be the average energy of the relative motion per unit length of stream,

 4T7w/I = - |iV24dXdy. (33)
 M th

 Making use of this, on performing the ilitegrations, and comparing the value

 "On the Question of the Stability of the Flow of Fluids," Phil. Mag., xxxiv., p. 61, p. 67,
 1892; Scientific Papers, iii., p. 577, p. 582.
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 of T thus found with its initial value, i.e., T0 = B2b (12 + nW2)/81i, there results

 T (12 + _2) (EX[-2 Pt(J2+M2_ifPt?i2f2t2/3)] Exp[-2vt(i2+?r2+lrnt+?2j32t2/3)]
 TX, 2 l i2+((n,tifPt)2 + 12+(m+lpt)2

 EX_p [_vt(12+r2_Jrft+i232t2/3)]. EXp [-t(1(+M24M ml3t+i32t21/3)] 2

 l I9Jr(7n-tAt)2 IZ (2>12+(M+3t)2)

 ~~cosh lb -cos (rnt-l13i (34 X 12 lbt tsin lb / (34)
 As the terms to be subtracted from the two first are essentially positive,
 there is no possibility of any great increase, unless the first two are large;
 and even in the absence of the exponential factors, this can occur only if m/i
 is large, and theni solely during the time in which rn - l3t is of order not
 larger than 1. At such times, the terms which have 12 + (Mn + lt)2 in the
 denominator may be neglected in comparison with the others. During such
 a time, if rn/l is large, we may approximately replaces the exponential factor
 of the two remaining terms by Exp {- 2vrn?/(3l/)}, and thus obtain

 -_ e2 nt (2 * coshlb - cos(m l -i3t)b (3
 T e 212 i j (rn-if3t)2 ib sinhib J

 As the last factor is less than unity, a large value for TITO requires that
 vmr/(ij3) should not be large, i.e. that Mn2 b. mr/ should not be large compared
 with f3b2/v; now the smallest possible value of rnb is 7r, and n/l is large,
 so that instability requires f3b2/v to be large. Conversely, if rn1, mb are
 large, and 3b2/v large enough to be of the same order as M2nt2. rn/i, an initial
 disturbance of the type given by (28), and subject to the boundary-conditions
 required by (29), (30), one of which is v = 0, will increase very much before
 dying out. At the time when nm - il3t = 0, we have in fact

 T 2v-e m 1 tanh "lb (36)
 3 2P jib (36

 With the relative magnitudes chosen for the constants, the exponential factor
 is not small, and the product of the other factors is large, its approximate
 values in the extreme cases of lb large and of lb small being respectively
 rnt/212 and n2b2 /24.

 It may be of interest to take values of the constants for which a somewhat
 similar motion has been found experimentally to be unstable, and ascertain
 to some extent how much they would allow a disturbance of the type (29),

 (30) to increase. Couette foundt that, when a cylinder of radius 14'6395 cm.

 * I.e. in the sense that this gives the index of the exponential factor with sensible accuracy.
 t " Etudes sur le frottement des liquides," Annales de Chimie et de Physique, (6) xxi., p. 433.
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 92 Proceedings of the Royal Irish Academy.

 was rotated in water at 16170 C. ouitside a concentric one of radius 14'3930 cin.

 the motion ceased to be thoroughly stable when the speed exceeded about
 56 revolutions per minute; taking v to be 011, this corresponds to a value

 of bl2/v which is about 1940. Writing fl62/I = 1900, it is seen that the
 disturbance could not increase greatly. Going back to (34), but writing
 m - 13t = 0, and retaining only the terms which are more important, we have

 T - 2b'm (312 + m2)' 12 + n? _ tanhlb (l7)
 y#Exr 5709~~~1 V 2P lbh

 The final factor is less than unity, and also less than 1262/12; thus its
 value is less than

 5i 70015 (36212 + m262)j 2b 2bt (38)

 and also less than
 ____b-2mb (3162b rnJd nOb2 (9

 Exp t57001b 3126b 2 * 24

 For either of these expressions to be a maximum, there is required

 (mt2b + 12b2)2 = 19001b. mnb, (40)
 or, if m/i is supposed large

 n3b3 19001b; (41)

 then the former becomes approximately

 e-i 1 + ~~~~~~~(42) (2 2mlib4)'()
 and the latter

 in866 ~~~~~(43) 24 24(1900)2)
 A superior limit to (37) is thus the smaller of (42), (43), and thus their
 common value, when they are equal, i.e., about 15. The maximum value
 of (37) appears in fact to be abotut 4; and it approaches this value when
 lb = 2, mb = 57r.

 It may be seen that, for this value of f3b2/v, the terms omitted from (34)

 are unimportant, and that the approximations used give nearly its maximum
 value and the time at which that occurs.

 If the disturbance were taken alone which involves the first exponential
 factor in (31), (32), somewhat similar results would be obtained as to the
 possibilities of its ixnerease.
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 IR-- Slabzlzty or Instability of MAotions of az Viscous liquid. 93

 AuT. 12. A similar Investigation for the Second Modification.

 If we take the solution which would make dv/dy, and therefore i, zero,
 instead of v, at the bounding planes, it is seen that the two-dimensioned form
 corresponding to an initial disturbance in which

 v = V B sin lx cosmy (44)
 has a stream function given by

 21/ sinih lb Exp [- vt (12 ? m2 - lmf3t + 12132t713)]
 (12 + r2) B 1 + (M - lft)2

 x t sinh lb cos [lx + (mi - 1l3t) y] - 1-1'(n - 13t) cosh I (b - y) sin lx

 + 1-1 (n - l3t) cosh ly sin [lx + (m - lot) b])

 + another term derivable by changing the sign of m. (45)

 In this case, the ratio of increase at time t is

 T l 2+ m EXP [-2 vt(l2+im_llnt+jl2j32t/3)] Exp [2vt(l2?M2+ lm3t4d22t2/3)]

 T~ 2 L1+(m-Ol3t)2 +2+(m+lj3t)2
 + (m -lf3r)Exr%[-vt(247jj;m +l2b23t12/3)] (m+lj3t)EXp[-vt(l2+?n2+ln43t+l232t2/3)] } 2

 } ~~~12+(M_Jot)2 j2 -m- - 3_ 2
 cosh lb-lbcos (hn13t3)b1 (46) X lb sinh lb j

 Here, again, there is a possibility of a large increase if mi/l is large.* At the
 instant when mi - l3t is zero, the only term in this which is not negligible
 assumes the form

 Exp (312 + W2) * 212 (47)
 simpler than (37), and capable of assuming a much greater value. A condi
 tion that (47) should be a maximum is

 v (12 + in2)2 I MP,

 or vm23 1j3; (48)
 and then it is approximately

 e-i32/2M4st2, or cibsj3vsF/2b464. (49)
 If (362/v = 1900 and nb has its lowest value, 7r, this is nearly 9500. Taking

 P3b2/,, = 1940, we have in round numbers 10000.

 % It is not evident that, as in the case of the first modification, there is no possibility of a great
 increase under any other circumstances.

 It. I. A. PROC., VOL. XXVII., SECT. A. (183
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 If we took the disturbance indicated by the first term alohe of 4 in (45),
 almost the same result would be obtained.

 The difference between these two solutions, and between their results as
 to stability, strengthens the view that boundary-conditions are uninmportant

 if, and only if, lb is large. It is not suggested that when instability actually
 occurs, the increase in a disturbance is as small as that obtained in the former
 solution, or as great as that in the latter. The boundary-conditions to which
 they refer are not those which occur in the experiment; lb is not large (in the
 latter solution, very small), so that the violation of boundary-conditions is
 important; and even the initial disturbance does not satisfy the realizable

 bounidary-coinditions.

This content downloaded from 
������������128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC������������� 

All use subject to https://about.jstor.org/terms



 o in--Stability oP instability of Motions of a Viscous Liquid. 95

 CHAPTER II.

 THE FUNDAMENTAL FREE DISTURBANCES OF A STREAM WHICH IS SHEARING
 UNIFORMLY.

 ART. 13. The Period-Equation for the Boundary-Conditions V2v = 0.

 In a passage quoted above,* Lord Rayleigh appears to suggest that possibly

 in the case of a stream of uniform vorticity there may not be free disturbances

 which involve the time in the usual exponential or trigononmetrical form, i.e.
 varying as ept, where p is a real or complex constant. I proceed to consider
 this question. Referring to Lord Kelvin's analysis given in Chapter 1., if in
 equation (20) of that Chapter, we write wi = p, it assumes the form

 d2S/df=l + n2 t (+p + i3y)/v}S, (1)
 where

 -(2/dy2 _12 _ n2) V2 S= (d2/y-2n) (2)
 The solutions of (1) are given by Lord Kelvin in the form of infinite selies;

 and the equation had previously been discussed by Stokest and others. The
 solution in fact is, if we replace 12 + n2 by A2,

 8S= (AV2 ? p + l/3y)b

 x {Ai3- $ -J- Y7, - - ] +B-r-*0 l v- (- ?- )- (3)
 where In is the function connected with the Bessel function J. by the relation

 h1(0) = i-~tn(i0o) = I $1 __-___ 04 --
 2"H1(n) { 2.(2n+ 2) 2. 4. (2n+ 2) (2n+4)

 We may also write (3) in the form

 S=A'#} t-yi --,Y; P)} + B'4 - y ) (5)
 where

 1T4 J76
 3.4 3. 4.6 .7 (6)
 Y3 +(

 +(Y) 2.3 2;3.5.6+(7

 * See Art. ?, p. 85.
 f It was in connexion with this equation that Stokes published his investigation of the asymptotic

 expansion of Bessel's functions; " On the Numerical Calculation of Definite Integrals and Infinite
 Series," Trans. Camb. Phil. Soc, ix., Part i., 1850 ; Math, and Phys. Paper ii, p. 329.

 E13*']
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 The solution of (2), as an equation determining V, is easily expressible by
 means of integrals, and is so expressed by Lord Kelvin. He does not,
 however, make any reference to the problem of determining p so as to
 satisfy assigned boundary-conditions.

 The most natural boundary-conditions to take would, of course, be that at
 each of the bounding-planes t, V) w should vanish; conditions which, as far
 as v is concerned, are equivalent to the vanishing of V and d V/dy. The
 analysis would obviously be much simplified, however, if two of the four
 conditions which V can satisfy should be the vanishing of S at each of the
 planes; and it will be chiefly this case that I shall consider. It is readily
 seen that we should have this case if the boundary-conditions were that
 v should vanish, and that the tangential forces on the bounding planes should
 be the same in the disturbed as in the steady motion.

 Denoting the bounding-planes by y = ? a, instead of y = 0, b, as in
 Part I., Chap. I., the equation determining the value of p evidently takes
 the form

 s [2 {lv (_ vX+ + aijflt] v [2 i1P (- X? p - ai r]

 - I- [2 $23 ( vA+p + ai) I [3 { (- %;P - ai)7] = 0. (8)

 As the form of this is unaltered by changing the sign of i, complex roots
 occur in pairs in the usual fashion.

 ART. 14. This Period Equction has an Infinite Number of Boots.

 In view of the suggestion of Lord Rayleigh,$ referred to above, it seeins
 desirable to prove, in the first place; that this equation in p has an infinite
 number of roots; it has, in fact, an infinite number whose real parts are
 negative. This may be shown by the aid of the approximate expressions for
 the I functions for large values of the parameter. If we suppose that
 (At + p)//13 has its real part negative, large compared with its imaginary
 part, and large compared with a, we may take the argument of

 -10 + a
 to be a small positive angle, and that of

 ( )2 + _
 Ij3

 *See Art. 3, p. 83.
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 0 un-Stability or Instability oy Motions of a Viscous Liquid. 97

 to be a small negative angle. Now, if the argument of x lies between the
 limits ? 7r, we have the equation

 Lk (X) - I(X)

 (2/ * i t{1(1- 2k)(1 +2k-) (t -2*7-)(3-2k)(1 +2k-)(3 +2k) (2/irx)i sin k7re?~1 -- } 8x + 8. 16. x2
 (9)

 in the sense that, provided s - k + 4 is positive, the error in terminating the
 series on the right after the sth ternm has a modulus less than that of the next
 term if the argumenit of x lies between the limits ? 7r/2, and less than a
 certain multiplet of it if the argument of x lies between n-/2 and 7r, or between

 - 7r/2 and - 7r. And, by writing in this equation x = ye% ri, and dividing across
 by sin k7r, we obtain the equation

 -k (Y) + I*(y) - i cot ky Lk(y) - Ik(y)}

 = (2/ry)Ae4 1 + (I - 2k)(1 + 2k) + (1 - 2)(3 - 2kc)( + 2k)(,3 + 2kc)

 (10)
 which holds in a sense obvious froma the preceding sentence, provided the
 arguluent of y lies between 0 and 2r. While, by writing in (9), x - ye+7i
 there results

 I-k (y) + Ik(Y) + i cot ky {I -k (Y) - Ik(Y)j

 (2/ tl;l (I - 2k) (1 + 2k) + (1 - 2k) (3 - 2k) (1 + 2k) (3 + 2k) +..

 (11)
 provided the argument of y lies between 0 and - a.

 Thus, if y is large, anid its argument lies between ? ir/Q2 it follows from (9)

 tlhat the terin involving Lk (y) - Ik(y), which occurs in the left-hand members
 of (10), (11), may be nleglected, so that within these limits for large values
 of y we have the approximate equations

 Ikk(y) - Ik(y) (2/wry) sin k/e7', (12)
 Iks(y) + Ik(y) (2/iry)2ey. (13)

 Accordingly, if AIk(x) + Btk(x) is to vanish for two large values of , whose

 arguments lie between ? 7r/2, the values must differ approximately by a multiple

 #"0n the Product Jm{x)J?{?)," Proc. Camb. Phil. Soc, x., Part III., equations (14), &c. ;
 " On Divergent Hypergeometric Series," Trans. Camb. Phil. Soc, xvii., Part III., Art. 3, especially
 foot-notes, pp. 179-180 ; and Art. 11. In the foot-note on p. 179, for " w ? y " read " ? {? - y) ".
 Some errata in Art. 11 are corrected in Vol. xix., Part I., p. 155.

 f The multiplier depends on the argument of x, but not on the modulus.
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 of wri; and titus, if we mnake the further supposition, that the quantities

 1 vx + ? ai)3}

 are sufficiently large, equation (8), which expresses that S as given by
 (3) should vanish for two different values of the parameter, takes the
 approximate form

 01'~~~~~~~~~~~~23
 2 1 p+ - 2 +1 ( l VA + vr.

 or

 2 ~sI(vA;;ai)} -4 PvX? aij#ri, (14)
 where r is any integer, positive, or negative.

 If r is sufficiently large, whatever be the values of 1, A, this equationl
 in p has one root such that the real part of pA2 + p, and a fortiori the
 real part of p, is negative. (When the equation is rationalized, care must
 be taken to distinguish between it and the equation which would be obtained
 by connecting the two terms on the left-hand side by a plus instead of
 by a miinus sign.) In fact, as we have already supposed that a is small
 compared with (vA2 + p)/1f3, the equation may be replaced by

 2 S 4-Yjai - r7r,
 . ,

 giving
 p . N(A2 + r2ir2/4a2), (15)

 a value which is wholly real and negative. The suppositions made in arriving

 at this approximate value of p, viz.: that (VA2 + p)/lp has its real part negative,
 large compared with its imaginary part, and large compared with a, and that

 1 VA2 + p . 3

 are sufficiently large, are accordingly justified, provided r is sufficiently
 large. Anid as r may be any integer if large enough, it thus appears that
 the approximate form of the period-equation has an infinity of roots.

 Moreover, from the value found for p, it appears that by taking r large
 enough, the accurate forim (8) of the period-equation nmay be represented as
 closely as we please by the approximiate form (14), so that the actual period
 equiation must have an infinity of roots.
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 ORtI-Stability or Islstability of Motions of (a Viscous Liquid. 99

 ART. 15. Each Fundamental Disturbance satisfying the Boundary-Conditions
 VWv = 0 is expotettially stable.

 It may next be shown that all the values of p which satisfy the period
 equation (8) have a real negative part. This follows easily by a method
 which has been used by Lord Rayleigh in the discussion of similar questions
 when viscosity is ignored. The period-equation has been obtained by making
 the function S, which is a solution of equation (1), vanish for the two values

 y = ? a. In equation (1), then, write S = P + iQ, _p = 0 + i4, where P, Q, 0, 1
 are all real; separating the real and imaginary parts we have

 vd12P/dy2 = (iAV + 0)P (P- + 1fy)Q, (16)
 vdtQIdyt = (VX2 + 0) Q + + 13y)P. (17)

 Multiplying the former by P, the latter by Q, and adding, we obtain

 V(Pd2P/dy2 + Qd2,Q/dy2) = (V2 + 0) (P2 + Q9) (18)

 Integrating with respect to y from y = - a to y = + a, since S, and therefore
 both P and Q, vanish at the limits, we obtain

 +a +a

 - v J{(dP/dy)2 +(dQ/dy)2}dy=J (VX2 + 0) (P2 + Q')dy (19)
 ab -a

 The right-hand member nmust therefore be negative, so that not only must p
 lhave a negative real part, but that real part must be numerically greater
 than VA2.

 If we multiply (17) by P, (16) by Q, and subtract, we obtain

 v(Pd2Q/dy2 - Qd2P/dy2) = (d; + lj3y) (P2 + Q2). (20)

 Integrating with respect to y from y - a to y = + a, since P and Q both
 vanish at the limits, we obtain

 0 =f| (# + jo3y) (P2 + Q2)dy, (21)
 -a

 so that p + ly must change sign as y passes through some value between
 a and + a. Accordingly the value of q must lie between the limits

 ? l13a.
 If the boundary-conditions assigned were that dS/dy should vanish at the

 bounding-planes, it may be readily seen that all the conclusions drawn above
 as to the existence of, and the nature of, the roots of the period-equation still
 bold.
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 While, if the boundary-conditions were that S should vanish at one
 bounding-plane, and dS/dy at the other, it may be seen that the period
 equation has an infinity of roots, and that all the valuies of p have negative
 real parts numerically greater than rMI; the conclusion that the imaginary
 part of p lies between the limits ? l4ai would not, however, hold. And in
 the right-hand member of (14), rir would be replaced by (2r + 1)tr/2, as we
 should now require, approximately, Aex + Becz to vanish for one value of the

 parameter, and Aec - B&-$ for another, so that the two values of the paramneter
 would differ approximately by (2? + 1)7ri/2.

 It thus appears that the fundamental modes of free disturbance possess
 stability of the ordinary simple exponential character, when the boundary
 conditions include the vanishing of V2v.

 ART. 16. For all values of 1, n, there are an infinite number of Aperiodic
 Disturbances.

 Considering real values of p for which vAX + p is negative, if we take that
 value of 3

 VX2 + I +

 whose argument is zero when y is zero, then when y is a, its argument must

 lie between the limits 0 and 37/4 ;* and when y is - a, its argument must lie
 between 0 and - 37r/4. Now, from (9), (10), there is one linear function of
 Ik (x) and ik (x), viz., a multiple of LIt (x) - lIk (x), which, for large values of x

 whose argument lies between - 37r/2 and + 37r/2, is approximately a9ex;
 and there is another function, viz., a multiple of I* (x) + Ikt(x), which, when
 the argument lies between 0 and 7r, assumes the approximate form

 x-A (eX + i cos kir . e-),

 bLit which, when the argument lies between 0 and - nr, is approximately

 X-& (eX- i cos kn . e).
 If, then, we write

 2 j/10 )vX"r \3+ 2 jl/ VA2 +p \) 243/ v XLt = u -1 -t) ji u a7, (22)
 the period equation is, approximately,

 eO' + i/2. e-u8 e82 - i/2. eU2
 e-ul * eU

 * This is true for complex values also, since, as proved in Art. 15, the imaginary part of V\2 + p
 lies between the limits ? l$ai.
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 ORu-Stability or Jnstability of Motions of a Viscous Liquid. 101

 or, as it may be written,
 - i(efl- h2 -er) + e"c"2 * 0. (23)

 Substituting
 ul=P+iQ, U2-=P-iQ, (24)

 this becomes
 2 sin2Q e-2P* 0. (25)

 Moreover, the form of (8) shows that when P is real, the accurate value of
 the left-hand member of (23) is a real quantity; and (10), (11) show that
 the errors in the expressions eul, e-ul have moduli less than those of Aur' CUI,
 Bu'le-lCi, respectively; and those in euz, e-U2 have moduli less than those of
 Au,-leu2, Bu,' rul, respectively, where A, B are certain numbers. Thus the
 error in the left-hand member of (25) is less than

 2(1+ AU-1) (1+ BU-1) -1) + er2t{(1 + BU-')2-_ 1 (26)

 where U denotes the modulus of ul or U,2. And if

 1,(3 ( vX2 +

 is large enough, P, U can be made as great as ever we please. From this
 it is evident that, if

 3 d v\2 + p\3
 lj3~

 is sufficiently great, on substituting a real value of p in the accurate expression
 for the left-hand member of (25), there is obtained a real magnitude which

 differs from 2 sin 2Q by as little as ever we please. Consequently, for all
 values of 1, A, there are an infinite number of real negative values of p, given

 as nearly as we please by the equation 2Q = rir, where r is a large enough
 integer.

 ART. 17. For Waves of Sufficient Length in the direction of flow, all Disturbances
 are Aperiodic, the values of p being given approximately by equation
 (15).

 The period-equation may be written in the form

 1 + 2ap' + 2a'(21p'2 + f3212a2) 4ap'(9p'2 + 211a1)
 3 + 315pV2 2835v3

 2aN(429p" + 78p'2f211a2 + j43a4 4a'0p'(117p'4 + 30p'(221?al + f3'l'a4) +
 + 1216215$ 18243225v5

 (27)

 where p' _ p + Vp2, and accordingly if Pfa3/v is small enough, it is evident
 I. It A. PROC., VOL. XXVII., SECT. A. [14]
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 that no value of (p + vX2)a2'/v is very small; hence, if la is large enough,
 all the values of

 {(p + vX2)a2/v ) 3(3la3/v)2, or (p + vX2)3/(vl2f2)

 can be as large as we please, and hence

 2 lp 1 _1BPp + a)

 so large that the approximate forms of the I functions for large values of the
 parameter may be applied as accurately as we please, and it thus appears
 evident that, under such circumstances, all the values of p are given
 approximately by (15).

 ART. 18. A Rigorous Proof of last Proposition. Number of Boots in a Circular
 Contour of large Radius having Origin as Centre.

 A rigorous proof of the last statement presents some difficulties, however.
 Let p be any quantity, in general complex, not restricted to a value
 which satisfies the period-equation, and denote p + WA2 by p'; then, if la is
 sufficiently small

 U1- U2= 3 P(ij:( + aij - 3-(i4' ai) 3V. 2ai(-p'/v)t, (27A)

 in the sense that the dference between the left- and the right-hand members
 can be made less than any assigned quantity by taking la small enough; for
 the difference may be made less than a certain multiple of /3la2/(vp')& as
 follows from the binomial theorem. If, under these circumstances, with the
 origin as centre, there is described a circle for which

 mod 2a (- p'v)i = (r + 4)7r, (28)
 r being zero, or any integer, it may be proved that the number of roots of the
 period-equation within this contour is r. (The circle might equally well be
 taken so that the right-hand member of (28) is any other quantity lying
 between 7r and (r + 1)7r, and finitely different from both.) Let the equation
 be written in the form

 vlbv2*[ {I-i (vl- IAj(u1)} I- (u2) + J1j( u2)} - { I-A(t2) -Ij(U2)} {I 4(fu)

 + Oi(u.)}]= (29)
 A comparison with (8) shows that in this form the proper equation has been,

 for convenience, multiplied by ul6uA.
 With a view to examine the increase of argument of the left-hand member

 as p' describes the circuinference of the circle, we first trace the changes iii
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 ORRi-Stability or Instability of Motions of a Viscous Liquid. 103

 the approximate expression for it in the different portions of the region
 traversed.

 In fig. 1, 0 denoting the origin, let A, A' on the axis of imaginary
 quantities denote the points f3lai, - lai; through A draw AL parallel

 /N

 L A
 Ll

 FIG. 1.

 to the axis of real quantities and in the negative direction, and draw AM, AN
 making angles of 27r/3 with AL; also draw A'L', A'M', A'N parallel to
 AL, AM, AN. Suppose p' starts from a point on the line AL; let the
 argument of each power of u1 be zero in that position; and let the argument
 of each power of ut2 be zero when p' moves down to A'L'. When p' lies
 between AL, A'L', since the ratio of its value, given by (28), to 3la is
 large, the argument of i, is a small positive quantity, and that of i2 a
 small negative quantity. Thus, in this region, from equations (9), (10), (11)
 we have

 U11(LI(u2) - Ij(u1)) (2/7r)isin7/3.e-"l, (30)
 u11(Lju(u) + IQ(u)) (2/7r) (,el' + i/2. e7uM), (31)
 2](LA('u2) - 4(u2)) (2/7r)1sin r/3. de2, (32
 t21 (I (u,2) + Ij(u,)) (2/2r)1(U2 - i/2 . e-u2); (33)

 so that, omitting a constant factor, the left-hand member of (29) has the
 approximate form

 C"i (e0l1 - i2?. e-U2) - eC42 (e I + i/2. c"'), (34)
 or,

 02tl - e"1-2" - iCUCU -U2. (35)
 When p' crosses to the lower side of A'L', since the argument of u? then

 [14*]
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 becomes positive also, the factor eU12 - i/2 . Ce"2 of the right-hand menmber of

 (33) and of the first term of (34) is to be replaced by eu2 + i/2. J"2, so that
 instead of (35), we have the simiipler expression

 eU2-"I - enl-n2. (36)

 This expression remains valid, as p' travels round the circle until it passes
 into the region between AM, A'M'; here the argument of i2 exceeds r; and
 it may be seen that the factor e-r2 in (32) andi in (36) is now replaced* by
 Ce"2 + 'eU2, and that (36) now becomes

 eUr2-Ul - cUr U2 - jeUI+U?42 (37)

 When p' passes out of this region, the factor e-"' for a similar reason has to
 be replaced by e76' ie'l, and, accordingly, we now recover the simpler
 expression (36). This holds good again until p' passes into the space between
 the lines AN, A'N'; in so doing, the argument of t, is increased through 2wX,
 and thus the factor (02 is changed into e"2 + ie-C2, and (35) into

 &t42-U) e"4i-2 + ZeC-lU2. (38)

 When p' crosses A'N', the factor eul is changed into eu, + je-ul from a similar
 cause, and we thus again recover the simple expression (36), which remains
 valid until p' reaches its starting-point on the line AL.

 The final value of (36) is, however, not the same as the initial, but differs
 from it by a change of sign; for the initial and final values of it1, and also
 those of it2, are equal in magnitude and opposite in sign.

 Again, under the circumstances stated, the simple expression (36) is in
 reality valid all round the contour; for the additional term in (35), (37), or
 (38), as the case may be, is small compared with the larger of the others.
 (It may be seen, however, that if the circumstances were such that the
 circular contour cut the productions of the lines AN, A'M' between the
 lines AL, A'L', it would not be legitimate in that region to omit the final
 term of (35); as will be shown below,t for sufficiently short waves there are

 * The law of discontinuity in the form of the approximate expressions for the Bessel functions
 was conveniently stated by Stoke3 (" On the Discontinuity of the Arbitrary Constants that appear
 as Multipliers of Semi*Convergent Series" ; Acta Mathematica, xxvi*, 1902; Collected Papers, v.,
 p. 285). The substance of his statement is that of the two expressions?(1) eu multiplied by a
 divergent series whose first term is unity, and (2) e~u multiplied by a similar series?when the
 argument of u increases through an even multiple of v, (1) must be increased by 2icosrir times (2) ;.
 and when through an odd multiple, (2) must be increased by 2i cosnr times (1), in order that they
 may respectively continue to represent the same linear function of x^Ir{x) and %*I,r(%)* This
 may be seen, in fact, from equations (9), (10).

 t Art? 21, p* 111.
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 GRi-Stability or Instability of Motions of a Viscous Liquid. 105

 complex roots for which p' lies near one or other of the productions
 mentioned.)

 We have then to trace the change of argument of cr2-"I - eUC"u2 as pf
 describes this circular contour. It will be more convenient to suppose p'
 to start from, and stop at, the point of the circle midway between AL, A'L'.
 From (27A), (28) it is seen that, as p' describes the contour, the real part
 of u2 - u1 starts from an initial value zero, is conitinually positive, and ends
 with the value zero, while the imaginary part continually increases from

 - (2r + 1) 7r/2 to + (2r + 1) 7r/2.

 Thus, of the vectors &rU2"1', eUl- 2, the former is throughout the greater,
 except that their initial values are equal ;* the former revolves in the positive
 direction, and the latter in the negative direction, each through an angle
 (2r + 1) 7r; owing to the former being throughout the greater, the vector
 er""l - eU1U2, which is their difference, follows the direction of the former,
 oscillating about it, but never rotating round it,t making, indeed, always
 an acute angle with it. As the initial direction of this difference is the
 same as that of eU2rt&, and as the same is true of the final directions, the
 total angle through which the vector difference rotates is the same as
 that through which e12-ui rotates, i.e. a positive angle (2r + 1) 7r. Thus,
 while p' describes the circle, the arguluent of the left-hand member of (29)
 increases by (2r + 1) r. But the points A, A' are zeroes of the left-hand

 member of (29), extraneous to the proper period-equation; the increase in
 the argument of the extra factor (nfyU2)*, or in (-p' + 1(3ai)i(-p' - lj3ai)i, is 7r.
 Subtracting this we obtain an increase of 2rw as that dependinag on the number
 of zeroes we wish to find; hence their number is r. But all the zeroes have been

 proved to lie between the lines AL, A'L'. By giving r the values 0, 1, 2, etc.,
 in succession, we see that there is no zero to the right of the arc of the first
 circle r = 0, and that there is one and only one zero in each of the quadrilateral
 spaces bounded by two consecutive circles and the parallel lines. And it
 has been already shown that in each such space there is one real zero given
 approximately by u1 - -' r7r; hence, under the circumstances referred to at
 the beginning of the Art., this approximate equation gives all the zeroes.

 And the same argument shows that whatever the value of la, if r is large
 enough, the number of zeroes lying inside the circle referred to in (28) is r.

 * But opposite, and the same statements hold, of course, for their final values.
 t It is importanit to note that in the first and last quadrants of the circular contour the real part

 of U2 - un changes more rapidly (and in the first and last portions exceedingly more rapidly) than the
 imaginary part, so that when the vectors, which are represented only approximately by e"2ui and
 Oul-'2 are in the same direction, even for the first and the last times, the former is very much
 the greater.
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 ART. 19. The -Double Roots of the Period-Equation.

 As for waves of sufficient length in the direction of flow, all the values of

 p are real, it follows that, if this wave-length be supposed at first large and
 then to be gradually diminished, a value of p can become complex only by
 the wave-length passing through a value such that two real values of p
 become coincident.

 Now, if we write

 -^) 'at- --= ) , ai- V = Y2, (39J
 the period-equation in the notation of equations (6), (7) assumes the form

 +(Y,) +(Y2) -+(Y2) 4(YI) = O. (40)
 If p has the real negative value which makes

 Y13 -Y? = a real negative quantity,*

 the functions q(Y11), O(Y) are identical; and the same is true of

 Y1-1'4 ( Y1), Y;714( Y2), and also of 4,r( Y1), 4'( Y2);

 accordingly, if this value of p just alluded to makes 4,(Y1), and therefore also

 (Y42) vanish, this value of p is a double root of the period-equation. (If such
 a value of p, however, makes # (FY1), 4 (IY2) vanish instead, it is only a single
 root; for, to be a double root, it would require to make either +'( Y) or +(Y)

 vanish; but no root of Jn(x) = 0 can satisfy either J'"(x) = 0 or J(x) = 0.)
 Thus, there are double roots for certain values of 1, p and 1 being given by
 the equations

 V,\2+_p- 3 lf3a, Jjj28 i3 aJ = ?3 (41)
 It may be proved, also, that these equations give the only double roots.

 The equation
 dldp I +( YI) (Y2) - 4 (Y2) (Y)) = 0, (42)

 which a double root must satisfy, when combined with (40), gives

 O( 2 Y Y2) (YI>p(Y2)} = p(Y2)){q2(Y)4'(Y1) '(Y
 (43)

 But, from the linear differential equation satisfied by q, 4, we have, for all
 values of the parameter,

 40 ( Y) s'( Y) - O'( Y)4 (Y) = constant;
 so that (43) is equivalent to

 {(Y,))= (4(Y2))2; (44)
 * For any such value p' is represented by the point C (fig. 2, p. 108).
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 ORR-Stability or Instability of Motions of a Viscous Liquid. 107

 and thus the equations to be satisfied in case of a double root are either

 O(Yi)= O(Y2), and 4(Y1) = 4(Y2), (45)
 or else

 o(YI)= - q(Y2), and 4(Y,) = - 4(Y2). (46)
 The former alternative is equivalent to the statement that q(Y2), 4(Y1) should
 both be purely real; the latter, that they should both be purely imaginary.
 In either case, there would exist some equation of the type

 o(YI) + C0(Y1) 0 O, (47)
 in which C is some real quantity, except either p or 4 vanishes (for both
 YJ and Y,). Of the two exceptional cases, that in which

 4(Y1) = 4(Y2) = 0, 4)(Y) =- qY), (48)
 is the one already referred to; for, as a Bessel function can vanish only for
 real values of the argument, the former pair of these equations requires
 Y13 and Y23 to be real, negative, and therefore, by (39), equal, quantities.
 The second exceptional case, i.e.

 0 (YI) = 0 (Y2) = 0, 4(Y1) - 4(Y2) (49)
 is impossible, for the former pair of equations again requires that Y15 and Y23

 should be real negative equal quantities. Then, since Y1 cannot be equal to Y2,
 the second pair would imply that 4 (Y1) and 4, ( Y2) should both vanish; this
 would recover the former exceptional case, though it is impossible that ), 4
 should vanish together. Thus we are driven back to equation (47). But this
 cannot be satisfied by a complex value of YP. We may rest this last statement

 on the general theorem that, if n lies between + 1, any expression of the form

 I4 (x) + CIn,(j),

 where C is a real quiantity, and every power of x has its principal value, can
 vanish for, at most, only one value of x, and this a real positive one.t Or it
 may be established independently as follows: Denote by X (Y) the left-hand
 member of (47) with Y1 replaced by Y;+ and suppose, if possible, it vanishes
 for Y, and Y2, complementary complex values; we evidently have

 d2x (a Yi)/da' aY13X (a Y,),

 d2X (aY2)/da2 a Y23X (a Y2);
 from which we deduce

 X(a Y)d2 X(a Y2)/da2 - X (a Y2)dtX (a Y,)/da 2 = ( -Y2- Y,') aX (a Y,) X (a Y1);

 $ Of order greater than - 1, as here.
 f Unless n = i, in which case it may be a negative one.
 + By Y is denoted (18/4 (- vA2 -p - lSyi)/l, as in (6).
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 on multiplying by da, and integrating between the limits 0 and 1, we obtain

 x(YDx'(YO-x(Y4'(Y )(Y3 3)LaX (aYl) X(a Y2) da; (9A X ( YI) X'( Y2) - X ( Y2) X 1) = ( y3 - y13Ja ( l)X 2 a (49 A)

 by supposition the left-hanid member is zero, while the integranld on the
 right, being the product of conjugate complex factors, is essentially positive;
 accordingly Y,3 and Y2F must be equal; and, on substituting in succession
 YI, I, in (47), we evidently return to the special ekceptional cases again.

 ART. 20. The March of the Boots, as the Wave-Lenyth, in Direction of Plouw
 decreases. A finite Number of Disturbances become Oscillatory.

 In fig. 2, let 0 be the origin, A, A' the points j3lai, - f3lai, and C the point

 -31aa//3 .
 As proved in Art. 19, when a double root occurs, the value of p' is represented
 by the point C.

 I desire to make use of some expression for the error in terminating, after
 an assigned term, the divergent series which occur in connexion with the
 Bessel functions; a partial statement as to this error has been made in

 A

 C 0

 FIG. 2.

 connexion with equation (9); it may now be completed by stating that,
 in that equation, if the argument of x is ? (7r - y), y being acute, one
 form of the multiplier there alluded to is

 cosee (0 + y) (see O)&+k+8,

 where 0 is any acute angle such that 0 + y is also acute; in the case in hand
 we may conveniently take 0 to be zero, and use the theorem that the error is

 less than the next term multiplied by cosec y. And as when k = 1, -' - k + s
 is positive, even when s is zero, we may use this form of remainder after any
 number (even zero) of terms. When p' lies between C and 0, the argument

 of u1 lies between 7r/2 and 37r/4, and that of u, between -7r/2 and - 37r/4, so
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 ORR-Stability or Instability of Motions of a Viscous Liquid. 109

 that, when the period-equation is written in the form (23), we may take in
 the notation of (26), A = 5/72, B = 5 /2/72. We shall not be using the

 approximations in any case in which the value of l I or I t2 I at C is less than
 3ir/4; consequently, at any point between C and 0, the value of I u I exceeds

 37r/4 or 1 8989,
 and thus the fractional error in eci or e'2 is less than 1/27, and that in e-ui or

 Ca2 less than V/2/27. Thus, if the period-equation be brought to the form

 i(e21i - e2t"2) + 1 0 (50)
 by dividing across by the factor which will make the third term rigorously
 accurate, the fractionial error in e2"' or el"z is less than

 (1+ I1)1 - _/72)

 and therefore less than 1/10. Thus the correct left-hand member lies between

 e2P(2 sin 2Q ? 1/5) + 1.

 Let us suppose that at C, it1 = 2 = n7rit - 7ri/4, where n is unity, or any
 higher integer. At C the left-hand member lies between the limits

 2 sin7r/2 ? 1/5 + 1,

 and is therefore positive. As p' travels from C towards 0, the factor
 2 sin 2Q ? 1/5 remains positive, certainly until 2Q decreases by 7r/3, at which
 stage 2P has decreased algebraically by more than 7r/3, (for it may easily
 be seen by differentiating (- p' + ai)2 that its real part decreases algebraically

 as p' moves towards 0 at a rate which, measured absolutely, is greater
 than the rate of decrease of its imaginary part), and henice e2P<e-rI3 <e';
 everywhere between this point and 0, e2P(2 sin 2Q ? 1/5) is numerically
 less than (2k) 61, and thus the left-hand member is positive. Under these
 circumstances, then, there is no root of the period-equation for which p' lies
 between C and 0.

 Let us next suppose that, at C, u1 = iQ = n7wi - 7ri/4, n being unity or any
 higher integer. At C the left-hand member of (50) lies between the linmits

 - 2 sin 7r/2 ? 1/5 + 1,

 and is therefore negative. Again, at 0 the left-hand member lies between
 the limits

 e2P(2 sin 2Q ? 1/5) + 1,

 where P is negative and numerically greater than (1-9)/N/2, this being its
 value in the case n = I; from this it is clear that the left-hand member is
 essentially positive. Thus, under these circumstances, there must be some
 odd number of roots for which p' lies between C and 0.
 Tt,I.A. PROC., VOL. XXVII.1 SECT. A. [15]
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 Now, the roots of the equations JA(x) = 0, J.(x) = 0, occur alternately;
 those of the former are approximately x = rr + 77r/12, and those of the
 latter x = rr + 117r/12, where r is zero, or any positive integer; and, as has
 been proved in Art. 19, whenever the value of p' at C is such that the
 corresponding value of u1i(or u2i) is a zero of J(x), this value of p' is
 a double root of the period-equation. Hence we can trace the effect of
 diminishing the wave-length in the direction of flow on the nature of the
 roots of the period-equation. Starting with a very small valuie of la, if we
 gradually increase it until

 31 P-- aj}) or (32103a/(27V/3. v)) (51)

 becomes equal in value to the lowest zero of JI(x), the smallest value of
 p' is represented by the point C; if we further increase 1, this value passes
 between C and 0, and so remains until the expression (51) becomes equal

 to the lowest zero of J&(x); at this stage two roots of the period-equation
 coincide at C. On increasing the la still further, these two roots become
 complex, and there is now no root between C and 0 until the expression (51)
 becomes equal to the next zero of JL(x), at which stage a root passes C, to
 return to it, and, coalescing with another, become a double one when (51)
 becomes equal to the second zero of JO(x); aftet this these two become
 complex and different; and so on.

 That a pair of roots do, indeed, become imaginary as la increases through
 the value which makes them coincident, may be seen as follows:-It has been
 shown that when lt is sufficiently small, there is one, and only one, root
 between the real values for which

 i1 - U2 = (2r ? 1)7ri/2; (52)
 now, the roots are continuous functions of a, i.e. dp'/da is finite (except when
 p' is a double root); hence, the only manner in which this distribution of
 roots could be altered would be by a root passing through a point given
 by (52). But, by making use of the above expressions for the limits of error,
 it is easy to prove that this is impossible; thus, two real roots do disappear
 one from the left and one from the right of C-while the value of i, at C
 changes from (r - ) 7ri to (r + 4 n-i. But, from the statement in the final
 sentence of Art. 18, p. 105, these roots continue to exist, and must therefore
 be complex.

 Thus, the greatest wave-length in the direction of flow for which a
 disturbance can be oscillatory is 27r/l, where

 (32l31a3/(2713v&v) = the lowest zero of Jf(x) 2-87. (53)
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 ORR-Stability or Instability of Motions of a Viscous Liquid. 111

 ART. 21. The Approximate Values of the Complex Boots.

 If the point p' lies to the right of the line A'C (fig. 2), the argument of

 it2 lies between - 7r/2 and - 3r/4, so that if it2 is large enough, e"2 is small
 compared with cU2; thus, the period-equation takes the approximate form

 - jet'l + e-i ., (54)
 giving

 (r7r + 37r/4)i, (55)
 where r is zero or any positive integer. This assigns to p' a position P such
 that

 j (PB/v)b/1j3 (r7r + 37r/4) i, (56)
 giving

 173 4r+ 3
 p=p-2A' 2v'- ' 4 V "

 pi{I3lat iAV3 .4r+ 3 I(l12327} (57) + i Al(3a -3 (2. 4 7r) v,()l,57
 r being any positive integer (including zero), provided r is not so great as. to
 make the coefficlent of i negative; (in that case, we return to the real roots).

 A more correct, though still only approximate, equation is that which
 makes the numerical value of u1 satisfy

 JilXl + J-iulOl = . (58)
 Equation (58), or its approximate form (56), becomes less and less accurate

 if the position it assigns for p' is near C; as we have seen, p' coincides with C
 for values of ut1 satisfying the equation

 J4(u1i) = 0, or u1 (rr + 11/12)i;
 the r + 3/4 of (55) being thus replaced by r + 11/12.

 It is seen that these values of p' all lie close to the line CA; but it may
 be seen that the correct values cannot actually lie on the line except when
 at C. And as the roots we have so found, taken along with their images in
 the axis of real quantities, just equal in number those which have been proved
 to be complex, all the roots have been accounted for and approximately
 ascertained.

 ART. 22. In the most Persistent Disturbance, v is a Function of y only.

 When the wave-lengths in the directions of x and z are increased
 indefinitely, i.e., when the velocity-component v is made a function of
 y only, A and I are both zero, and the values of p are given by p = vr2r2/4a2,
 r being any integer, as may be seen from (15), or, by returning to (1), and

 [15*]
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 the lowest numerical value is that for whiclh r is unity. For anly finiite
 value of 1, the value of the real part of p', or p + V12 + vn2, and therefore,
 a fortiori, that of p, is numerically greater than in this case. This may be
 proved as follows.

 Considering, firstly, the real values of _p, if we write, as in Art. 15,
 S = P + iQ, and integrate equation (20) fromi - a to y, we obtain

 { fPdQldy - QdP/dy} = f y (P2 + Q2) dy. (59)

 Since P' + Q` is not changed by changing the sign of y, the right-hand
 member is essentially of opposite sign to 1 between ? a, except that it is
 zero at ? a; consequently so is the left-hand menmber. Hence we may
 infer that between every two real zeros of P, provided y ? a be not one
 of them, there lies one zero of Q, and between every two of Q, with the
 same exception, there lies one of P. From the forms assumed by (16), (17),
 when p is real, evidently of the two functions P, Q one is odd, the other
 even; we will choose P even, Q odd. Then Q vanishes when y is zero;
 it sbems to be the case that for given values of 1, n, in the disturbance
 which has the smallest numerical value of p, with this exception, neither
 P nor Q can vanish for any other values than ? a; if, however, this be
 not the case, we have just proved that as y increases from zero it will reach
 a zero of P before another of Q4; and thus in any event a zero of P not
 later than another of Q. When y is zero it results from (59) that if P be
 taken positive as it may, dQldy is of sign opposite to that of 1, and thus as
 y increases from zero, Q also has its sign opposite to that of 1. Consequently
 in the equation which (16) now becomes, viz.:

 vd2P/dy2 = p'P _ jlyQ, (60)
 the first term on the right is negative, and the second positive. Thus the
 variation of P, u*ntil it becomes zero, is analogous to that of the displacement

 of a particle v subject to a -orce to a fixed point, which force is less than
 the displacement multiplied by - p'; and the particle starts from rest. The
 time which elapses until the particle reaches the centre is greater than

 Therefore, in the problem which is the subject of discussion, the value
 of y for which P first vanishes-a valuie which, as we have seen, cannot
 exceed a-is greater than

 2 (zpj), i.e., p'> v7r2/4a2

 Thus the result is established for real values of P'.
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 ORR-Stability or Instability of Motions of a Viscous Liquid. 113

 I have not succeeded in obtaining a rigorous proof for complex values
 of p. Whenever such roots occur, the approximate value, however, of the
 real part of the first complex value of p', as given by (57), is much greater
 than rnr2/4a2. In fact, if a be regarded as fixed, and I is increased from
 zero, when the first root of the period-equation reaches C, u1 being then
 the lowest root of the equation

 J-P[32j1a3/(27I/3 v))i = 0)

 (which is a little greater than 77r/12), the numerical value of p' is slightly
 greater than (147/128) (vir2/4a2). No complex root occurs, however, until
 I is further increased to such a value that

 J I 32f31a3/(27/3v)Ji = 0,

 as the lowest value for which J1(x) vanishes slightly exceeds 117r/12, the cor
 responding value of p' is a little greater than (363/128)(v7r2/4a2). And, in the

 approximate formula (57) for the complex roots, 1, and therefore also v120lj,
 has a larger value than in this critical case, while the coefficient of (pl2j32)i in
 the real portion is decreased in the ratio (9/11)1; the approximate value of
 the real part of p' is thus numerically greater than

 363 (9 v7r2
 128 kii \ a2

 It does not seem possible that this approximate value could be so far
 wrong that the actual value should be so small as v7r2/4a2.

 For small values of la a further approximation to the rt'h root of the period

 equation is given by

 (-p'aev)- - (r - 86) 1j2 (61)
 It thus seems probable that, as la is gradually increased from zero, the

 lowest value of -p' continually increases, and the other values of -p' (but not
 necessarily those of - p) continually decrease until they become complex.

 ART. 23. Equations for resolving anl Arbitrary Disturbance into the
 Fundamental ones: Inability to use them.

 The problem of resolving any arbitrary disturbance (subject to the
 boundary-conditions VWv = 0) evidently reduces to that of expressing an
 arbitrary function of y which vanishes when y = ? a, in terms of the
 functions S which correspond to the free modes of disturbance already
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 investigated, having the values of 1, A assigned. If S8, 82, be functionls corre

 sponding to two different possible values pi, _p of p, fronm the equations

 ,d281/dy2 = (vIA2 + pi + ily) S,

 vd'%2/dy2 = (VA2 + P2 + iljy) 82,
 there results

 v(82d282/dy2 - 82d28l/dy2) = (pz P) 8182,

 and by integration between the limits ? a,

 ra ~~~~~~~~~~~a 8182d vS8d8,/dy _ 82d1/ a (P2 -pi) SAdy - 2d8j1dY (62) -a ~~~~~~~~~-a
 If ?2 and p1 are different values for which S1, 8, vanish at the limits, this

 gives

 P S8S2dy = 0. (63)

 If) in the formula (62), we write P2 = pl + ap1, divide by ap,, and then
 suppose Bpi to diminish indefinitely, we obtain

 Ca ~d281 d8I MIS a
 i|a 8d2dy = ydp dy dpi -a

 |jdy dSl (64)
 since S, vanishes at both limits.

 Thus, if we assume the possibility of expanding an arbitrary function, f(y),
 in a series of the form

 Y.XArSr(Y),

 the coefficients are from (63), (64) determined by equations of the formn

 - vAr |d d8r -a= y f _ )Sr(Y)dy. (65)
 Should the period-equation have a double root p, in which case that

 portion of the complete disturbance whieb involves ePt takes the form

 ASePt + B (ePdS/dp + tSePt),

 the expansion of f(y), the value of 8 at the time t = 0, has to include a term
 BdS/dp as well as AS, and '(65) fails to determine A, B. The investigation
 necessary to find their values is somewhat longer, and it appears unnecessary
 to give it.

 I have not succeeded in applying these formule to any initial disturbance
 of the simplest type, such as that discussed by Lord Kelvin. Towards so
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 4oing, the evaluation, accurate or approximate, of the coefficienits A by means

 tof (65) would be only one step. Were this accomplished, we would have

 S = E ArSr(y)errt, (65A)
 and V would have to be found from this, by the aid of (2), and found in a
 form suitable for arithmetical comparisons.

 It may be noted that although, from the results of Chap. I., above, and

 those of Part I., there is good reason to suppose that, for a suitably chosen
 iitial disturbance, V may increase very much, this is not the case with S.
 On the contrary, it readily follows from (2) of Chap I. that the average
 value of S2 throughout the liquid diminishes continuously and indefinitely;
 .a similar contrast between decreasing S and increasing V may be noted for
 the disturbances discussed in Chap. I., Arts. 2 and 10-12.

 ART. 24. The Case of Boundary-Conditions dS/dy = 0.

 If the assigned boundary-conditions are that dS/dy should vanish at each
 of the boundary-planes, the period-equation is obtained by making, in the
 notation of equations (5), (6), (7),

 A4'"(Y) + B'#'(Y)
 vanish at the boundaries; but

 (Y) = 3- rII(- 2) Y I Q 2 y3

 2@'(Y) - 3 (2 ) 2YI (Y2)
 so that the equation is similar to (8), except that the I functions are of
 order ? .

 For large values of p' whose real part is negative, the approximate form of
 this equation is

 e,1_U~2 - eU2'-1 - ieUl"U2 0. (66)
 Obviously it may be proved, as in Art. 16, that for all values of 1, n, there

 are an infinite niumber of aperiodic disturbances, the values of p being given
 approximately by (14), (15) again.

 Evidently, too, if la is small enough, in (15) r may be taken to be any
 integer, even unity.

 But an investigation almost identical with that of Art. 18 proves that, for
 all integral values of r (including zero), if la be small enough, and for all
 values of la, if r be large enough, the number of roots inside the circular
 contour for which

 mod 2a (-p'/v) = (r + w)7r

 is r + I, one mtore than with the boundary-conditions S = 0. This difference in
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 number is due to the fact that (66) has to be multiplied, instead of divided
 as is the case with (23), by

 (- p' + lf3ai)t(- p' - l,3ai)t,

 in order that it may represent, for large values of p', the true period-equation.

 Accordingly, when la is very small, the period-equation has one root not
 given by (15). This root gives a value to p' which is itself very small and
 diminishes indefinitely with la. In fact, if la is zero, one value of p' is zero;
 this may be seen by noting that when la is zero, Y1 = Y2, in the notation of
 (39); p' will now be zero if Y1 = Y2 = 0; and it is evident that these values
 satisfy the period-equation, after its division by Y1 - Y2, or an equivalent
 differentiation, which is a necessary preliminary. If, returning to (1), in it
 we replace I by zero, we do indeed obtain a root, p' = zero, corresponding to a
 disturbance in which S is constant, in time and in space.

 Thus, if la be small enough, here again all the disturbances are aperiodic,
 and all the roots are accounted for by (15), with the exception of this one,
 which we may regard as also included in (15) on making.r zero.

 It is readily seen that a value of p' occurs at C (fig. 2, p. 108), wJinever at
 this point

 I-i(u) 0, i.e. t (rv + 5v/12)i,
 or Is (u) = 0, i.e. it (r7r + 13w/12)i,
 r being zero or any positive integer. The former set are double roots; and it
 may be proved much as in Art. 19 that these are the only double roots.

 We maay trace, as in Art. 20, the effect of diminishing the wave-length in
 the direction of flow on the nature of the roots. When la is exceedingly
 small, one value of p' is close to 0 (fig. 2), and all the others to the left of C;
 as I is gradually increased, all the roots move towards C until the expression
 (51) becomes equal to the lowest zero of J (x); at this stage two values of p'
 coincide at C. On increasing I still further, these two roots become complex,
 anid there is now no value between C and 0 until (51) becomes equal to the
 lowest zero of J2(x) when a value of p' passes C, to return to it and in coinci
 dence with another become a double root when (51) becomes equal to the next
 zero of J-j(x); after this these two become complex and different; and so on.

 The greatest wave-length in the direction of flow for which a disturbance
 can be oscillatory is thus 27r/l, where

 {32(31a'/(27/3v))t = the lowest zero of J-j(x) P12. (67)
 There are a finite number of complex roots, those whose imaginary parts

 are positive being given, when not too near C, by the approximate equation

 'I- ie-_ 0,
 or, ul# rr + 7r/4, (68)
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 where r is zero or any positive integer; and, more accurately, by

 Ji luj I - JiluiI # 0;
 the second term of (66) is now small compared with the other two. These
 complex values of p', of course, as before, lie close to the line CA, and their
 conjugates close to CA'.

 It is seen that here again all the roots which exist have been accounted
 for and approximately located.

 It will be noticed that, approximately, when la is large, the real roots, if
 not too near C, are the same as when the boundary-conditions are S = 0; the
 complex roots are different, however; this is the only evidence I have noticed
 against the view that, for disturbances whose wave-lengths in all directions
 are small, the question of stability is little affected by the precise boun dary
 conditions.

 ART. 25. The Case of Boundary-Conditions V= 0, d V/dy = 0: Failure to obtain
 any Simple Proof that fundamental Disturbances are Stable.

 With the boundary-conditions 7= 0, d Vldy = 0, I am unable to give any
 simple proof by any method analogous to that of Art. 15 that the funda
 mental modes of disturbance are exponentially stable. We obtain, however,
 the same limits for the imaginary parts of the values of p, viz., ? 1j3ai. The
 equation satisfied by V being

 [d2/dy2 {M2 + (p + il3y)/v) ](dt/dy2 - At) V = 0,

 if we write V =V + i V2, p = C + i#, separate the real and the imaginary parts,
 multiply one equation by V,, the other by 72, add, and integrate between the
 limits ? a, we readily obtain

 a
 (q+ lj3y) [(d 71/dy)2 + (d V/y2+V( 2+ 7]dy =0, (69)

 from which it follows that p + lf3y must change sign between the limits of y.
 I have also been unable to obtain any equations analogous to (63), (64)

 Art. 23, by the aid of which any arbitrary free disturbance may be resolved
 into its constituent fundamental ones.

 ART. 26. Deriivation of the Period-Equation: Its approximate Form.

 The solution of (1) being denoted by S, 7 may be expressed in the form

 V = e 2A Sex-yAYdy - e AYJSeAYdy},

 whence d V/dy = 1 {eVfY Se,AYdy + e-AY Se,Ydy} d

 R.I.A. PROC., SECT. XXVII., SECT. A, [161
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 The boundary-conditions thus lead to the period-equation

 ra r~a ra ra
 frSieYdy Pa S2e-Ydy - Pa S1eAydy S2CAYdy = 0, (70)
 -a -a -a -a

 where SI, S2 are any two independenat solutions of (1).
 A laborious development of this equation in ascending powers of p' threw
 little light on the nature of the roots; every term in the equation appears to
 have the same sign, however.
 On the supposition, justified to some extent by results, that for all the
 roots the quantities which occur as variables in the Bessel functions in S are
 large, an equation approximately equivalent to this may be obtained. As
 approximate forms of S are (-p' - lf3yi)-i. eL', where

 2 (13jI (p' - lpyi7 (71)

 it might appear that we would be justified in using these exponential fotms
 in the integrands, and replacing, for examnple,

 'a

 ( ( 1 - l/3yifri eatY/(A + h/1- dy

 -a~~~~~~~~ by
 | ( pt| I8yi-l "+^/(+ d?/dgy) a

 Irrespective of the delicate considerations of the discontinuity in the forms of
 the approximate expressions for the Bessel functions, this procedure would
 not, however, be prima facie justifiable unless it were possible, regarding
 iy as a complex quantity, to connect the limits of integration by a path
 along which the real part of u + Ay continuously increased, or continuously
 decreased, which is not always possible. I therefore considered more fully
 the functions J e?kySdy; but the approximate form finially obtained for the
 period-equation proved so intractable that it does not appear justifiable to
 go into details. In the region in which the roots appear to actually lie, viz.,
 one in which p' has its real part negative, and its imaginary part between
 the limits ? 1/3ai, the form is

 [(p'/(lf3)iai r[> HEp (Xa a+u) iExp(Xa-u )
 A+i-i(-p'+lj3ai)/v)i A - i((-p'~ + 4iai)/Iv)i

 (v1J\i (vXApZ ~7'i\ _ iJxExp (- Va + u',) + 27riy) rEcpK 31 (p' (-p/(l/-) pai)-a)

 -A-i(&p3 +1;ai)/v)i Exp (- Xa ) - (-p'(l/3)-ai)- Exo (a -
 i((-p~~~~~~ +-Ai(l-p-ai3ci)v)
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 I ,(-'/(l/) + ail [ -Exp (- a + u,) + iExp (- At -) ] X + i((- p' + l3ai)/v)i - A - i((-p' + 43ai)/v)i

 +24jvEr -vXi + 3Ar'i) E xp (Aa +)
 + 2 7i \1/ _EP 31 pl 1j3)- (i A F ljP' 13ai)/v)i

 (-r'I(11) + ai)iExy (At- (-p'A1-( )-(')-lIv /
 x SZ(p)pi))/ )Exp(a-, ( -P()az~ Ex ( 'Aa 0

 (72)
 U1 denoting, as before, > (an3/v)k {- p'(l,(3) + a}t and v2 the corresponding
 expression with the sign of a changed.

 ART. 27. Some Results.

 It appears that the period-equation has no roots for which the real part
 of p (or even that of p') is positive. If the real part of p is supposed positive,
 the equation assumes a simpler form; the first expression within the ) is
 to be replaced by

 (-p//W3,) + ati)-i p EL (XAc + utl) i ai-Ep ( c 2
 i i((- p' + lai)/v) - (_ p'I(3) - a)-4 + ((-p' - l3ai)/v)k2

 (73)
 and the third is to be similarly replaced by the first and last of the four
 terms which constitute it. In fact, if the real part of p (though not neces
 sarily if merely that of p') is positive, that of any one of the expressions
 ? Ay ? u either continually increases or continually decreases as y changes
 from - a to + a; and accordingly it seems evident that we may proceed as
 indicated in the third paragraph of the preceding Article, and thus obtain this

 modified form of the period-equation. If we now consider the terms in the
 equation which are most important, it will be found that it is necessary that
 e6xa should be complex or less than unity, which is, of course, impossible.

 In using these approximate forms there is a tacit assumption that p is not

 too near either of the values ? lpai: making the contrary supposition in this
 case, too, I failed to obtain any evidence of the existence of a root whose
 real part is positive.

 It may be shown that, if with the origin as centre, a circle be deseribed
 for which

 mod. 2a (- p'/v)h = (2r + 1) r/2,
 where r is a large enough integer, the number of roots of the period-equation
 for which p' lies within this circle is r - 1.+ This follows as in Art. 18: the
 alterations in the form of the left-hand member of (72) which have to be
 made in different portions of the contour are, as in that Article, negligible if
 p' is sufficiently great.

 'This is one less than if the boundary.conditions included vv= 0. (See Art. 18.)

 [16*1
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 There is obtainable as a special and limiting case the solution of the
 problem of the free disturbances of the fluid at rest; these have been inves
 tigated by Lord Rayleigh.* In this case, i being zero, if p' is finite i, it2 are

 infinite, but u1 - or 2ai (- p/v)i is finite; if, in (72), in the first and third
 expressions in I ,we neglect all terms which do not involve .Exp (+ u), and
 then equate ( to zero, we obtain an equation which is valid and exact
 over all the plane; it may easily be verified that this equation leads to
 Lord Rayleigh's results.

 Another special case which may be noticed is that in which Aa is very
 great. In this case the smaller roots, i.e. those for which X is very much

 greater than {(-p' + 1?3ai)/v ), are given approximately by the same formulh
 as when the boundary-conditions include S = 0; and for those which are not
 so given p' is wholly real and negative. In fact, for those real values of p'
 which are far removed from the complex ones, the equation assumes the
 approximate form

 e2(t1u-2) _ [A + i{- p'+ lf3ai)/v) ][A + ((-.p'- l/3ai)/vIi]
 [A - i {(-p' + l jai)/vP i][A -i{(-p' -ilfPai)/ ]

 A22 + r-1jp' + 12fat)i - iA { - 2p' + 2(p'2 + 1232a2)I) (74
 2 + V-(p'2 + 12j32a2)* + iAA4 {- 2p' + 2(p'2 + 12j2a2)&}i (74)

 This equation could be solved without any great difficulty if the values of
 the constants were given. It will be seen that in taking successive values of

 p' in order of increasing magnitude, in passing through the region in which
 p'2 and vA2 are of the same order, one root is, so to speak, lost as compared
 with the period-equation (8). All the roots of the equation (72) are thus
 accounted for.

 In the most general case, the real values of p' which are not too near the
 cornplex ones are given by (74). As regards the determaination of the complex
 values, though (72) simplifies somewhat, I have not been able to reduce it to
 a form which I can solve.

 The approximate forms (72), (74), which have been obtained for the period
 equation are inappropriate to small values of Aa, as when Aa is made equal to
 zero, they become identities; when Aa is very small, it is more convenient to
 express (70) in the form
 a a a ra

 S, cosh Aydy J S8 sinh Aydy - J 8, sinh Xydfy J cosh Aydy - 0. -a -a (5a
 (75)

 * t(0n the Question of the Stability of the Flow of Fluids," Phil. Mag. xxxiv., 189.2, p. 59;
 Collected Papers, iii., p. 582.
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 If Aa is made to diminish without limit, this becomes f a a ra
 Sldy J S2ydy )J,&dy S2dy= 0. (76) -a -a a -a

 In the region in whidh the roots actually lie, this assumes the approximate form

 (i(67r)i + (eU' -i ie-" ,4 - tutu2 i} {e-* iutl - Ctu)2%

 - (el- iec"') U, - eu2*J26) (rulultI e-2usi *. 0. (77)

 For real roots, if p' is not too near C (fig. 2), this may be replaced by

 01-u2 - e"2u"ul 0

 identical with (14). Even in this somewhat simple case, the equation giving the
 complex roots does not appear readily solvable. In this case it may be shown
 that the critical point at which p' becomes imaginary does not coincide with
 C (fig. 2); but that some of the roots become imaginary at points to the left
 of C, and others at points to the right; that for the roots which are of low
 order the absolute distance of the critical point from C is not large, and that
 as the order of the root rises it tends asymptotically to C. The complex roots
 thus consist of four series-one to the left of AC, another to the right, together
 with the images of these series in the axis of real quantities.

 In the most general case the critical point at which roots become imaginary
 is not far from C; and the values of p' lie not far from the lines AC, A'C.

 It is thus seen that, unless either Aa is large, or else f3la3/V so small that
 all the disturbances are aperiodic, the results I have indicated are very
 incomplete for the natural boundary-conditions v= 0, dv/dy = 0.

 * If the velocity-gradient is great enough, Aa may be very small, and yet 81a31v not small; so that
 for sufficiently rapid motion this case is a little more general than that in which v is made a function
 of y only. In the latter case, the method similar to that of Art. 15 succeeds in proving directly that
 the disturbances are exponentially stable; this result was, I believe, obtained many years ago by Love.
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 CHAPTER III.

 APPLICATIONS OF THE METHOD OF OSBORNE REYNOLDS.

 ART. 28. Exxplanation of Osborne Reynolds' Method.

 Professor Osborne Reynolds* has discussed the question of the stability of
 flow from a point of view very different from that adopted by Lord Kelvin.

 He supposes the turbulent or unstable motion to be already in existence, and
 seeks to determine a criterion as to whether the relative kinetic energy of the
 disturbed motion will increase, diminish, or remain stationary. In case the
 disturbance is regarded as finite, i.e. if, in the expressions for the velocities,
 ternms of higher order than the first in small quantities are retained, the

 magnitudes of the velocities enter into the determining condition; but if only
 terms of the first order are taken into account, the criterion does not involve
 the scale of the disturbance, and moreover gives a lower limit than is obtain
 able when the disturbance is finite, for the slowest steady motion, under
 assigned conditions, for which a disturbance of assigned type could possibly
 increase. Thus the discussion of infinitesimal disturbances would appear in
 reality as important as that of finite ones, and is moreover considerably
 simpler. For infinitesimal disturbances, considering only the case in which
 the velocity in the steady motion is in the x-direction, and is independent
 of X, the criterion may be obtained as follows. Let the velocity in the steady

 motion be U, and that in the disturbed U + u, VI w, let the stress-components
 in the steady motion be P.,, Px,y etc., and those in the disturbed be P,.+ Pz,X

 Po + p,,,, etc. By writing down the fundamental equations for the disturbed
 and for the steady motions, and subtracting, we evidently obtain the equations

 du/dt + Udu/dx + vd U/dy + wd U/dz = p-1 {dpxxldx + dpxyldy + dpxz/dz},

 dv/dt + Udv/dx - p' (dpyddx + dpyyl/dy + dpyz/dz},
 dw/dt + Udw/dx = P-1 (dpxs/dx + dpv,/dy + dpxz/dz}. (1)
 Multiplying by put, pv, pw, respectively, and integrating throughout any

 volume, we have

 d/dt. 4 p(Qt + v2 + i2) d. vol = - pu(vd U/dy + wdU/dz) d. vol.

 |p fU/dx(re + vI + W2) + |t {dp,,/dx + dpxyldy + dpvx/dz} d. vol

 + two terms similar to the last. (2)

 * Fot reference, see Introduction, p. 75. An excellent resume of Reynolds' method is
 contained in Lamb's "Hydrodynamics," 3rd Edition, Art. 346, from which I have paraphrased
 a few sentences.
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 On integratinlg by parts all the terms on the right, except the first, the
 right-hand member may be written

 - Jpu(vd U/dy+wdU/dz)d.vol - f{pl U(ut + v2 + w') dS+ J u(lp.,+mr, + np,5)dS

 + two terms similar to the last - f(p*,duldx + pyydv/dy + p52dw/dz

 + pyz (dv/dz + dw/dy) + pzt(dw/dx + du/dz) + p,y(du/dy + dv/dx) j d. vol, (3)

 dS denoting an element of the bounding surface, and 1, m, n the direction
 cosines of the outward drawn normal. The term involving the first surface
 integral represents the rate at which kinetic energy of disturbance is convected
 into the volume considered, and the other three surface-terms denote the rate

 at which the additional stresses pfzz, pzy, etc., called into existence by the
 disturbance, would do work in the additional motion t, v, w on the fluid
 contained in the surface. In many cases the joint effect of the surface-terms
 is nil; this happens, for instance, when the disturbance has a definite wave
 length in the direction of flow, if the volume is bounded by surfaces parallel
 to the direction of flow, such that ', v, w vanish at them and by perpendicular
 planes, such that the distance between them is any multiple of a wave
 length. In any such case, by substituting in the last integral in (3), the
 values of the stresses, viz.,

 PXz = - p- y (duldx + dv/dy + dw/dz) + 2pdu/dx, ra = px (du/dy + dvl/dx), etc.,

 the right-hand member of (2) becomes

 - J pu (vd U/dy + wd U/dz) d. vol

 - sf {2(du/dX)2 + 2(dv/dy )2 + 2(dw/dz)2 + (dv/dz + dw/dy)2 + (dw/ld + du/dz)2

 + (duldy + dv/dx)'} d . vol + f p'(du/dx + dv/dy + dw/dz) d. vol, (4)

 where p' -p + 244/3. (du/dx + dy/dy + dw/dz).
 The second member is essentially negative; the first may be either positive or
 negative; the third is, of course, zero, though it is convenient to retain it for

 the present, thus not assuming the fluid to be incompressible; and whether
 the disturbance increases or decreases, depends on the sign of the whole. If
 then, for a given steady motion we could find the lowest value of I for which
 it is possible to choose u, v, w, so that the expression (4) may be zero, there
 would be no possibility of the motion being unstable for a greater value of P.

 In the applications of the method by Reynolds, Sharpe, and H. A. Lorentz,
 the character of the disturbance is to a certain extent assumed, and apparently
 somewhat arbitrarily; and I proceed in the present chatter to conduct similar
 investigations, while endeavouring to avoid any such arbitrary choice.

 * For the purpose of variation.
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 ART. 29. Difrerential Equations satisfied by the Disturbance which is Stationary
 for the Greatest Possible A.

 Proceeding to a more general investigation, the critical equation for ,
 whether the fluid be compressible or not, is from (4):

 - f pu (vd U/dy + wd Uldz) d . vol + f p'(du/dx + dr/dy + dw/dz) d. vol

 - f {2 (du/dx)2 + 2 (dv/dy)2 + 2 (dw/dz)2 + (dv/dz + dw/dy)2 + (dw/dx + du/dz)2

 + (du/dy + dv/dx)} d. vol = 0. (5)
 The variation of u, v, w in this gives, as conditions for a stationary ,u, on
 ,integrating by parts,

 2pV'u + 2pd/dx (du/dx + dr/dy + dw/dz) - p (vd U/dy + wd U/dz)

 = dp/dx + 4p/3. (du/dx + dv/dy + dw/dz), (6)

 etc., or, supposing the fluid incompressible,*

 2/iV2u - p (vd U/dy + wd U/dz) = dp/dx,

 2pV2r - pud U/dy = dp/dy,
 2pV2w - pud U/dz = dpldz. (7)

 If the volume is bounded by fixed surfaces parallel to the direction of flow
 and by perpendicular planes such that the distance between them is any
 multiple of a wave-length, the surface terms, which have not been given,
 vanish; under these conditions also equations (7) with that of continuity
 satisfy (5), so that (5) need no longer be referred to.

 ART. 30. The uniformly Shearing Stream. subect to Boundary-Conditions
 v = 0, dv/dy = 0. Lorentz' Result.

 A stream of uniform vorticity is, of course, the simplest case; and Reynolds'

 method has been applied to it by H. A. Lorentz.t The type of disturbance he
 selects consists of a species of " Elliptic Whirls" in which each particle of fluid
 has motion in an elliptic orbit superimposed on its steady motion; these
 ellipses are similar and similarly situated; and the angular velocity round the
 centre is a function of the distance from it; the orientation and shape of the
 ellipses and the law of velocity are then determined, so that the value of p
 which makes the right-hand member of (4) vanish shall be greatest possible.
 If the steady velocity be By, and the distance between the bounding-planes D,

 his resulting equation is pBI2 = 288,.

 * If the fluid be compressible, the variation of p and p in (5) leads to an equation which would
 determine the scale of the disturbance.

 t " Ueber die Entstehung turbulenter Fl?ssigkeitsbewegungen und ?ber den Einfluss dieser
 Bewegungen bei der Str?mung durch Bohren." Abhandlungen ?ber theoretische Physik,
 Band 1, s. 43.
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 Analogy with other problems leads us to assume that disturbances in two
 dimensions will be less stable than those in three; this view is conifirmed by
 the corresponding result in case viscosity is neglected, seen by comparing
 equations (28), (38) of Part I., Chap. I.; it is further strengthened by com
 paring the two- and the three-dimensioned forms of equation (29), Chap. I.,
 above, and by the discussion of the fundamental free disturbances in Chap. It.

 Conisiderinig, then, the two-dimensioned case,* the elimination of p from (7)
 gives

 24V2(du/dy - dv/dx) - pB (dv/dy - du/dx) = 0. (8)
 We may now conveniently introduce the stream-function 4, when this becomes

 yV2V24 + pBd2'/dxdy = 0. (9)
 This is to be solved subject to the conditions that 4, and d4/dy vanish at

 the bounding planes which we will denote by y = ? a. We next suppose that,
 as a function of x, 4 varies as elx, when the equation becomes

 p(d2/dy2 1 12)24 + ilpBd4/dy = 0. (10)
 The ftundamental solutions are 4 = eimy where the values of A are given by

 ft(i2 + 12)2 Bplim 0. (11)
 Denoting the roots of this by mq, m2, mi3 m,, the equation to which the

 boundary conditions lead is

 emlai em2ai eM3ai em4 '

 e-mcai e,M2at e-m3sai em4a

 in1emlai ^in2m2ai mn3 cm4ai = 0, (12)
 mne-1t I ai -nm2 ai in3 em3ai , cm4a

 or
 (fi1mn2 + M3M4) sin (i1 - m2) a sin (m3 - m4) a

 + (i2M3 + 1i4) sin (m2 - m3) a sin (i1 - mi) a

 + (M3nt1 + 2iM4) sin (M3 - m) a sin (n - 4) a = 0. (13)

 As the sum of the values of n is zero, they may be written

 p+r, p-r, -p+r', -p-i", (14)
 where p is real, and, making these substitutions, (13) becomes

 (4j9 r2 _ r'2) sin 2ra sin 2i"'a - 2rr'cos 2ra cos 2r'a + 2rr'cos 4pa = 0. (15)

 Now, the values of in which satisfy (11) must all be imaginary, or else two
 real and two imaginary.

 ' The three-dimensioned case was attempted, but it proved too difficult.

 R.I.A. PROC., VOL. XXVII.p SECT. A. [17]
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 Taking the former alternative, on writing r = iq, r'= iq', (15) becomes

 (4p2 + q2 + q'2) sinh 2qa sinh 2q'a - 2qq' cosh 2qa cosh 2q'a + 2qq' cos 4pa = 0.
 (16)

 This may be written in the form

 (q - q')2 sinh2(q + q') a - (q + q')2 sinh2(q - q') a'+ 4p1 sinh 2w sinh 2qa
 - 4qq' sin2 2pa = 0, (17)

 from which it is evident that it cannot be satisfied by real values of q, q'; for
 if they be chosen positive, as can always be done, the first term exceeds the
 second, and the third the fourth.

 Falling back, then, on the latter alternative, and writing in (15) rV iq'
 simply, it becomes

 (4p2 - q2 - r2) sinh 2q'a sin 2ra - 2q'r cosh 2qa cos 2ra + 2q'r cos 4pa 0 O. (18)

 To find a stationary disturbance of given wave-length, and the correspond
 ing value of p, we have then, supposing 1 given, to solve the simultaneous
 equations involved in (18), and the statement that the values of n which
 satisfy (11) are p ? 7, -p ? q'i.

 Now, from the coefficients of the powers of n in (11) we have the
 equatioins

 - 12 - 2p2 = 21,

 (p2 + q'2)(p2 - r2) = 14

 2p(q'2 + r2) = Bpltcl. (19)
 If we express q', r, in terms of p, 1, we have

 2 2p/F#+ 1 + l p + 12, (20)

 2 2py/'p2j ~+ p2 _ 2, (21)
 and also obtain

 Bpl
 P 8p2/p + 12 (22)

 It may now be proved that the equation (18) has no solution for whieh
 2ra is less than 7r. Denoting the left-hand member of that equation by V,
 we have

 I d Vlda (q'2 + r2)(q' cosh 22a sin 2ra - r sinh 2q%a cos 2ra)

 + 4p2 (q' cosh 29'a sin 2ra+r sinh 2/'a cos ra) - 4pq'r sin 4pa, (23)

 4j d2 V/da2 - (q'2 + r2) si 2/a sin 2ra

 + 4p2((q2- r2) sinh 2q'a sin 2ra+ 2q'r cosh 2q'a cos 2ra - 2qr cos 4pa),
 (24)
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 ; ds V/da3 = (q`2 i r2)2 {q' cosh 2q'a sin 2ra + r sinh 2/'a cos 2ra}
 + 4p2 {(q'3 - 3q/rt) cosh 2qa sin 2ra + (3q'2r - r3) sinh 2/'a cos 2ra

 + 4pq'r sin 4pa }, (25)
 -IdS V/da4 = (1'2 + r2)2 { (q'2 - r2) sinh 2g/a sin 2ra + 2q'r cosh 2q'/t cos 2ra

 + 4p2 {(q"- 6q'2r%+ r4)sinh 2q'asin 2ra +4q'r(q'2-r2)cosh 2q'acos 2ra

 + 8pq'rcos4pac . (26)
 When a is zero, the first three differential coefficients vanish, and the fourth
 is positive. Substituting the values of /', r, given by (20) and (21), (26) gives

 I4d4 V/da4 = 64211(pi + 12) sinh 2g'a sin 2ra

 + 64p2(p2 + 12)2 1)2 cosh 2qca cos 2ra

 + 32p4 (p2 + 12)2(3p2 - I2) cos 4pa. (27)
 This cannot vanish for any value of 2ra less than 7r/3; since for such values
 the second term exceeds the third even on replacing cos 4pa by - 1, and since
 the first term is positive. Therefore, neither can V itself vanish, if 2ra <cw/3.
 Again, V may be written

 (6p2 + 212) sinh 2qa sin 2ra - 2(p2 + 12) (3p2 /2)i cosh 2q/a cos 2rc

 + 2(p2Q 12)1 (3p2 - 9)l cos 4pa, (28)

 which, when sin 2ra is positive, is algebraically greater than

 2(p2 + )k(3p2 - 12)k 31 sinh 2q'a sin 2ra - cosh 2q' cos 2ra + cos 4pa}. (29)

 Of the terms in brackets, when 2rc lies between 7r/3 and 7r/2, the first term is

 greater than 3 sinh 2q'c; the second is numerically less than 2- cosh 2q'a; and

 thus the three are algebraically greater than 3 sinh 2qa - cosh 2q'a -1, and,
 as q'>r /3, this is certainly positive. And, since q'>f r/ 3, it is evident
 that (29) cannot vanish if 2ra lies between 42/ and 7r. Thus (18) has no
 solution for which 2rac <7r.

 When 2ra > 7, sinh 2q'ca and cosh 2q'a each exceed 100; and accordingly
 in (18) we may neglect the term involving cos 4ppa, and may equate sinh 2q'a
 and cosh 2qa; the equation thus sensibly becomes, making use of (28),

 tani 2ra (p2 + 12)i (3p2 - 12)i(3p2 + 12)-. (30)

 The simultaneous equations (21), (30) have, of course, an infinity of solutions;
 there is one for which 2ra lies between n and 47r43; it may be shown that
 there is only one; for, by the aid of (21), we may write (30) in the form

 r- 'tan 2ra = (2p /p2 + 12 + p2 + 12)t(3p2 + 12)-i; (31)

 as p increases beyond the value 1//3, the right-hand member continually
 [17*]
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 decreases, while the left-hand nember continually increases, for r, given by
 (21), continually increases. And it is this solution which we require; for
 (21), (22) show that, I being given, the smallest value of r corresponds to the

 largest value of I for which the disturbance could possibly increase.
 We finally wish to obtain the greatest value which the value of $ so found

 can be made to assume by varying 1. A stationary p is a maximum p, for g
 has no minimum; as I increases indefinitely, r remains finite, ra being < 47r/3,

 and,p, satisfying (21), tends to equality with 1/73, so that ,-' given by (22)

 diminishes indefinitely. The differentiation of (22) gives us for a stationary p

 p3dl/dp = (3p2 + 21P) 1. (32)
 By differentiating (30), making use of this, we obtain

 ap3(3p2 + 212) (3p2 - 12)dr/dp 4 2l'(p2 + 12)t (33)
 and in a similar manner from (21),

 p3rdr/dp = 2p(p2 + 11)2 _ (p2 + 12) (p2 + 212). (34)

 Combinilng (33) and (34), there results

 a(3p2 + 21) (3p2 - 12)4 {(p2 + 212) (p2 + l2)3 - 2p(p2 + 12)1421'r, (35)

 and this, (21), and (30) are equations determining 1, p, r. From (21) and (35)
 we obtain

 2ra (3p2 + 212) (p2 + 212 - 2p (p2 + 121)) ? 4l'(2p - (p2 + l2)t}(3pt _ 17k (36)

 If 2ra were 77r/6, the value of 12/pl which would satisfy this would be 93;
 while, if 2ra were r, it would be -94. It will be seen that the former
 supposition is very nearly correct; taking then the former value of 12/p2,
 substitutioni in (30) shows that 2ra is the circular measure of 206? 57' (the
 latter would give about 3' less), i.e. 2r7a = 3t61. From (21) there is next
 obtained l/r = 1-05 (and < 106), giving la= 1P89. Then (22) gives

 ]Bp/(8r2p) _ p2-1 9]) - 7p2 +-/ }21- 1-698 (and < 1699). (37)

 Thus, if D = 2a, the distance between the bounding planes, there finally results

 Bpa2/p 44-3 or BpD2/p 4 177. (38)
 This result has been obtained on the supposition that the initial disturbance

 has a definite, but undetermined, wave-length; but as the different wave-lengths

 contribute to the rate of increase of the energy of disturbance terms which
 are simply additive, this restriction may be removed, provided the proper
 end-conditions are satisfied, and for this it is sufficient that on every stream
 line the end-values of the velocities and of the alteration in pressure should
 be the same.
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 ART. 31. Two instances of other Boundary- Conditions.

 As another example, suppose the former boundary-conditions are replaced

 by v = 0, d2v/dy2 = 0, equivalent to f = 0, d2i/dy' = 0. Equation (13) has
 now to be replaced by

 (ml n2,2 + m,32M42) sin (m - mr2) a sin (m, - m4) a + (Mi22Mi32 + in12Mi42) sin (i2 - M3) a

 sin (m - r4)a + (Mt3m,2 + mn22m42) sin (in3 - ms) a sin (mrn - m4) a = 0, (39)

 or, in the notation of (14),

 (r - r'2) - 4p2(r2 + r'2) sin2rasin2r/a + 8p'rr'cos2racos2r'a - 8p2rr/cos4pa = 0.
 (40)

 On writing again r = iq, r' = iq, this becomes

 (q2 - q'2)2 + 4p2(N2 + q'2)) sinh 2qa sinh 2q'a + 8p2qq'cosh 2qa cosh 2q'a

 - 8p2qq'cos-4pa = 0. (41)
 As the first two terms are positive, and the second exceeds the third
 numerically, this equation cannot be satisfied, and, accordingly, as before,
 we fall back on the other alternative, viz., r real and r' imaginary. Writing
 in (40) r'- it simply, it becomes

 {(r2 ? q'2)2 + 4p2 ('2 - r2)) sinh 2q'a sin 2ra + 8p2q'r cosh 2q'a cos 2ra

 - 8fq'r cos 4pa = 0. (42)
 Now this equation has no solution for which 2ra is less than 7r/2; for within
 this limit, as q'P > 3r', the left-hand member is certainly algebraically greater
 than

 8p2r Ir9 sinh 2/'a sini 2ra + q' cosh 2q'a cos 2ra - ' cos 4pa}; (43)

 and while 2ra increases from 0 to 7r/2, the sum of the first and second terms
 in the brackets increases continually, and therefore everywhere exceeds its
 initial value q'; hence the result follows. We may, therefore, equate
 sinh 2q'a and cosh 2qa, and neglect cos 4pa in comparison. Thus we have,
 expressing the coefficients in terms of p, 1,

 tan 2ra _ - i (3Pf _ 12)j (p2 + 1)Di (44)
 and the lowest value of 2ra accordingly lies between 57r/6 and 7r. As a
 condition for a stationary valuie of M, we now obtain, using (32),

 ap (3f2 + 21) (3 12 - )t dr/dp = 3 (p2 ? 2 (45)

 and, by the aid of (21), (32), (34), there results, instead of (36), the equation

 2ar(3p2 + 2V)(2p(p2 +r l2)I_ p2 - 212) = 6f1f(2p (p2 + 12)&)(3p2 - 13)- (46)
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 Substituting 2ar = 57r/6, 7r we obtain P/p2 = 73, 75, respectively. The
 former value substituted in (44) gives 2ra to be less than w by the circular
 measure of 200 54'; and the latter 200 42'; we therefore see that the correct
 value of 1P/p2 is nearly 736, and that of the angle in question 20? 50';
 thus 2ar = 21778, and finally

 Bpa2/,u = 26'36 or BpD/p,. 105lO5. (47)
 If, again, we were to take as boundary-conditions

 dv/dy = 0, d2v/dy2= 0,

 we should obtain equation (13) over again, and the same criterion as in (38).

 ART. 32. A Stream between fixed Parallel Planes. Results of Reynolds and
 of Sharpe.

 The case of flow between fixed parallel planes was the only one to which
 Reynolds himself applied his method so as to obtain a numerical result.*
 Noting that if the disturbance is expressed as a trigonometrical function
 of y, the higher harmonics would, on the whole, make for increased stability,
 he chose as the type to be investigated one in which

 X = A(cosp + 3cos3p)cos7rlx/2a + B (2cos2p + 2 cos4p) sin wIx/2a, (48)

 VA= IA(sinp + sin3p)sinirlx/2a - 1B(sin2p + 2-'sin4p)cos7rix/2a, (49)

 where p =7ry/2a. The values of I and of B/A were then so determined
 that the value of tL obtained by equating to zero the rate of increase of
 the energy of disturbance should be greatest possible, and the result he
 obtained for the critical equation was

 DUplp = 517, (50)
 where D = 2a, the distance between the planes, and U is the mean velocity.

 This case has also been discussed by Sharpe;t he chose as the type
 of disturbance that in which, in the same notation,

 i = A(sinp + sin 3p)cos7rlx/2a + B(2sin2p + 4sin4p) sin7rlx/2a, (51)
 v = - IA (cosp + 3-1 cos 3p) sin7rlx/2a + IB(cos2p + cos4p)cos 7rlx/2a, (52)

 and obtained a lower value for the critical velocity, his equation being

 DUp/,u = 167. (53)

 * Loe. cit., p. 75, ante.
 f '* On the Stability of the Motion of a Viscous Liquid " : Trans. Amer. Math. Soc, vol. vi.

 No. 4, October, 1905.
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 ART. 33. The more General Investigation.

 Proceeding to a more general investigation, if the axis of x be taken
 midway between the planes, and the steady velocity be U = C(a2- y2), and
 keeping to the two-dimensioned case, equations (7) are replaced by

 21jV2u + 2Cpyv = dp/dx,

 2,uV2v + 2Cpyu = dp/dy. (54)
 Eliminating p, and substituting for U, we obtain

 2,uV2(dU/dy - dv/dx) + 2Cp(y(dv/dy - du/dx) + v} - 0, (55)

 or, introducing the stream function, 4p,

 lV41; - Cpl2yd2,/dxdy + d4/dx) = 0. (56)

 If we now further suppose that 4 varies as eilx, where I is definite, but
 undetermined, this is reduced to

 p (d2/dy2 - 12)24 - Cpli(2yd?4/dy + 40 - 0. (57)

 It seems convenient to substitute ly = a, C'pi/pl3 = k, and doing so this
 equation becomes

 (d2/da2 - 1)24, - kl(2ad4/da + 4) = 0. (58)

 This can be solved in series preceding in ascending powers of a. Writing

 4,a= Ana"/l, (59)
 the coefficient law is

 A+4- 2A,+2 + 11 - (2n + 1)Ik)A. = 0. (60)
 There are, therefore, series whose first terms are respectively 1, a, a2, a3.
 If u, v, or ,, d4,/dy are to vanish at the boundaries y = a, there is evidently
 one solution of the problem in which 4 is an even function of y, and another in
 which it is odd. And there are various reasons for supposing that the former,

 i.e., that in which v is an even, and ut an odd, function, will give the narrower
 limit of stability. This view is in conformity with the fact that Sharpe

 obtained a lower value for DUply than Reynolds did; I understand Sharpe
 to state that it seems more in accordance with experiments that v should
 have a maximum midway between the planes than that it should; and I
 obtained this result when la is very small.

 When la is sufficiently small, we may replace the coefficient law (60) by
 the simpler one

 -An+4 (2n + 1) keA, = 0. (61)
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 The values of # then proceed simply in powers of ka', all other terms beinig
 omitted. Equation (68) given by the bounidary-conditions becomes

 1 32/'2a, 15360kc'a&6 1426'k/6ca, 262)

 1-9 L17 ~~~1021
 The lowest root of this is approximately

 Cpla'4/y - ika4. 107. (63)
 On the other hand, the odd forms of 4 lead to the equation

 1+/'ai5 31815,* 625*
 69300 -10- 4 /ca, 106 " /ca," + ... = 0, (64)

 and the lowest root gives approximately

 CplaW/f = - ikal' 265. (65)
 Considering then the even forms of 4, one of the series whose lowest term

 is unity is

 2a2 )a4 ~a' 6a'4 ai 00+ = La2 + (3 +k) L4 + (4 + 12k) L6 + (5 + 50k L,t2 Lg + (6 + 140k + 174k) L'0

 +(7 + 315k + 1189k' + 9.17k3 12 + (8 + 616k + 5144k/ + 3960k/) -4

 a16 a15
 + (9 + 1092k + 16974k/2 + 37492k3 + 9.17.25/c) 4 6 + (... 122490k/4) L-8 +

 (66)
 and that whose lowest term is a2/2 is

 02= 2 + -c + (3 + 5k) L + (4 + 28k) -a + (5 + 90k + 5.13P2 1

 + (6 + 220k + 606k') " 12 + (7 + 455k + 3037k' + 5.13.21k3) a 14 aL2 a14
 a16

 + (8 + 840/ + 10968k/ + 17880kc) L16

 + (9 + 1428/ + 32094k2 _ 122468k3 + 5.13.21.29k') L18 +

 + (... 669210k/4) Lo + ... (67)
 The boundary-conditions m = 0, v = 0 evidently give

 0 d4'2/da - 42 d4'5/da = 0, (68)

 * These numbers are only approximately correct.
 t The boundary-value of a is denoted by al.
 I Probably the numerical work would have been simpler bad I chosen 4o - 4'2, instead of eo.
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 where, in determining a, y is equated to a. Denoting this boundary-value of a

 by a,, this equation, after division by a,, becomes

 2a,' 8ai' 32a,' ~~8 o,10 2a2 8a, 3 (128 + 32k2) aL + (512 + 390k2) a,

 + (2048 + 2816k2) c" + (8192 + 128.168k12)

 + (32768 + 147456k2 + 15360k') 1 .

 + (131072 + 32t.912k2 + 276480k-4) 0L- +... = ? -(69)

 In verification of the somewhat lengthy nunmerical work involved in calcu
 lating the coefficients in (69), I obtained it as far as the terms involving k2 in
 another way, using solutions of (58) in the form of series which proceed in
 ascending powers of k, the coefficient of each power being a function of a.
 This method did not appear to have much advantage over the other. The
 portion of the left-hand member of (69) which is independent of k is

 (2a, + sinh 2a,)/4a,.

 We have now, regarding 1, and therefore a1, as given, to solve (69), choosing
 the highest root in , and therefore the lowest value of k. Then I has to be
 chosen, so that this value of p is the greatest possible, i.e. the lowest value of
 - ika,' is to be made a minimnum. The lowest value of - k-a,' is, approxi
 mately,

 G )ai' 8a,4 32a16 128a,8 512a,1' 2048a 12 k'ai" + LI +[ + +
 39 a11 lOal, 88a,6 672a,' 4608a,l" 21504a,12 )
 - 1 Y LII + 13 + ILA + L17 + -L19 7 (70)

 in which terms inivolving le have been neglected. Makiilg this stationary,
 we obtaini the equationi

 Qa,2 8al, 32a,' 128a,' 512a,1" 2048a,"
 - + + _ + LI + + . L 3 L? 5 l7 L9 L" l1 L13 +'

 (ai2 10,a 88a,' 672a,' 4608a,"? 29184a,12 )

 1t LII +_L Lk3 + L17 + L9
 2 2.8a2 3.32al 4.128a,' 5.512a,l 6.2048a,"+
 [2 L?+ LIL5 l9 L_ +
 1 2.10a,2 3.88a14 4.672a,6 5.4608a,' 6.29184all? )
 +[ 111 +L? I + BA _ + - -_ + L13 + 15 tL17l9

 (71)
 R.I. A. PROC., VOL. XXVII., SECT. A. [18]
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 which reduces to

 2 2 123 32.961.[9 6 512.62234) 512.802.)9
 i 11.13 t L15 "' 3L17E 5L17

 (72)
 This has a root in the neighbouLrhood of a? = 44. The minimum value
 of - k2a,6 is by no means sharply defined; the values 4 3, 4 4, 4 5 suibstituted
 in (70) give - k2a,? = 7591, 7565, 7576 respectively. These all give

 Cpa3/i - i/ca3 87. (73)
 In (70), however, the terms involving the fourth aind higher powers of Dc
 have been neglected. If we substitute the values which have beeni found
 for k and al in the two terms involvinlg I4 in (69) the former would raise
 the value of - k1a1' by about 1 per cent., and the latter by about onie-fotlrth
 as much. We would presumably make proper allowance for all the terms
 neglected if we increase the value found for - kIcai6 by 2 per cenlt., or that
 of - ika,3 by I per cent.. Thus we would obtaini the criterion

 DUp/l = 4Cpa3/31 = 117. (74)

 ART. 34. Plow through a Ciircidar Pipe. Sitarpe's Result.

 The case also of flow through a circular pipe has been discussed by
 Sharpe.t Taking the z axis in the direction of flow, he selected an initial
 disturbance in which

 2amt = lA7rr (sin p + sin 3p) sin rlz/2a - lB7rr (sin p + 2-1 sin 4p) cos 7rlz/2a,

 2aw =A Q4a (sin p + sin 3p) + 7rr (cosp + 3 cos 3p)} cos 7rlz/2a

 + Bf4a (sin t2p + 2-1 sin 4p) + 7rr (2 cos 2p + 2 cos 4p)j sin rlz/2a, (75)

 where it is measured radially, w2 in the direction of flow, the radius is a, and
 p denotes Trr/2a. On investigating the values of B/A and of 1, which lead to

 the greatest possible value of p for which the disturbance could be stationary,
 he arrived at the equation

 DpW/M = 2ap Wfu = 470, (76)
 W being the mean velocity in the steady motion. I believe, however, that
 his work contains a numerical error: which sensibly affects the result; and
 that if this were corrected, the number 470 would be reduced to about 363.

 * It appears that we may safely neglect terms in which occur kQ or higher powers ; for the left
 hand member of (62) forms part of the left-hand member of (69) ; as far as can be judged, the term
 involving k& in the former is the most important term involving it in the latter ; and substitution of
 the numbers just found shows the value of this term to be about 1/20000.

 t Loe. cit.
 % A coefficient of B2V- in a certain equation which Sharpe gives as 6*67 should, I think, be

 (** - 275^/24 + 1312/27J/16 or 2-057.
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 ART. 35. A circular Ptpe; the more General Investigation.

 In discussing the most general disturbance in this case, we may either
 transform to cylindrical coordinates the equation (5), and obtain in those
 coordinates the equations giving a stationary p, or else obtain in Cartesian
 coordinates the equations which would now replace (7), and then transform
 them. Adopting the latter procedure, the equations are

 2p,V2nx - pwd WV/dr = dy/dx

 2ftVuy - pwdTV/dy - dy/dy,

 2yV2w - p (u,fd WT/d + uyd W/dy) = dp/dh, (77)

 where u?, uty denote the velocity-components in the x, y directions transverse
 to that of flow. Confining ourselves to the symmetrical case, which there is
 little doubt will give the lowest critical velocity, we write

 Ux = xu/r, fly = yU/r,

 when the two former equations become

 2FL (VWi - ur-2) - pwd WT/dr = dp'/dr, (78>
 and the latter is

 2pV2w - pud WT/dr = dp'/dz. (79)
 Noting that

 d/dr . V2 = (V 2 - r-2) d/dr, (80)

 and writing W - C' (a r -), the elimination of p between these gives

 2p (VI - r-2)(du/dz - dw/dr) + 2C'p(r(dw/dz - dut/dr) - u} = 0, (81)

 Introducing the stream-function + defined by the equations

 ru = di,/dz, rw = - d#/dr,
 this becomes

 p(V2 - r-2) (rl(d2#/dr2 + d2#/dZ2) - 9-2d#/dr} _ 2C'pd2#/drdz 0;

 or, ptr-1 {d2/dr2 - r-1d/dlr + d2/dz2}24 - 2Cpcd2i,/drdz 0. (82)

 [On multiplying by r, differentiating with respect to r, and dividing by r,
 this might be written

 'V4w - 2C'pr-d2 (r,2w)/dr.dz = 0, (83)
 an equation which mlight be obtained more easily directly from the equations
 which replace (7). Tn the subsequent investigation, 1v might equally well be
 taken as the unknown function, instead of #*]
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 We next suppose that, as a function of z, 4 varies as ei; then (82) is
 equivalent to

 p { d2/dr' 2 - r-' d/dr - 2- 2C'lpirdj/dr - 0 (84)

 It will now be convenient to substitute

 Ir = 2a, 20'P4/,d'- = k, (85)
 when the equation becomes

 (d2/dat - acld/da - 4)24 -16klad/da - 0. (86)

 Solving this in a series of the form

 =A+ a = B Bn an
 Lg 2

 the law connecting coefficients is

 (nt + 4)(n + 2)2nA,4 - 8 (n + 2)nAn 2 + 16 (1 - nk)An = 0, (87)

 or B -,,- 2B.+2 + (1 -nk)B. =0-. (88)

 There are evidently solutions whose initial terms are respectively 1, a2,

 a2 log a, a4. As P/r and r1ld4/dr must be finite when r vanishes, the solutions
 -with which we are concerned are those whose first terms are a', a'.

 The latter is

 a4 a' a8 _ a'0 a12 -+ 2 + (3 + 4k) +(4 + 20k) + (5 + 60k + 32k2)
 LS2~2 L2 L4 L LR ?L
 + (6 + 140k + 264k2) Ll - LZ + (7 + 280k + 1216k + 384k/)

 + (8 + 504k- + 4128k2 + 4464k3) LO L9

 a20
 + (9 + 840k + 11520k'2+ 28000k + 6144k4)

 a22
 + (10+ 1320k+ 27984k2+ 125840k'+ 92640Ok)Ll L

 a24 a26
 + (...+ 739136k' + 122880kl) LULS + ( + 2283840k)l

 U ( +4..1.1 2 2k6r-2s-1aA (89)
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 One of the former is

 02 = a 2 + 0 + (I + 2k) -< (1 + 8k) as + (1 + 20k + 12k2) a4o LVa[+ LSL LL L~L
 a12 a14

 + (1 + 40k + 88k2) L5L6 + (1 + 70k + 364k2 + 120k3) L6 L7

 16 16

 + (1 + 112k+ 1120k2+1296k1) &- +(1 + 168k+ 2856k2+7568k3+I 680)L Lo

 020
 +(1 240k + 6384k2 + 3 t760k3 + 24096k)el L2L

 + (.. . + 182736k4 ? 30240k05) a0 L" + ( 542400kl) L X I12

 + ( . 2.6.10.14. 18. 22k') 90)

 The boundary-coniditions u = 0, v = 0 evidenitly give

 42d#4/da - 14d#2/da - 0, (91)
 where, in a, r is equated to a. Denoting this value of a by a1, this equation,
 on division by al4, becomes

 22 L3 , l4a + (42+4k2' G + (132+40k2' a1 + [2[L4 L?Lk 5'L L6'' L7L
 a,'12 a14 a,116

 + (429 + 280k ) L6 L8 + (1430 + 1680k2) L7 [9 + (4862 + 9240k-2 336k') L8a [0

 + (16796 + 48048k2 + 6048k') 2alL! + + 55684k4) L,2L0

 C 22 ok 24
 + .k4) _ll L1 + ( ..+ 95040k6) "'l +. = ? (92) (..k) i LII13 ( ~L3Z2L?? =10
 [The terms on the left which are independent of k are those of

 2al a4 {I1, (2a)}2da.]

 The lowest value of - k2a06 is therefore approximately

 k2a,6 _

 1 2a, 5al, 14al6 42ris, 132a,"' 429a,'2 1430a
 L3 L2l ? L3L5 4L 6 L?51 7 L6L8 LZ7L9
 _4al 4Oa,4 280a, l680ailS 9240all' 48048a,'

 + +li?LL 1 + t10+[? *V (4L6 l7 618 8110S ? tl1
 (93)

 R. I. A. PROC., VOL. XXVII., SECT. A. [19]
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 138 ProceedinYs of the Royal Irish Academy.

 in which terms involvinig k4 have been nieglected. We have then to choose a,
 so that this value shall be least possible. The requisite value of ai is not well
 defined, but is in the neighbourhood of 3 7. Substitutions of a,2 = 3'5, 317, 4 in
 (93) give respectively - k2a=6 = 1940, 1938, 1946. In these, however, the terms
 involving k' in (92) have been neglected. If we substitute the approximate
 values just found in three terms of that order which are given in (92), and

 take a12 = 317, we now obtain - ka," 2027, 1/10 of the increase being due
 to the last of the three terms. With this value we finally obtain

 DWp/l = C'a3p/M = - 4ika,3 = 180.

 It appears that we may safely neglect terms in which higher powers of k than
 the fourth occur; the term involving k1 which is given in (92) is presumnably
 the most important of these; and on substitution of the numbers just found,
 its value is seen to be about 1/1000.

This content downloaded from 
������������128.187.103.98 on Thu, 26 Nov 2020 03:59:33 UTC������������� 

All use subject to https://about.jstor.org/terms


	Contents
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	93
	94
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138

	Issue Table of Contents
	Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, Vol. 27 (1907 - 1909), pp. 1-262
	Front Matter
	A Theorem on Moving Distributions of Electricity [pp. 1-8]
	The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part I: A Perfect Liquid [pp. 9-68]
	The Stability or Instability of the Steady Motions of a Perfect Liquid and of a Viscous Liquid. Part II: A Viscous Liquid [pp. 69-138]
	The Centre of Gravity and the Principal Axes of Any Surface of Equal Pressure in a Heterogeneous Liquid Covering a Heterogeneous Solid Composed of Nearly Spherical Shells of Equal Density, When the Whole Mass Is Rotating with a Small Angular Velocity in Relative Equilibrium under Its Own Attraction [pp. 139-144]
	On the Properties of a System of Ternary Quadrics Which Yield Operators Which Annihilate a Ternary Cubic [pp. 145-156]
	A New Method of Solving Legendre's and Bessel's Equations, and Others of a Similar Type [pp. 157-161]
	The Relation of Mathematics to Physical Science. An Address Delivered to the Academy, December 9, 1907 [pp. 162-168]
	The Dynamics of a Rigid Electron [pp. 169-181]
	The Logical Basis of Mathematics [pp. 182-193]
	On Ether Stress, Gravitational and Electrostatical [pp. 194-204]
	Extensions of Fourier's and the Bessel-Sourier Theorems [pp. 205-248]
	Some Theorems on the Twisted Cubic [pp. 249-261]



