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INTRODUCTION

In a historical context the interface between two phases has played only a
minor role in the physics of fluid dynamics. It is of course true that
boundary conditions at interfaces, usually imposed as continuity of ve-
locity and stress, determine the velocity field of a given flow; however, this
is a more or less passive use of the interface that allows one to ignore the
structure of the transition between two phases. When an interface has been
assigned a more active role in flow processes, it generally has been assumed
that one parameter, the interfacial (surface) tension, accounts for all mech-
anical phenomena (Young et al. 1959, Levich & Krylov 1969). In these
studies, kinematic effects of the interface were not considered, and the
“no-slip” condition on the velocity at interfaces was retained. The basic
message of this article is that the interface is a region of small but finite
thickness, and that dynamical processes occurring within this region lead
not only to interfacial stresses but also to an apparent “‘slip velocity” that,
on a macroscopic length scale, appears to be a violation of the no-slip
condition. The existence of a slip velocity at solid/fluid interfaces opens a
class of flow problems not generally recognized by the fluid-dynamics
community.

Three previousarticlesin this series deal with flow caused by interactions
between interfaces and external fields such as electrical potential, tem-
perature, and solute concentration. Melcher & Taylor (1969) and Levich
& Krylov (1969) consider fluid/fluid interfaces where stresses produced at
the interface by the external field dictate the flow. Saville (1977), on the
other hand, discusses the action of an electric field on a charged solid/fluid
interface and reviews the currently accepted model for electrophoretic
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movement of colloidal particles. This model recognizes the diffuse nature
of thechargedinterface and the important role of flow within the interfacial
region, which leads to an apparent velocity discontinuity, or slip velocity,
across the interface. The objective here is to review a class of flows gener-
ated by interactions between applied fields and solid/fluid interfaces, with
electrophoresis as but one example. In order to convey this broader picture,
the emphasis is on the concept of a slip velocity, the physics of its origin,
and its role in determining the motion of colloidal particles.

To illustrate the importance of flow within interfacial layers, consider a
small, spherical droplet suspended in a second fluid in which there is a
concentration gradient of a molecular solute. If the solute affects the:
surface tension y of the droplet and is insoluble within the droplet, the
following expression, which was derived by Young et al. (1959),' gives
the droplet’s velocity:

a oy
_ 3r7+211( _ 27E)vcw, ()

where C,, is the undisturbed solute concentration, a is the radius, and 7
and # are the viscosities of the interior and exterior fluids, respectively.
The physical explanation of this capillary-driven phenomenon is that the
solute gradient produces a gradient of tension along the droplet’s surface,
which drags fluid and thus propels the droplet toward regions where its
surface tension would be reduced. If the droplet is solidlike (7 — o0),
Equation (1) predicts zero velocity; however, Derjaguin et al. (1947) argued
that the diffuse structure of an interface allows a finite velocity gradient
through the interfacial region, which results in movement of solid particles.
Recent experiments (Lin & Prieve 1983, Lechnick & Shaeiwitz 1984, Ebel
et al. 1988, Staffeld & Quinn 1988a,b) demonstrate that concentration
gradients of molecular solutes can, in fact, move solid particles.

The interface between two phases is a transition of finite thickness.
Although the length scale of the interface may be orders of magnitude
smaller than even microscopic lengths, the details of transport processes
occurring within this thin layer often control the fluid dynamics outside.
Electrophoresis is a good example. The charge on the particle’s surface is
balanced by a diffuse cloud of counterions (Figure 1). The charge density
within the cloud, p.( ), decays exponentially in y at distances of order of
the Debye screening length x~' from the surface. Taken together, the
surface charge and the diffuse cloud, called the “double layer,” are a
neutral body; why, then, does the particle move when an electric field is

'Young et al. actually derived the velocity of a droplet in a temperature gradient.
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Figure I  Electrophoresis of a charged particle. k= is the Debye screening length of the
solution, defined by (4). v* is the “slip velocity,” which is given by (6) with { (taken to be
negative here) equal to the electrostatic potential at y = 0. E*® is the electric field at the
outer edge of the double layer (S*).

applied? The answer is that this neutral body is not rigid, and the diffuse
cloud of counterions moves in the opposite direction of the charged
particle. The velocity field within the thin layer of space charge determines
the velocity field outside the layer. The fluid velocity at the outer edge S™*
of the double layer differs from the particle’s velocity U by the slip velocity
v*, which results from electrically driven flow of the space charge inside S*
as shown at the bottom of Figure 1. The length scale of the double layer
is x~ !. Neutrality of the particle plus counterion cloud means the applied
electric field exerts zero force on the surface S*, and hence the velocity
decays to zero as r ", where n > 1. These hydrodynamic characteristics cause
electrophoresis and other “phoretic transport” to differ significantly from
flows associated with sedimentation, where the external field exerts a net
force on a particle.

Phoretic transport is defined as the movement of colloidal particles by
a field that interacts with the surface of each particle; examples are listed
in Table 1. By their basic nature these phenomena involve an interplay
among fluid dynamics, surface science, and transport of mass, charge, and
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Table 1 Transport of solid colloidal particles by phoretic processes in liquids. The slip-velocity coefficient b is defined by (31)

U=58VY,?
Name Field variable (Y,,) b Remarks
Electrophoresis Electrical potential e { = zeta potential of particle surface
27"?

Diffusiophoresis Concentration of a chemical E KI* See (11) for X and L*

species (nonionic) Y]
Diffusiophoresis Concentration of a chemical 4 E -2 E —In(l—¢? > {=2Zel |k T, see (4) for k™', (13) for ¢,

RPN K B—In(1-¢%)
species (ionic) n and (17) for B
A is the local specific enthalpy
Thermophoresis Temperature fd increment at distance y from the solid
ynay
surface: A = h(y) —h(wo)

* Y(x) is the undisturbed field. See the assumptions leading to (34).
®The first term inside the brackets assumes (17) for the local electric field; this is valid if (33) applies.
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thermal energy. Motion of a particle is induced by an applied field Y (x),
which is usually electrical potential, temperature, or the concentration of
amolecular solute in the fluid. Only linear phenomena are considered here,
and hence the particle’s velocity is proportional to VY. There are several
distinguishing features of phoretic transport. First, the presence of the
particle and any other boundary disturbs the field, and this disturbance
must be computed before the Stokes-flow equations can be solved to obtain
the particle’s velocity. Second, there is an order-of-magnitude difference
between the two important length scales, the particle’s radius and the
thickness of the interfacial region. Boundary-layer ideas apply naturally
to the Stokes equations, with the velocity field at the outer edge of the
interfacial region forming the inner boundary condition for flow in the
outer fluid. Finally, a most important characteristic of phoretic transport
is that the external field applies no force to the particle plus the fluid in
the interfacial region; to the outer fluid the moving particle appears to be
force free and torque free, and the flow about the particle decays quickly,
as mentioned in the previous paragraph. The fast decay of the fluid velocity
about a moving particle has important implications for the effects of fixed
boundaries on phoretic transport rates, as discussed later.

The logical starting point is to examine the concept of slip velocity at
solid|fluid interfaces by considering specific models for which the physics
is reasonably understood. Mechanisms by which an electric field or gradi-
ent of solute concentration directed parallel to a planar interface causes
flow within an interfacial layer are discussed in the next section. The
question of whether slip velocity should be considered a material property
of an interface, in the absence of a well-defined model for flow in the
interfacial region, is then raised. The slip velocity is used as a prescribed
boundary condition of Stokes flow in the outer fluid to obtain the velocity
of a particle suspended in a gradient of electrical potential, solute con-
centration, or temperature. The arbitrariness of defining a particle as
“fluid” or “solid” is discussed in the context of apparent discontinuitics
in both stress and velocity across an interface. In general, flows within the
interfacial layer do not affect the fields (electrical potential, etc.) in the
outer fluid, but under certain circumstances this is not true and corrections
must be made for “polarization” of the interfacial region. Effects of particle
interactions and fixed boundaries on particle velocity clearly show basic
differences between transport by surface forces versus transport by body
forces such as gravity. Recently published experimental results for particle
transport are cited not only to demonstrate the existence of slip velocity
but also to argue for the quantitative value of the models for slip velocity
presented here. In the concluding remarks some ideas are presented about
how microfields established by active processes within a particle, such as
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a living cell, could self-propel the particle through a fluid. This model of
locomotion illustrates a mechanism by which chemical or electrical energy
could be converted to flow.

DYNAMICS WITHIN INTERFACIAL LAYERS

The concepts of “slip velocity”” and “stress discontinuity” are related to
the scale of view; that is, the velocity and stress are continuous on the
length scale of the thickness of the interfacial region § but appear dis-
continuous on the scale of the size of the particle, With fluid/fluid interfaces
the apparent stress discontinuity (surface-tension gradient) controls the
dynamics [see (1)], and there are many good references for flows generated
by gradients of surface tension, sometimes called “Marangoni effects” or
“capillary-driven flow” (Young et al. 1959, Sternling & Scriven 1959,
Levich & Krylov 1969, Subramanian 1981). However, with solid/fluid
interfaces the discontinuity in stress is trivial and the slip velocity controls
the dynamics. In this section we focus on slip velocity and the physics
behind it.

In flows involving colloidal suspensions and porous media the fluid is
divided into two regions—the “inner” region comprising the interfacial
layer at the surface of the particles or the pore walls, and the “outer”
region including all the fluid outside the interfacial layer. The length scales
of the inner and outer regions (d and R, respectively) are generally orders
of magnitude different, so that it is often possible to treat the inner region
geometrically as a flat plate and apply classical boundary-layer ideas. The
velocity field within the inner region is obtained first, and its value at the
outer edge is used as a boundary condition for flow in the outer region.
In the models for flow in the inner region that are presented below, the
fluid is assumed to be Newtonian. Furthermore, all solid surfaces are
assumed smooth on the length scale of the interfacial region, and inertial
forces are neglected.

Electroosmosis: Flow by Electric Fields

.The basic model for flow adjacent to a charged solid surface is attributed

to Helmholtz (see Hiemcnz 1986). As shown in Figure 1, the fixed charge
on the surface (shown arbitrarily as negative in the figure) is balanced
by a diffuse space charge p.(y) that equals the difference between the
concentrations of counterions (positive here) and coions (negative). E® is
the electric field at the outer edge of the double layer; its direction defines
the x-axis. This field acts on the space charge to produce a body force on
the fluid equal to p.E°. The x-component of the Stokes equation is
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0%,

Pl +pE*=0. ()
The pressure gradient parallel to the surface is negligible because of the
boundary-layer approximation; that is, dp/dx is O(R~"), where R is the
length scale of the particle, and is thus negligible compared with the other
two terms in the limit §/R — 0. The charge density is related to the double-
layer electrostatic potential ¥( y) by Poisson’s relation

e 0’

Pe = —4—7“3—})7- (3

The length scale for the double layer is the Debye screening length, given
by

8nZ%? |12
K“=[ AT CS:I 4)

C® is the electrolyte concentration at the outer edge of the double layer
(xy — o0), Z is the valence of the positive and negative ions of the electro-
lyte, e is the charge of an electron, ¢ is the fluid dielectric constant, and kT
is the thermal energy. Combining (2) and (3) and integrating gives the
following velocity profile:

£ s

where ( is the so-called zeta potential, which equals ¥ at y = 0 (Hunter
1981). Note that the no-slip boundary condition, v, = 0 at y = 0, was used
to derive (5), and the velocity gradient at y — co was set equal to zero.
The latter boundary condition results when the velocity field in the inner
region is matched with the outer region to guarantee continuity of stress;
the velocity gradient is O(R™") in the outer region and hence zero on the
scale of the inner region. The zeta potential can be related to the surface
charge through the Gouy-Chapman model for the double layer (Hiemenz
1986).

The slip velocity is defined as the value of v, at the outer limit of the
inner region:

S 3 p— ac S

v—ylixgvx——ﬁE. (6)
This velocity, which is directed parallel to the solid surface, is what the
fluid in the outer region sees. Although the electric field E* is determined
by charge transport in the outer region, the fluid is electrically neutral and
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conductive processes dominate, so that this field is usually independent of
the fluid dynamics. Once E® is calculated at every point along the solid
surface, v* is a boundary condition for Stokes flow in the outer region, as
discussed in the next section. Typical values of the parameters are
[{| ~ kTle, E*~ 1V cm™', n =~ 0.01 poise, and ¢ &~ 78 (water); thus, v* is
of order micrometers per second.

An important point about (6) is that E* and { can be functions of
position x along the interface as long as their gradients are O(R~"). The
fact that { can vary over the surface was only recently appreciated and was
subsequently used to develop models for electrophoresis of nonuniformly
charged particles (Anderson 1985a, Fair & Anderson 1988).

Osmosis: Flow by Gradients of Neutral Solutes

Uncharged solute molecules dissolved in a liquid interact with surfaces
through excluded volume effects as well as dipole and van der Waals
forces. The total interaction is represented by a potential energy ®(y),
called the “potential of mean force,” such that —V® is the force experi-
enced by a molecule at distance y from the surface. This force is transmitted
to the fluid and in aggregate results in a body force — CV®, where C is
the local solute concentration. Since ® has a length scale of §, the y-
variation of C is given by the equilibrium expression of Boltzmann:

C = C*exp(—®/kT), )

where C*(x) is the concentration at the outer edge of the inner region
and varies along the surface with a gradient of O(R™"'). The momentum
balances on the fluid in the y- and x-directions in the limit §/R — 0 become

op do
o tCq =" )
%, dp

By combining (7) and (8a) one finds the pressure field; substituting this
pressure into (8b) and solving for the velocity at y — oo then gives the slip
velocity:

dacs
x

kT [
v = —7L ylexp(—®/kT)—1] dy )

The above result for »* was originally derived by Derjaguin et al. (1947).
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Figure 2 shows a hypothetical concentration profile of solute near a
solid surface, with y measured on the scale of §. The potential energy is
related to the local concentration through (7). The slip velocity, given by
(9), can be reexpressed in terms of two parameters of the solute profile, K
and L* (Anderson et al. 1982):

o= -T2, (10)
n dx
K= r [exp (—®/kT)— 1] dy,
o0 (11)
L* = K‘IJ y[exp(—®/kT)—1]dy.
0

The ““adsorption length” K equals the area under the excess-concentration
profile shown in Figure 2. It represents the amount of solute adsorbed,
per area of surface, divided by the bulk concentration at equilibrium. The
first moment of the solute distribution, L*, is expected to be O(d), but its
precise value can only be calculated from knowledge of ®(»); there is no
method of directly measuring L*. Although K must be positive if the solute
adsorbs to the surface, L* could be positive or negative depending on the
form of the energy profile.

A model system of an adsorbing solute for which ®( y) is calculable a

3
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|
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L* Figure 2 (a) Hypothetical excess-solute
-t profile at a solid/liquid interface. K is the

net area under the curve, while L* is the
first moment as defined by (11). (b) Ve-
locity field relative to the fixed solid when
(b) the far-field concentration C* varies along
the surface. The slope at y = 0 equals — K.
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priori is the interaction of a neutral, dipolar molecule with the electrical
double layer of a charged surface (Koh & Anderson 1978). The solute’s
dipole moment (pp) aligns with the local electric field of the double layer,
E4 = —dW¥/dy, such that the energy is

= —kT[u*coth(u*)—1], (12)

where u* = Equp/kT. The Gouy-Chapman theory (Hiemenz 1986) of
planar double layers gives

Ey = (4kT/Ze)xg exp (—ky)/[1 — & exp (— 2xy));

(ze (13)
C = tanh (m),

where Z is the valence of the supporting electrolyte (e.g. Z = 1 for potas-
sium chloride), { is the zeta potential of the surface, and « is given by (4).
Combining (11)—(13) produces the following result, which is correct to

0(&%:

*__i @zv fz HpK
KL _3<Ze)g{ I+ 2[”5(&)]} (14

For small solute molecules (MW < 100), pp does not usually exceed
20 x 10~'® esu cm. Assuming this value for the dipole moment along with
E=1/2( ~2kT/e) and k = 10’ cm™', we have

KL* =5.8 x 107" cm?

If the solute concentration gradient is 0.1 mole cm~¢, a reasonable value
in boundary layers, then substitution of the above numerical values into
(10) and use of the viscosity of water at 25°C gives v* &~ —2 um s~ !, which
is a fairly typical magnitude for a slip velocity.

A second example for which @ is known is the steric (entropic) exclusion
of rigid solute “particles.” If the solute particles are spheres of radius a,
then ® - o0 when y < a and ® =0 when y > a; use of this potential
energy in (11) gives

KL* = —a*2. (15)

The negative sign means that v* is directed toward higher solute concen-
tration. Steric exclusion is the mechanism behind the classical view of
osmosis—that is, flow from low to high osmotic pressure (Anderson &
Malone 1974). Nonspherical solute particles are treated in a similar way,
with ®( y) determined by averaging the probability over all orientations
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at fixed y. The following results are easily derived for extremely long solute
rods and thin solute disks:

KL* = —(1/24)* (rods, length /),

(16)
= —(1/3)c? (disks, radius c).

Osmosis: Flow by Gradients of Charged Solutes

A gradient of a strongly dissociating electrolyte produces flow within the
inner region by two mechanisms. The first involves excess pressure within
the double layer at the charged surface, akin to the stresses developed with
neutral solutes discussed above. The second mechanism is based on the
electric field that is generated in the outer region because the diffusion
coefficients of the two ions are not equal. If the local current is zero in the
outer region, the diffusion electric field is proportional to f, which is
defined as (D, —D_)/(D. + D_) for a symmetric electrolyte M*2X Z:

kT dnC®

Es=—Z_eﬁ dx (n

The contributions from these two mechanisms add to give the following
slip velocity (Prieve et al. 1984):

gl e (kT , dlnCS
I - 1
v 47"1E+27Wl< >1 1=-&)— (18)

where ¢ is defined in Equation (13). The second term on the right in
(18) is called the “‘chemiphoretic” effect and causes flow toward lower
electrolyte concentration, while the first term is the ““electrophoretic’ effect
and causes flow in the direction determined by the sign of the product B¢.

Thermoosmosis: Flow by Temperature Gradients

Derjaguin et al. (1987) developed a model for the slip velocity at a solid/
liquid interface resulting from a tangential temperature gradient. This

theory is based on computing the flux of energy (enthalpy) carried by
forced (pressure-driven) convection of fluid across a porous barrier and
applying Onsager’s reciprocal theorem to obtain the momentum flux that
would result from an applied temperature gradient. By equating the
momentum flux to the mean flow velocity of liquid through the pores, he
obtained the following expression for the slip velocity at the pore walls:

.2 dlnTs
v __EL yh(y)dy - (19)

where /A( ») is the local excess specific enthalpy (erg cm ~%) in the interfacial
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layer compared with the bulk liquid. If the solid surface is lyophilic, mean-
ing the liquid phase is attracted at the molecular level, then # < 0 and the
slip velocity is directed toward higher T*.

The problem with (19) is that there is currently no molecular model
from which to compute /( y). The surface excess enthalpy,

He = L h(y)dy, (20)

is a measurable, macroscopic quantity similar in concept to K [see (11)];
however, the experimental determination of H° is considerably more
difficult than K. Furthermore, there is still the problem of estimating the
length parameter L*, defined here essentially the same as for diffusio-
phoresis [see (11)]. Derjaguin et al. (1987) cite experimental results that
demonstrate the existence of thermoosmosis in porous media.

Relation Between Slip Velocity and Stress Discontinuity
at an Interface

The physical models developed above are intended to demonstrate possible
origins of slip velocity. While experiments have shown their predictive
capabilities to be good, as discussed later, these models are only semiquan-
titative, since simplifications have been introduced, such as constant vis-
cosity and dielectric constant. In the discussion below, a more general
approach is taken to support the notion of slip velocity at any interface
where the interfacial energy varies. The objective is to demonstrate in a
general way that the same stress distribution within an interfacial region
leads to both a gradient of interfacial tension and an apparent discontinuity
in fluid velocity across the interface.

The pressure tensor within an interface is anisotropic (Brenner 1979,
Davis & Scriven 1982):

P = Pynn+ Pr(y)[l—nmn], @1)

where n is the unit normal to the interface, | is the unit dyadic, and y is
measured along n on the length scale of the interfacial thickness. A force
balance normal to a flat interface shows Py to be constant. The interfacial
tension is given by

1=| ev-row @)

The local pressure anisotropy, P* = Py— Py, depends on thermodynamic
variables; if one of these (Y) varies along the interface, say in the x-
direction, then a gradient of shear stress develops:
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do,.  OP* oP* _dY® <ap*>
Y= Y‘,

dy O0x ox  dx \ oY (23)

where, as before, the superscipt s denotes the value of Y at the outer edge
of the interfacial region. Integration once over the entire interface gives
the stress discontinuity, which is apparent on the length scale of the bulk-
phase fluids:

dy

- (24)

T = 0,(+ 0)—0,(—0) =
Levich & Krylov (1969) review the use of 7° as a boundary condition for
flow in the bulk phases.

Because at least one of the two phases bounding the interface is fluid, a
nonzero shear stress must result in flow parallel to the interface. Assume
that the fluid is Newtonian with a position-dependent coefficient of
viscosity. The velocity field v, is found by integrating (23) twice over y and
matching the velocity gradient at y — + oo with the gradients of the bulk
phases. The slip velocity should be independent of the velocity gradients
in the bulk phases; this is true if the “interface” y = 0 is defined such that

°[1 1 ®11 1
- - =0, 25
J—w[n '7—-:|dy+J:) ['7 '7+]dy )

where #, and 5_ are the viscosities of the bulk phases. The resulting
expression for slip velocity is

o
v* = lim [vx—<—yx) :|_ —
y—>+oc 7]+ y y—— 00 r’_
d + o y l + 0o l 1
X J-eo ony 0 ny "+

It is evident that v* arises from the same intermolecular forces as 1°—that
is, the forces that produce P*.

To connect this general result with the specific model for osmosis
(Y = C), assume that #(y)

us—i[i'fo Prdy+ — r P*d:I @7
a2 AL Sl N2 AT 4

If the solute concentration is sufficiently low to have a thermodynamically
ideal solution, the Gibbs equation relating changes in interfacial free energy
to surface excess concentration of the solute (Hiemenz 1986) can be used
to show
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d [~ n (C dcs
— * = —
ilro-al (6 ) %

=/ C dc:
+J (Cs —1>dy7x+], (28a)
Yo +

where C°, is the bulk fluid concentration of solute on each side of the
“Gibbs dividing surface™ y = y,, and C is the local concentration within
the interfacial region. Note that C*. and C?, are related by principles of
phase equilibria. The Gibbs dividing surface is close to but not exactly at
y = 0, the surface defined by (25).? In the case of linear solute adsorption,
C/C% is independent of C°, and hence independent of x. If we assume
such a condition with y, = 0, (28a) suggests that

P* = —kT[C—-C%], (28b)

which gives the following when substituted into (24) and (27):

d [” :
v=kT f_w[C(y, x)—C:(x)] dy, (292)

d [® 1
' = —kT— j (29b)
X J-wo Nt

where the subscripts + and — mean that these bulk-phase values are to
be inserted for y > 0 and y < 0, respectively. Thus, for osmotic flows with
neutral solutes, the stress and velocity discontinuities across the interface
are proportional to the zeroth and first moments of the surface excess
concentration, respectively. Equation (9) is recovered from (29b) by setting
n_ — oo (solid) and using (7) to relate C to C%,.

In light of the above discussion, one can justifiably put forth the general
relation

v = —bVTY",

where the slip-velocity coefficient b can be considered a material property
of the interface, depending only on local thermodynamic conditions.
Values of b (see Table 1) can be extracted from the specific models discussed
earlier, represented by Equations (6), (9), (18), and (19).

2Schofield & Henderson (1982) discuss the arbitrariness in defining the exact location of
an interface.

-1 &
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PHORETIC TRANSPORT OF RIGID PARTICLES

When viewed on the length scale of particle size R, the actual surface of
the particle and the surface S* that encloses the particle plus the interfacial
region appear identical in the limit §/R — 0. Flow in the region outside S*
is governed by the classical Stokes equations:

nV¥v—Vp =0, Vv=0, (30a)
onS*: v=U+Q X r+v,, rooo:v-0. (30b)

The translational and angular velocities of the particle are determined by
solving the flow problem stated above, assuming v° is known at all points
on the surface, with the further constraint that the force and rorque exerted
by the fluid on S* are zero:

Jj n-6dS=0, Jj+r x (6-n)dS =0, (30c)

where ¢ is the fluid stress tensor. The reason for this constraint is that the
external field Y, exerts no force on the particle plus its interfacial layer.
Thus, phoretic transport represents a novel fluid-dynamics problem where
a force-free body moves at just the proper velocity to negate the prescribed
slip velocity, which is determined by the external field.

From the previous section we see that the slip velocity v* is proportional
to a gradient of a potential function Y such as voltage, solute concen-
tration, or temperature:

V= —bVY*, G1)

where Y* is the limiting value of Y as S* is approached from the outer
fluid. Values of b that were derived in the previous section are listed in
Table 1.

Because the particles of interest are micron size and the velocities are
generally less than 100 um s !, Peclet numbers are small in the outer fluid
and Y is described by Laplace’s equation:

VY =0, (32a)
r— 00: VY > VY, (aconstant), (32b)

where Y, is the undisturbed field, which is assumed linear here. If §/R — 0,
the no-flux boundary condition at the surface applies:

on §*: n-VY =0. (33)
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As shown later, (33) can be in error if the interfacial layer has a finite
capacity to transport solute molecules; this is called a ““polarization” effect.

Smoluchowski (1921) solved the above problem, (30)—(33), for the spe-
cific case of electrophoresis of a sphere. Smoluchowski’s result can be
written in general form for any phoretic transport phenomenon described
by the above equations:

U=4VY,, Q=0 (34)

Morrison (1970) made the important observation that the velocity field in
the fluid about a sphere moving by electrophoresis is a potential flow:

v=%<§> [3%—I]-U. 35)

He then proved that a potential-flow solution that satisfies all the above
fluid-dynamic boundary conditions can be obtained for particles of any
shape. Finally, he showed that (34) holds for particles of arbitrary shape
as long as (a) Y'is described by (32)—(33), and (b) the value of b is constant
over the particle’s surface. Corrections needed to account for nonconstant
b or polarization effects [ie. (33) is invalid] are discussed later in this
section. It has long been assumed that Smoluchowski’s equation applies
to the electrophoresis of particles of arbitrary shape when the double
layer is thin, but Morrison was the first to prove the correctness of this
assumption from a fluid-dynamics basis.

The potential-flow character of the velocity field about a moving par-
ticle distinguishes phoretic transport from sedimentation in a nontrivial
way. The velocity disturbance is O(r~?), compared with O(r~!') for sedi-
mentation. As shown later, this difference has important consequences
regarding the effects of boundaries and particle interactions on phoretic
transport.

General Representation for Spheres With Thin Interfacial
Layers

Smoluchowski’s equation [generalized as (34)] could be in error, even when
J/R is small, for at least two reasons. First, the capacity of the interfacial
layer to exchange solute molecules with the outer fluid can be finite if the
solute/surface interactions are strongly attractive, a possibility recognized
by Dukhin & Derjaguin (1974) in their analysis of electrophoretic
processes. In this case boundary condition (33) must be altered, as dis-
cussed later. Second, the coefficient b of (31) might vary over the surface
of the particle. To account for these effects, a general analysis of the
Stokes-flow problem is needed to provide an easy method to compute the
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translational and rotational velocities of a particle given the dependence
of the slip velocity over the entire surface S*.

Lamb’s solution to the Stokes equations provides a convenient method
to solve for the velocity field about a sphere with a prescribed velocity on
its surface (Brenner 1964). The following result can be derived using only
(30) (Anderson & Prieve 1988):

U= —(W), (36a)
Q = (3/2a)(V* x n), (36b)

where a is the particle’s radius, n is the unit normal on the surface, and
the brackets denote an area average over the surface of the sphere (or,
more precisely, S7):

1
{g>= ZJ‘J;gdA.

The problem is thus reduced to solving for VY* and using (31) to represent
the slip velocity at each point.

First consider a nonuniform field for which (32b) is replaced by Y —
Y. (x), where the undisturbed field Y, is not necessarily linear. By solving
(32a) with an arbitrary Y. (x), applying (33) at the surface, and then
substituting the result into (36), one finds that (34) still holds with VY,
evaluated at the position of the particle (Keh & Anderson 1985). This
means that a sphere having uniform surface properties and negligible
polarization of the interfacial region cannot be rotated simply by applying
a spatially varying field. Of course, the velocity field around the moving
particle differs from (35) if VY, is not constant; a curious result is that the
velocity disturbance associated with VVY,, is O(r~?) and hence longer
range than the flow caused by VY.

The case of nonuniform surface properties on a sphere can be handled
by (36) as well. For a field satisfying (32)—(33), use of (31) with b an
arbitrary function of position on the surface gives the following result
(Anderson 1985a):

U= [(b)l - % {(3nn— I)b):' ‘VY,, (37a)

9
Q= i (nb) x VY. (37b)

These expressions reduce to (34) when b is constant. The dipole moment
of bcreates a rotation tending to align the dipole with the gradient. Sample
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calculations indicate that a very small dipole moment of the zeta potential,
for example, could lead to almost total alignment of a particle in an
electric field. It is reasonable to expect that many colloidal particles have a
distribution of charge that leads to such a dipole moment. Colloid scientists
have not made an effort to detect the alignment of individual particles in
electric fields, probably because there has been unfailing belief in the
general applicability of (34) with { taken to be an area-averaged value.

Distortion of the Applied Field: Interfacial Polarization

The velocity of a spherical particle depends on the average driving force
(VY?®) over the particle’s surface, according to (31) and (36). The result
(34) was derived assuming the field variable obeys (32) and (33). There are
two situations where one of these equations is incorrect, as discussed
below.

If the ambient fluid undergoes forced convection in a direction per-
pendicular to the macroscopic gradient, the field variable may not be
described by the conduction equation. Convection has no effect on elec-
trical potential because the outer fluid is electrically neutral; thus, (34)
remains valid for electrophoresis. In the case of diffusiophoresis or ther-
mophoresis, however, fluid convection distorts the concentration or tem-
perature field about the particle, and thus (32a) must be replaced by the
steady convective-diffusion equation. Convection reduces the magnitude
of VY* (Leal 1973), and at very strong flows (large Peclet numbers) the
gradient approaches zero everywhere along the surface (Nir & Acrivos
1976). This “micromixing” effect of laminar flow about a particle reduces
the phoretic velocity (Anderson et al. 1987).

Polarization of the interfacial layer could also result from a strong
attractive interaction between solute molecules and a particle’s surface,
thus causing (34) to be incorrect even at very small values of d/R. This
is because boundary condition (33) is derived from a simple geometric
argument based on the fact that the area for transport within the interfacial
layer is O(3/R) compared with the area for diffusion from the outer fluid
into the interfacial region. Dukhin (see Dukhin & Derjaguin 1974) noted
that if there is strong attraction between solute molecules and the surface,
then the excess solute concentration in the interfacial layer, whichis O(K/J)
larger than the concentration in the outer fluid, is quite large. Therefore,
the ratio of the solute transport rate within the interfacial region to the
transport rate in the outer fluid is actually O(K/R), which could be sig-
nificant even if the interfacial layer is very thin. Dukhin’s arguments are
somewhat obscure; Fixman (1980) and O’Brien (1983) have reformulated
these ideas in a tighter mathematical development.

The essential feature of interfacial polarization is that transport within
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the interfacial region affects the distribution of chemical species in the
outer fluid. In the case of diffusiophoresis caused by gradients of neutral
solute molecules, (33) is replaced by

onST:n-VY = —V2Y, (38)

where V{ is the two-dimensional Laplacian in the plane of the interface.?
The right-hand side is a “surface-conduction” term that results from
integrating the diffusive and convective transport of solute over the thick-
ness of the interfacial layer (Anderson & Prieve 1988). The surface con-
ductivity 4 is of order K [defined in (11)], so that the right side is O(K/R)
relative to the left. If (38) is used instead of (33), the velocity of a spherical
particle is given by

U= (1+4/a) 'bVY,,. (39)

This result, which is exact in the asymptotic limit §/a — 0, says that for
large particles U is independent of particle size, while for particles smaller
than 4 the velocity is proportional to particle size.

Forelectrophoresis and diffusiophoresis in gradients of charged solutes,
the analysis of polarization is more involved because conservation equa-
tions must be solved for both the electrical potential and the electrolyte
concentration. O’Brien (1983) has developed a model for handling thin
double layers that is based on the original work of Dukhin. O’Brien &
Hunter (1981) used this model to derive an analytical expression for the
electrophoretic mobility of a spherical particle, which agrees very well with
the numerical solution to the electrophoretic problem (O’Brien & White
1978) over a broad range of { and xa. The essence of the model is the use
of (38) as a boundary condition for the transport of electrolyte (¥ = C)
and charge (Y = ¥). The A-values are calculated by integrating the diffusive
and convective flux of the counterion (the ion of the electrolyte having a
charge opposite in sign to the zeta potential) over the thickness of the
double layer. The right side of (38) is order (xa)~'exp[Ze|(|/2kT] com-
pared with the left side, so that the classical boundary condition (33) does
not necessarily apply if the zeta potential is too large, even if (ka)~' is
small.

A most intriguing effect of double-layer polarization was discovered by
Prieve & Roman (1987) for diffusiophoresis in gradients of electrolytes for
which the ion mobilities are equal (f = 0). From (17) one might infer that
only the second term on the right side of (18) makes a contribution to the
velocity when = 0. It can be shown that this term (the chemiphoretic
effect) always causes a slip velocity toward lower electrolyte concentration,

3V, is the projection of the gradient operator onto the surface: V, = (I —nn)- V.
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meaning a colloidal particle should move toward higher electrolyte con-
centration. While this is true for small magnitudes of {, Prieve & Roman’s
numerical solution of the relevant transport equations indicates that the
particle’s velocity reverses direction at large values of {. An explanation
for this reversal is found by realizing that (17) only applies when there is
zero current; a finite £° can develop along the particle’s surface, even when
B =0, because of the capacity of the double layer to carry significant
current via transport of the counterion. Since the total current must be
zero, one can easily demonstrate that the induced electric field is directed
such that it forces the particle in a direction opposite to the chemiphoretic
effect. As the magnitude of { increases, the chemiphoretic contribution
decreases and the electrophoretic effect increases, and a change in the
direction of movement of the particle occurs.

Nonspherical Particles

From Morrison’s (1970) analysis we know that (34) is a general solution
to (30)—(33) for particles of any shape. The important assumptions are (a)
that ¢ is everywhere much smaller than the local mean radius of curvature
of the particle, (b) that polarization effects are negligible, and (c) that b is
constant over the particle’s surface. The electrophoretic behavior of spher-
oids has been modeled when the second (O’Brien & Ward 1988) or third
(Fair & Anderson 1988) assumption is relaxed.

As discussed in the previous section, double-layer polarization is a
significant factor in reducing the electrophoretic mobility of a particle
when (kR) ' exp[Ze|(|/2kT]is O(1). With spheroids the mobility becomes
anisotropic, with the two principal mobility coefficients being smaller than
the Smoluchowski value and unequal. Under polarized conditions, then,
the velocity of a particle is no longer collinear with the applied electric
field; however, polarization causes no rotational motions, so that a particle
will not align itself with the field because of these effects.

When polarization is negligible but { (or b) varies over the particle’s
surface, the dynamics are even more interesting. A dipole moment of ¢
causes rotation of the particle toward alignment of the axis with the applied
field. A significant quadrupole moment causes movement skew to the field
at an angle dependent upon the orientation of the particle’s axis. Finally,
the mean electrophoretic velocity, found by ensemble averaging over all
particle orientations, is not always proportional to the area-averaged value
of {. This means that a measured zero mobility for a particle in an electric
field does not necessarily imply zero net charge or potential on the particle,
a conclusion that might have important consequences on how data for the
electrophoretic mobility of certain minerals are interpreted. For example,
kaolinite clay particles are thin disks with a different charge on the edges
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(neutral or positive) than the faces (negative). Over a broad range of pH
these particles have a large quadrupole moment, which could lead to an
appreciable electrophoretic mobility even when the average zeta potential
(and charge) over the entire surface is zero (Fair & Anderson 1988).*

Fluid Particles: Role of Stress Discontinuity Versus Slip
Velocity

Interfacial forces acting on fluid particles cause velocities that are pro-
portional to the size of the particle, as shown by (1), while the velocity of
solid particles is essentially independent of their size as long as polarization
effects are small. This fundamental difference begs an explanation, which
I attempt below. Note that the distinction between “fluid” and “solid” is
not very important to transport by body forces (e.g. sedimentation), since
the mobility of a gas bubble is only 33% greater than that of a solid
particle.

The essential point is that the fluid-dynamical boundary condition at an
interface is composed of two parts, discontinuities in both stress and
velocity. For a fluid particle, the Stokes equations must be solved inside
(denoted by an overbar) and outside to satisfy the following conditions at
the surface S*:

n-[g—a6] (1—nn) = 1°, (40a)
V-V =1V, (40b)

plus a normal-stress condition based on the Young-Laplace equation that
is only important for nonspherical droplets. From the discussion of the
previous section [see (29)], we have

)
T~ VY?, Vi~ —ETS (4])

Since viscous stresses in the outer fluids are O(nU/R), where R is the
particle’s size, the stress discontinuity caused by the applied field results
in a particle velocity ~(R/n)VY,. The slip velocity, on the other hand,
results in a particle velocity ~v* that is independent of R. For spherical
particles of radius a, Lamb’s general solution to the Stokes equations can
be used in conjunction with (40) and the zero-force constraint to obtain a
general formula for the particle’s velocity:

4To generalize the analysis by Fair & Anderson (1988) to any phoretic mechanism of
transport, replace ¢{/4nn by —b, where b is defined by (31).
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37 a
_— S S 4
2n+377<v>+2n+3ﬁ<r % (42)

where, as before, the brackets denote an average over the surface area (S+)
of the particle. The above result is valid for arbitrary v* and 7° as long as
n- v’ = 0. Ruckenstein (1981) first proposed that motion of a fluid particle
in a solute concentration gradient is the sum of motions caused by the
Marangoni effect (~ ¢°) and diffusiophoresis ( ~ v*).

To illustrate the transition from fluid to solid behavior, consider diffu-
siophoresis of a spherical droplet in a nonelectrolyte gradient (Y = C) and
assume that the solute has negligible solubility inside the droplet. The
variation of interfacial tension is related to the excess of solute by the
Gibbs relation [Hiemenz 1986; see also (7), (11), and (29a) herein], so we
have

T = ~Vy=kTKVC®, (43)

assuming that there is no contamination of the interface by extraneous
surface-active chemical species. The local driving force VC*® is found by
solving (32)—(33); substitution of the result into (42) gives

_ M]EZK 1
U“[2+3(ﬁ/n) g XVCe 4

where L* is defined by (11). Because a » L* in general, particles for which
i/n is O(1) are “fluid”; their velocity is controlled by the gradient in
interfacial tension. The particles become “‘solid”” when the internal vis-
cosity is so high that 7j/5 > a/L*; in this case the slip velocity essentially
determines the velocity.

BOUNDED SYSTEMS

Effects of boundaries on interfacially driven motions of particles are con-
siderably weaker than for movement by body forces such as gravity. There
are two reasons for this. First, the velocity field about an isolated particle
undergoing phoretic transport decays as r~* [see (35)], compared with r~!
for sedimentation, which means that a boundary at distance A from the
particle will exert a viscous retardation of O(h ) on the particle. Second,
the boundary affects the field variable and thus alters the driving force
(VY®) on the particle’s surface. This second effect is also O(h~?), but it
often enhances the surface gradient, thereby tending to increase the pho-
retic velocity. In fact, there is one case (Keh & Chen 1988) where the
enhancement of the driving force is greater than the viscous retardation,
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and the velocity of a particle moving parallel to a flat wall is actually
greater when it is very near the wall than far away.

Interactions Among Particles

A rather amazing fact is that the phoretic velocity of each of a group of
N solid particles in an unbounded fluid, all of which have the same slip-
velocity coefficient b, is unaffected by the presence of the other particles.
The velocity of each particle is given by (34) no matter what the con-
figuration of the particles; that is, there is no net effect of particle inter-
actions. The particles can be of arbitrary shape and size, as long as 6 « R
and the surface-to-surface spacing between any two particles is always
much greater than §. A proof of this statement rests on the observation
that the velocity field of the fluid can be expressed as a potential flow
(v= V@*). Since both Y and ®* must satisfy Laplace’s equation in the
fluid surrounding the particles, the function G = bY + ®* must also satisfy
Laplace’s equation with the following boundary conditions:

onS/: VG=UU,; (i=1-N),

(45)
x| > c0: G—bVY, X,

where S} designates the (outer) surface of the ith particle and U; is a
constant for each i. A solution for G can only be found by letting
U, =U = bVY_ for all N particles; G then equals bVY, - x at all points in
the fluid. Furthermore, none of the particles rotates.

If the slip-velocity coefficient varies among the particles, however, par-
ticle interactions do affect the velocity of each particle. The particle ve-
locities are obtained by solving Laplace’s equation for Y, with (33) used
on the surface of each particle. The Stokes equations must then be solved
allowing for the slip velocity on the surface of each particle. The trans-
lational and angular velocities of each particle are determined such that
the force and torque on it are zero. The two-sphere dynamics has the
following form:

U, =M;;"U;p+M,* Uy,

(46)
M,; = 4,ee+ B, (1—ee),

where U,y = b,VY, and e is the unit vector pointing along the line between
the particle centers. The mobility coefficients 4;; and B; are functions of
the center-to-center distance r and the radii of the spheres, a, and a,. Reed
& Morrison (1976)° numerically solved the case of two equal-size spheres

5 They specifically considered electrophoresis, but their results apply to general phoretic
transport by setting b,/b, = {,/{,.
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for a range of afr and b,/b,. As expected, there is no effect of particle
interactions when b,/b, = 1; thus, we know that 4,,=1—4,; and
B, = 1 — By, at all separations.

The two-sphere problem can be approximately solved for arbitrary a,/a,
by a method of reflections (Chen & Keh 1988) that builds on knowing
how an isolated particle responds to applied fields Y (x) and v(x) (Keh &
Anderson 1985). The following is correct to O(r~°):

a,\ 13 (aay)’
A11=1—( 2>—_(12')" Ay =1--4,

r 2 .
1 az3 l(alaz)3 “7)
Bu=1+3(Z)+7 0, Ba=1-8,

This approximation is in excellent agreement with the numerical cal-
culations of Reed & Morrison (1976) when a/r < 0.8. The interactions are
very weak compared with those between sedimenting particles (Batchelor
1976).

The above results are for solid, spherical particles propelled by a slip
velocity. The form of the interaction given in (46) also describes two
spherical fluid droplets whose motion is determined by the gradient in
interfacial tension rather than the slip velocity. The velocity field about an
isolated droplet is given by (35), so that hydrodynamic interactions are
O(r~3). The velocities of two spherical droplets have been determined to
O(r~°) (Anderson 1985b). The coefficients 4;;and B, for two gas bubbles
are the same to O(r~?) as for two solid spheres.

Single Particle Near a Fixed Boundary

Electrophoretic motion of a spherical solid particle near a flat wall has
been determined approximately by using reflection techniques (Keh &
Anderson 1985) and more precisely by solving the relevant equations in
bipolar coordinates (Keh & Chen 1988). The results can be generalized to
any phoretic motion for which the field variable is described by (32)—(33)
and the slip velocity is given by (31) at all solid interfaces. The following
results for movement parallel and perpendicular to the wall were obtained
by a reflection technique and have an error of O(r~%):

3 5 6
u® = [1 - (%) + % (%) - % (g) ] (by—bu) VY., (48a)
U = [1 - g (%)3 + %( )ﬁ - g (f—l)ﬁ] VY., (48b)
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where b, and b,, are the slip-velocity coefficients of the particle and wall,
respectively, and 4 is the distance of the center of the particle from the
wall. For the parallel-motion case, the applied field generates a uniform
fluid velocity equal to —b,VY, in the absence of the particle. Note that in
deriving (48a), we assumed that the wall was nonconducting (n* VY = 0),
whereas in deriving (48b) we considered the wall to be a perfect conductor
(Y = 0); the latter condition corresponds to migration of charged particles
to an electrode surface. Also, (48a) applies to spheres that are free to
rotate. Numerical calculations of U over a broad range of a/h were
published by Morrison & Stukel (1970).

The calculations of Keh & Chen (1988) for U™ were carried to values
of a/h as large as 0.995, with the important assumption that A—a > §.
These calculations, shown in Figure 3, are in good agreement with (48a)
when a/h < 0.7; however, at closer distances U goes through a minimum
and then increases as a/h — 1, such that the particle moves faster than it
would at h— co. For example, at a/h = 0.995 the velocity of a freely
rotating sphere is 23% greater than if it were far from the wall. An
explanation of this enhancement of the velocity is that the driving force
on the particle’s surface (VY®) is increased enough in the thin gap region
to more than compensate for the larger viscous drag of the wall. A second

12 - ELECTROPHORESIS j
\ /

S
~ 0.8 a
>
06 SEDIMENTATION B
04 |- -1
0.2 1 1 1 1 1} [} 1 1 L
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Figure 3 Wall effects on sedimentation and electrophoresis (Keh & Chen 1988) of a freely
rotating sphere. The “‘electrophoresis” curve applies to all phenomena listed in Table 1 as
long as #i—a = §, where § is the thickness of the interfacial region (x~' for electrophoresis).
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interesting trend of Keh & Chen’s calculations is that the particle’s velocity
is greater if rotation of the particle is prohibited, opposite to the behavior
of a sphere undergoing sedimentation near a flat wall.

Because the effect of a fixed boundary on phoretic motion is so weak,
one can imagine that a very thin fluid gap between a particle and a wall
could ““guide” the particle along a two-dimensional surface. Lubrication
forces would stabilize the position (4) relative to the wall, while the particle
remains relatively free to move in two dimensions by, say, an electric field
applied parallel to the wall. This concept might apply to explaining the
directed transport of colloidal-sized particles (vesicles) along fibrils extend-
ing throughout the interior of biological cells (Allen 1987, Miller et al.
1987).

The hindrance to phoretic motion experienced by a solid sphere on the
centerline between two parallel plates or in a long circular tube has been
determined to O(4°), where A is the ratio of the particle radius to the half-
separation between the plates or the tube radius (Keh & Anderson 1985).
For transport in a circular tube, we have

dy.,
U, =1 1.28994°41.89634°~ 102784 (hy - bu) (49)
iz

with an error of O(4®). The term in brackets is plotted in Figure 4 along
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Figure 4 Sedimcntation and electrophoresis of a sphere on the centerline of a long circular
tube. The sedimentation results were taken from Happel & Brenner (1973). The “electro-
phoresis” curve applies to all phenomena listed in Table 1 and was computed from (49).
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with the hindrance to movement by sedimentation. Clearly the wall effect
is much weaker for the phoretic motion.

Thermocapillary transport of a spherical gas bubble near a flat wall has
been studied by Meyyappan et al. (1981) for motion perpendicular to the
wall and by Meyyappan & Subramanian (1987) for parallel motion. The
dominant driving force for clean bubbles is the gradient of surface tension
resulting from a nonuniform temperature field. The Peclet (or, equiva-
lently, Marangoni) number is assumed small, so that when it is far from
the wall the bubble moves at a velocity given by (1), with C replaced by T
and 7 set equal to zero. The wall effect, reported as the ratio U(h)/U(0),
is determined numerically for a/h < 0.957 and found to be much weaker
than for gravity-driven motion of the bubble. As expected, the lowest order
wall effect is A7°.

EXPERIMENTAL STUDIES

The electrophoretic mobility, defined as the particle velocity divided by
theelectricfield, has stood as the most basic characterization of the charged
state of a colloidal system, especially one for which water is the suspending
fluid. Experimental problems associated with natural convection and non-
uniform electric fields have been overcome (Hunter 1981). Smoluchowski’s
Equation (34) has been the accepted model for converting measured
mobilities into zero potentials (see Table 1 for 4); however, experimentalists
have recently become aware of the limitations of this equation at high zeta
potential and now use the more precise theory embodied in the calculations
of O’Brien & White (1978), which are well approximated by the formula
derived by O’Brien & Hunter (1981).

Even though the number of publications reporting electrophoretic
measurements on colloids is probably in the thousands, there has been
little systematic and careful experimental study designed to evaluatc the
validity of the conventional electrokinetic theory (i.e. transport within the
double layer). Zukoski & Saville (1985) measured both the electrophoretic
mobility of latex particles at C, — 0, where C, is the particle concentration,
and O(C,) effects on the electrical conductance of suspensions of the
particles. Extraordinary efforts were made to clean the particles and elim-
inate contamination that would alter the surface properties of the particles.
At given conditions of pH and electrolyte concentration, each of these two
measurements can be related to the zeta potential of the particles through
the conventional electrokinetic theory; thus, by comparing the zeta poten-
tials deduced from each experiment, the veracity of the theory is tested. In
many cases Zukoski & Saville found good agreement, but there are some
serious discrepancies that cannot be rationalized by experimental uncer-
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tainties. These apparent inconsistencies have spurred the development of
corrections to the theory, such as allowing for “surface conduction” of
ions adsorbed on the particle’s surface.

Although the quantitative precision of the conventional theory of
electrokinetics may be questioned for the colloidal latex system, there is
no doubt that electric fields move charged colloidal particles and that
velocity gradients within the double layer are typically «U ~ 10° s~
General acceptance, or even appreciation, of diffusiophoresis and ther-
mophoresis is far less because very few experiments have been performed.
A problem with experimentally studying diffusiophoresis is that it is diffi-
cult to establish and maintain the steep concentration gradients needed to
produce velocities on the order of micrometers per second. Such gradients
occur in boundary layers, for example, at the surface of a rotating disk,
but the thinness of these boundary layers and the presence of a solid
boundary make determination of particle velocities ambiguous. The del-
eterious effects of natural convection also cause problems. Anderson &
Prieve (1984) review the literature dealing with experimental observations
of diffusiophoresis.

Lin & Prieve (1983) were among the first to demonstrate significant
diffusiophoretic transport. Their experimental method involved measure-
ment of deposition rates of latex particles onto a porous membrane when
the membrane separated a latex suspension from an electrolyte solution.
The electrolyte concentration gradient extended into the latex side of
the membrane through the diffusional mass-transfer boundary layer. The
pores were sufficiently small to prevent the particles from passing through
the membrane, so any particles that were transported through the electro-
lyte boundary layer deposited onto a film. The growth rate of this film,
which was a measure of the particle velocity in the boundary layer, cor-
related very well with the measured diffusion-induced electric field [see
anl. .

Another method for determining difTusiophoretic transport rates utilizes
a thin porous barrier (membrane) to separate solutions differing in solute
concentration. The pores should be small to stabilize the fluid against
convection but large enough to allow the particles to pass unhindered. By
measuring the flux of particles across the membrane under conditions of
large Peclet numbers, one can determine the diffusiophoretic velocity at
known values of the concentration and the concentration gradient of the
solute. Lechnick & Shaeiwitz (1984) used the membrane-flux technique to
measure the transport rate of latex particles in response to gradients of
electrolyte solutes. Two types of experiments were performed; in one set
the particle concentration was initially the same on both sides of the
membrane, while in the other set there was a particle-concentration gradi-
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ent at the onset. Both experiments gave clear evidence of diffusiophoresis,
but for various reasons the experimental results cannot be quantitatively
compared with theory.

Using the membrane technique, Ebel et al. (1988) made quantitatively
accurate determinations of diffusiophoretic velocities of 0.1-pm-diameter
latex spheres in electrolyte gradients. In one set of experiments they were
able to generate a rather large difference in particle concentration across
the membrane from an initially uniform particle system. In the other
experiments, where initially there was a particle-concentration difference,
their measurements of particle fluxes were converted to diffusiophoretic
velocities and then compared with the theory without any adjustable
parameters. As shown in Figure 5, the data demonstrate the predicted
linearity between U and VC, for fixed electrolyte concentration (C,),
and the experimental and theoretical predictions of velocity are in good
agreement.

A novel apparatus to study diffusiophoresis is the stopped-flow cell
developed by Staffeld & Quinn (1988a,b). A sharp boundary between
solutions that differ in solute concentration is formed using a stagnation
flow, as shown in Figure 6. Both solutions have the same concentration
of colloidal particles. When the flow stops, the solute gradient dissipates
by molecular diffusion, so that the diffusiophoretic velocity of the particles
is time dependent. A band of particle-rich fluid forms on the side of the
interface to which the particles are transported, and a depleted zone forms
on the other side. With electrolyte gradients, Staffeld & Quinn (1988a)
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Figure 5 Diffusiophoresis experiments of Ebel et al. (1988) with 0.1-um-diameter latex
particles. (@) Measured diffusiophoretic velocity versus electrolyte gradient. C, was fixed at
10~2 mol liter ! for all the data. (b) Experimental versus predicted values of particle velocity.
The predictions were made a priori from theory (Prieve et al. 1984, Pricve & Roman 1987)
using independently measured values of {.
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Figure 6 Diffusiophoretic experiments of Staffield & Quinn (1988a,b). (a) Planar stagnation
flow was used to establish a sharp boundary between two solutions having identical particle
concentrations C, but different solute concentrations (here shown as C,in the top fluid and
zero in the bottom fluid). (b) After the flow is stopped, diffusiophoresis couples with diffusion
to form a particle-rich band at dimensionless position Z,, which remains constant as the
solute gradient dissipates by molecular diffusion. D is the solute diffusion coefficient. The
curve for C,/C,, was drawn for a condition where the diffusiophoretic velocity is toward
higher solute concentration (b > 0).

found that the position x, of the peak of the particle-rich band moved
away from the initial boundary between the two solutions as the square-
root of time, as predicted from a differential material balance on the
particles that allows for both diffusion and diffusiophoresis. The theory
shows that the slope of x, versus ¢'/> depends on the coefficient relating the
diffusiophoretic velocity to the local solute gradient. The experimental
values of this slope for electrolyte gradients agree with predictions of
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diffusiophoretic velocities based on theory (Prieve et al. 1984, Prieve &
Roman 1987).

Staffeld & Quinn (1988b) also studied diffusiophoresis of micron-size
latex particles in gradients of small silica spheres and polymers (dextran).
For the silica gradient, the dominant solute/particle interactions were of
the hard-sphere type, so that the coefficient b should be given by (15) and
Table 1. As expected, the colloidal particles formed a band on the solute-
poor side of the interface. The diffusiophoretic velocities extracted from
the time dependence of movement of the particle band are in good agree-
ment with predictions based on (15), with the effective silica radius a equal
to the actual radius plus a small correction of O(x~'), where k! is the
Debye screening length of the solution. Diffusiophoresis of the particles
in dextran gradients also showed movement toward lower solute con-
centrations; however, there is currently no theory relating KL* to the
molecular size of flexible polymers.

These experiments by Staffeld & Quinn (1988a,b) represent the first
observations of diffusiophoresis in gradients of nonelectrolytes. However,
the solute/particle interactions were repulsive in their system, which caused
transport toward lower solute concentration. The search is still on for
experimental data for diffusiophoresis in systems where the solute is
strongly attracted to the particle. According to (11), such attraction could
result in significantly larger velocities than in the case of repulsive inter-
actions because the adsorption coefficient K might be orders of magnitude
larger than the length scale I* over which the interaction occurs. Derjaguin
et al. (1972) observed osmotic flows across porous membranes caused by
concentration gradients of molecular solutes that adsorbed to the pore
walls. The direction of flow in these osmotic experiments was from high
to low solute concentration, which is equivalent to suspended particles
moving toward higher solute concentration. Unfortunately, the osmotic
flows were weak, and quantitative interpretation of the data in terms of a
model for the slip velocity, such as (10), was not feasible.

Experimental studies of thermophoresis of colloidal particles suspended
in gases are numerous (see citations in Goren 1977, Rosner 1980) and
generally show transport in the direction of colder regions. The theory of
gas-phase thermophoresis is based on kinetic theory, which predicts that
momentum exchanged upon collisions between gas molecules and the
particle’s surface drives the transport. As Derjaguin et al. (1987) argue,
however, the mechanism for thermophoresis in liguids is not the same as
in gases. This is because the liquid state is dominated by configurational
effects of the molecules—that is, intermolecular potential energies—rather
than by kinetic exchange of momentum. Thus, the concept of collisions
between single molecules and a surface is inappropriate. for solid/liquid
interfaces.
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McNab & Meisen (1973) measured effects of vertical temperature gradi-
ents on the sedimentation rate of micron-size, polystyrene-latex spheres in
liquid water and hexane. The thermal gradient was oriented to maintain
astable density gradientin the liquid in order to avoid natural convection.
The thermophoretic velocity U, was determined by subtracting the sedi-
mentation rate measured at zero temperature gradient from the rate mea-
sured at a finite temperature gradient. For each liquid, U, was found to be
proportional to VT,, and directed toward colder regions (downward),
which shows that the slip velocity given by (19) is directed toward higher
temperature. Two particle sizes were used, 0.79 and 1.01 ym diameter; the
thermophoretic velocity was the same for both, prompting McNab &
Meisen to conclude that thermophoresis in liquids is independent of par-
ticle size, as one would expect if the transport is caused by a slip-velocity
phenomenon. Although McNab & Meisen were aware that the theory for
gas-phase thermophoresis does not apply to the liquid state, they still
correlated their data in a form used for gas-phase systems. In terms of my
nomenclature based on (31), their data can be summarized in the form

o
b= — T (50)
where v is the kinematic viscosity of the liquid at the ambient temperature
T,. (Note that my a is not the same as the o defined by McNab & Meisen.)
Correlation of (50) with the thermophoresis data for both particles and
both liquids gives a = 0.13, which is about a factor of 6 less than the
coefficient predicted from the theory for gases. There is no theoretical
reason for a being the same for both liquids.

Experimental studies of boundary or particle-particle effects are sparse,
but three such studies indicate the basic correctness of the theory. Zukoski
& Saville (1987) measured the electrophoretic mobility of concentrated
suspensions of red-blood-cell ““ghosts™ (i.e. cells that were lysed to remove
the contents and then “fixed”” chemically to form a more or less rigid
sphere several micrometers in diameter). The measurements were made by
following one “‘tracer” particle that was identical in size, shape, and surface
properties to the other particles. Data were obtained up to particle volume
fractions as high as 80%,; apparently there was some deformation of the
cells at these higher volume fractions. For any one population of cells, the
data of Zukoski & Saville are described by the following equation:

U= Uy(1—ko), (s1)

where ¢ is the volume fraction of particles. The empirical constant & is in
the range 0.97-1.12. There should be no net interaction for a group of
spheres of the same zeta potential in an unbounded fluid [see (45) and the
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surrounding discussion]; thus, a statistically homogeneous suspension of
spheres is slowed only by the average displacement velocity of the sus-
pending fluid, and from hydrodynamic considerations only we expect
k =1 (Anderson 1981). However, one might expect the mean electric field
in a bounded suspension of nonconducting particles to be affected by the
particles. The fact that Zukoski & Saville determined k to be close to unity
implies that the influence of the particles on the average electric field is
negligible. A rigorous theoretical explanation for this result is still sought.

In their measurements of diffusiophoretic velocities of particles in elec-
trolyte gradients, Ebel et al. (1988) observed a dependence of the velocity
on pore size that is expected from the weak dependence predicted by (49).
The transport rate is the product of the available area within the pore
times the mean diffusiophoretic velocity. At the highest electrolyte con-
centrations studied, a condition when ka ~ 50, the first-order pore-size
effect determined from the experiments is consistent with a pure excluded-
volume restriction on the transport area and regligible effect on the particle
velocity inside the pore. While these experiments support the predictions
of weak boundary effects on phoretic transport, there is a clear need for
further experiments that directly measure the velocity of a particle inside
a tube (pore) or near a fixed wall.

Differences between wall effects on gravity-driven transport of bubbles
versus thermocapillary transport are demonstrated in the experiments by
Merritt & Subramanian (1988). The velocity of a single gas bubble moving
perpendicular (downward) to a hot plate was measured as a function of
distance A from the plate. As the bubble moved toward higher tempera-
tures, its radius a increased significantly and was measured at each position
at which the velocity was determined. The measured bubble velocity was
essentially constant as 4 decreased. In an unbounded fluid, gravitational
forces would tend to move the bubble upward at a velocity ~ a?, whereas
thermocapillary forces force the bubble downward at a velocity ~a. The
fact that the measured net velocity of the bubble was constant as the bubble
approached the plate and a was increasing shows that the retardation of
gravity-driven motion was much greater than the retardation of thermo-
capillary motion. Merritt & Subramanian were able to quantitatively fit
their data with theoretical calculations of wall effects on thermocapillary
and gravity-driven transport, with the former being O(h~%) and the latter
oh™).

CONCLUDING REMARKS

It is important to recognize that phoretic transport of solid particles can
be fully understood only by considering the fluid dynamics within the
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interfacial region at a particle’s surface. While a thermodynamic analysis
may be appealing because of its apparent simplicity, thermodynamic prin-
ciples by themselves will not allow determination of the magnitude of
phoretic velocities or the.dependence on physical properties. In fact, the
belief that a particle will. spontaneously move to fluid regions where its
own chemical potential is lower is not always correct, because spontaneity
only requires that the free energy of the total system be lowered.

Two examples of cases where minimization of free energy of the particles
leads to erroneous predictions of the direction of motion can be cited. The
first is diffusiophoresis in gradients of electrolytes where the anion and
cation mobilities areequal (Prieve & Roman 1987). Atlargezeta potentials,
the direction of particle movement changes sign and the particle moves
toward lower electrolyte concentration where, at equilibrium conditions,
its chemical potential is increased. The second example is diffusiophoresis
in gradients of neutral solutes when K is positive but L* is negative [see
(11)}, a situation that could arise when there is a potential-energy barrier
to adsorption of the solute to the particle’s surface. In both of these cases,
a proper analysis of free-energy changes of the entire system (particle plus
solvent plus solute) is difficult because only a single particle is considered
or, equivalently, the particle concentration is taken to be very small
Dissipation of the solute gradient by molecular diffusion represents a
source of energy that could, in principle, drive the particle in either direc-
tion; only by solving the local conservation equations for mass, charge,
and momentum transport, which in themselves represent a minimization
of local free energy, can one determine the magnitude and direction of the
particle’s motion.

A third example of particles moving opposite to their apparent free-
energy driving force is found in the experiments of McNab & Meisen
(1973) on thermophoresis of solid particles in liquids. Interfacial free
energies are generally decreasing functions of temperature, so that particles
could lower their surface energy by moving toward hotter regions of a
fluid, as bubbles and drops do (Young et al. 1959); however, McNab &
Meisen observed thermal transport toward colder regions. It is apparent
that limited insight into phoretic transport processes can be gained by
merely looking at the interfacial free energy of solid particles and its
dependence on macroscopic field variables.

In addition to being important to colloid science and technologies associ-
ated with the colloidal state, phoretic transport processes may also be
important in certain phenomena in biological systems (Anderson 1986).
Self-locomotion (chemotaxis) of single biological cells not possessing fla-
gella (Waterbury et al. 1985) or of groups of cells (Bonner 1983) is still not
understood from a mechanics viewpoint. The directed motion of vesicles
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within cells (Allen 1987), which is an extremely important biological trans-
port process, has yet to be explained. What is certain about living cells is
that chemical energy is used to transport mass, charge, and momentum.
A more or less straightforward application of the ideas of this paper
would propose that the motility of biological particles is the result of a
macroscopic field acting on thcir surfaces. Whilc this is certainly a possi-
bility, the sensitivity of biological motility to very small gradients of chemi-
cal species suggests that a more creative use of phoretic transport principles
is needed.

Because living cells have internal mechanisms to convert one form of
energy to another, one could envision that a small gradient of a chemical
species outside a cell activates processes inside that cause the cell to create
a local, microscopic gradient of a property (say, electrical potential) that
propels the cell. For example, consider the hypothetical case of a spherical
cell that, when it senses a gradient of a certain chemical species outside
(VC,,), moves ions across its membrane. The current density across the
membrane, from inside to outside the cell, can be expressed as

onS*:j,=yn-VC,, (52)

where y is a constant, and n is the unit normal on the external surface S*
of the cell membrane. Integration of the current density over the surface
area gives a zero net exchange of charge, thus maintaining electroneutrality
of the cell’s interior. The conduction equation can be solved for the elec-
trical potential in the outer fluid, given (52) as a boundary condition. The
resulting electric field has a component tangent to the surface, which is
given by

onSt E = — % (I—nn)*VC,, (53)

where k. is the specific electrical conductivity of the outer fluid. After
substituting this field into the vectorial equivalent of (6) and then using
(36a) one finds that the cell moves at a velocity given by

1/ e \x
U= —Z|— )&V
3 <4m1) K Vo (54)
where ( is the zeta potential of the outer surface of the membrane. This
simple example illustrates how active processes in a “living” particle could
use the energy in a chemical gradient to propel the particle by self-elec-
trophoresis. Numerous other examples of varying complexity could be

envisioned to model locomotion. What is intriguing about such an
approach is not that it describes any specific natural phenomenon, but
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rather that it brings together concepts of fluid dynamics, surface chemistry,
and biology in ways not considered in traditional analyses.

The focus of this paper is on transport caused by a slip velocity directed
parallel to a solid surface. It is possible to have a v* that is directed
normal to the surface; this might occur if the surface were a semipermeable
membrane that allows the solvent to pass through in response to differences
in osmotic pressure I1. Obviously the interior of the particle must be fluid.
The membranous surface creates a no-slip condition on the tangential
component of the fluid velocity. In this case (36) still applies, but now (31)
is replaced by

onSt: v = Lp(ﬁs—<Hs>)n, (59)

where IT® is the local osmotic pressure at the outer surface, the brackets
denote the average over the surface area, and L, is a permeability
coefficient. The osmotic pressure depends on the concentration of a molec-
ular solute that cannot pass through the membrane; at low solute con-
centrations, we have I1 = kTC. If C is described by (32)—(33), then (36)
and (55) give the velocity of a spherical particle (called a “vesicle”) of
radius a:

U= — aTL" VIL,. (56)

Such movement by osmotic forces is called “osmophoresis” (Anderson
1983). The velocity field outside the vesicle is irrotational and has the
following form in a stationary reference frame:

v =(ar)) [I —3 %} U (57)

Fluid is sucked into the forward hemisphere by osmotic forces and ejected
across the rear hemisphere. Note that the velocity is independent of the
viscosity (1) of the external fluid. The reason for this is that the motion is
controlled by v*, which is determined by L,. However, if 5 is comparable
to a/L,, which is O(10°) poise or greater for lipid bilayer membranes and
a =~ 1 pum, then (56) is incorrect and U depends on 5~!.

A final reminder of the differences between phoretic motions and sedi-
mentation is provided by Figure 7. In both types of phoretic transport
the velocity is O(r~?), compared with the leading term of O(r~') for
sedimentation. This visualization makes obvious the fact that particle/
particle and particle/wall interactions are so different among these trans-
port phenomena.
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Figure 7 Streamlines for spherical particles moving by different transport mechanisms. The
streamlines for “electrophoresis” are the same for any of the phenomena listed in Table 1.
The numerical values on the streamlines are based on unit values of U and a. The
r-dependence of the far-field velocity is given at the bottom of each drawing.
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