Lecture 6: Transport Coefficients **Corresponding States**

Chemical Engineering 533: Transport Phenomena

Thermodynamic Corresponding States

Viscosity

The viscosity of liquids and gases are not very sensitive to pressure, except around the critical point.

Thermal Conductivity

Again, the thermal conductivity of liquids and gases are not very sensitive to pressure, except around the critical point.

Diffusivity

Diffusivity breaks the trend from the previous two cases.

Again, the diffusivity of liquids and gases are not very sensitive to pressure, except around the critical point.

Correlations for getting transport coefficients

Procedure A

Use a known (or predicted) viscosity (conductivity/diffusivity) at known T and P and find it on the chart. Then compute critical viscosity (conductivity/diffusivity) and use chart.

Procedure B

Use correlations below to find the critical viscosity (conductivity/diffusivity) and then use the chart to find your desired transport coefficient.

$$\mu_c = 7.70 M^{1/2} p_c^{2/3} T_c^{-1/6} \qquad \mu_c = 61.6 (MT_c)^{1/2} \tilde{V}_c^{-2/3}$$

$$(c\mathcal{D}_{AB})_{c} = 2.96 \times 10^{-6} \left(\frac{1}{M_{A}} + \frac{1}{M_{B}}\right)^{1/2} \frac{(p_{c,A}p_{c,B})^{1/3}}{(T_{c,A}T_{c,B})^{1/12}}$$

- μ in micropoise
- \mathcal{D}_{AB} in cm²/s

- • p_c in atm
- T_c in K
- V_c in cm³/g-mole
- c in g-mole/cm³

