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Lecture 2 Mechanics and Phase Space

I Classical Mechanics

A Newtonian Mechanics
We havetalkedabout thestatistics part of statistical
mechanics now weneed a quickreviewof the mechanics

part
Aside Why the multiplenames statisticalmechanics or

statistical thermodynamics They are equivalent Theformer

emphasizestheconnection to physics

Themechanics that youlearned in introductoryphysics is
Newtonian mechanics For a setof N particles Newton's

Second law is

Ii positionvectorofparticle i
midffs Ei Ei forceon particlei

mi massofparticlei

Often the force on a particle canbedescribedby a potential U
They are related by

E 2 Iill U U t ta In

If thereare no external forces andonly interactionsbetween

particles then the total potential U can besimplified to
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a sum of Ecce potentialsm betweenthe particles
U Uii l 1 E l Ui Vi pairwise potential

vii lki tjl
Example LennardJones potential

uij ri 42
Ui

2
minimum

we are going to need to compare Newtonianmechanics to two

othertypes ofmechanics Lagrangianand Hamiltonian so

I want todo a simpleexample We willalso want a

solvedproblem to discusstheconceptofphasespace
Example HarmonicOscillator

springpotential U kx
1199 particlemass m

initialconditions X o Xo V o V0

Newton'sequationofmotion

m F F kx kx

m hx 1 Emx o let width

19Td
w x 0 w is a frequency

Fs
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This is a secondorder homogeneousODE w isalways
positive so solutions aregivenby

E Asin wt Bcos wt A B are constants

solvingfor AandBfromthe initial condition

co A sin o Bcos o B Xo

u t 1 AwcosCorti Bwsin wt

v10 Awcos o Bwsin o Aw 20 A 28

So the final solution is

t sin wt Xocos wt

V t Nocos wt Xowsin wt

B Lagrangian Mechanics

Lagrangethoughtofmechanics differentlythanNewton Rather

than thinking of forces and inertia he thought that Nature

in somewaysalways acted optimallyn so in this way of

thinking the equations that governdynamics minimize

something This something is called the action

S L qi qi t g generalized
coordinates

Lagrangian generalizedvelocitiesaction

shorthand for L q 92 In 4 Init Nparticles
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Thegeneralizedcoordinates can be x y Z or they can be

a coordinatetransformation like r O in sphericalcoordinates

The generalized velocities are time derivatives of thegeneralized
coordinates Mathematically this is represented as

I I 91 92 1En 11 9 ki ka IN

12 91194 19N or 92 92 E E fu

IN IN 911921 EN EN EN In 521 In

The Lagrangian is like a cost that the particles pay
The action is a sum of thecost and minimizingthe action

gives us the path or trajectory with the least cost

Minimizing the actionfunctional gives the Euler Lagrange

equations for the ith particle

2 Eg 0 i in in

The Lagrangian is givenby

L k qi U qi K kinetic energy
u potentialenergy

so the system wants to chart a path that balances
kineticenergy andpotential energy

Let'sshow that the Euler Lagrangeequationsgive us the
same thingas Newton's2ⁿᵈLaw
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Equivalence of Lagrangian andNewtonian mechanics

Euler Lagrangeequation I particle constant m

Eg 450 v

Lagrangian
L K U K mv

Put together

Imu Ex Imu u o

doesntdependon

mu 44 0

mdf ma F

so the Lagrangianwayofdoingmechanics is equivalent
why learn it

It can solve someproblems much more easily

problems with constraints

problems in differentcoordinates no messy
coordinatetransforms

TheEulerLagrangeEq is invarianttocoordinatetransforms
proofinbook Thisisthereason for generalizedcoordinates

It comes up in stat thermo storyofyourlife TedChiang

Additionalphysicalprinciple wayofunderstandingtheworld
Connection toHamiltonian mechanics next
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To conclude lets solve an exampleproblemwith it

Example Pendulum with a Lagrangian

whatis ourgeneralizedcoordinate

if0107 00
r o x y couldbeanyo 0 I

mg Oistheeasiest

0 L K U

what is the kinetic energy
K Imf
v r G K mr 0

What is thepotentialenergy Assume 4 0 at y r

U mg yer thebottomof the pendulum

y roso U mg r rcoso

combinetoget L
K U mr 0 mgr 1 cos 0

Fo mr é

mgrsino

Plug intoEuler LagrangeEq

mro mgrsino 0 m g r are constants

mr mgrsin 0 0 1 sino 0
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Thisis a nonlinear2ⁿᵈorderODE we can solve it

numericallymornin the case where Occl In the latter

case

sin 0 0 keepto 1ˢᵗorderonly

4 9,0 0 0101 00 sameequation as
o 00 harmonic motion

but w 9 r

OH sin wt Docos wt
checkunits

O t Docos wt Dowsin wt D rad rads

w for w GET F I

Forthenumerical solution

1 w'sin0 0 w 9 r 1 w sino o 0

If 0 010 Do

CHamiltonian MechanicsandPhasespace

Lagrangian mechanics havesome advantages over Newtonian

mechanics suchas easiercoordinate transforms and theability
to moreeasily incorporate constraints However statistical
mechanics isusuallyexpressed in terms of Hamiltonianmechanics

I will first explain theequations and thenprovidesome.mn

perspective on why it is usedandwhat ithas todo with

phasespace



































































































































































































8
In Hamiltonian mechanics we work withgeneralized
coordinatesagain However a keydifference is that we
use a generalized momentum Pi rather than a generalized

velocityThemgneralizmomentum is defined in termsof
the Lagrangian

Notethechangein indexingfrom

pi
2

5 1,4 3N LagrangianMechanics we are

flattening the2Darrayto ID

Wkthegenevaliedmomentum Just like we have the

gen coordinate and gen velocity thisprovides a definition
of a momentum that is invariant to coordinate transformations

It makes our life easierwithdiffentcoordinatesystems

with this new coordinate that replaces fi we can define a

newquantity called the Hamiltonian by a Legendue transform
of the Lagrangian

H qi pi t Pi qi gilt 11

What is the Hamiltonian andwhatdoes it mean It is usually

the total energy except in rare circumstances

WhenistheHamiltonianequaltotheEnergy
11 thecoordinatetransform is timeindependent
21thepotential is velocityindependent

Demonstrationthat It is the total energy

L Kg U q AssumeCartesian ID
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L mv U p 2g In mv conventional
definitionof
momentum

H Gp L

Up L v mV mv U

mv U

H K TU

UsingthetotalderivativedH thederivative of equation I

and the EulerLagrangeequation gives Hamilton's equations

Two 1ˢᵗ order ODES
Ipi It Iq insteadof one 2ⁿᵈ

orderODE

It is oftenthe case in statmech that we have quantities
that are functionsof the piandqi e q pressure We can

use Hamilton'sequationstodescribethe dynamicsof these

quantitiestoo

Consider a quantity f that is a functionof the pi q
and time

f f qi pi t 0 1,2 3N

The total derivative of f is given by

128 Epift
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If totalchange as fmovesthroughphasespace

If changeof f at onepointin phasespace
Now usingHamilton'sequations

3 Eg analogousto the
materialderivative

as it is
convected

It Eg3 3
Howdoesf

chase

throughPhasspace

There is a compactwayofwritingthe sum on therighthand

side It is called a Poisson bracket

If It f H
equation of motion of f

A B Eg If

Why use Hamilton's E 0 M ratherthan Newton or Lagrange

1 LikeLagrange bettercoordinatetransforms than
Newton's E O M

121 Two 1storderGDEs can sometimesmake lifeeasier
especiallywhen numerically integrating

The realvalue ofHamiltonianmechanics is septual
retaneractic
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KeyConcept 1 Geometry

let us call the 6N dimensional space where N isthenumberof

particles definedby the Lagrangian variables qi andifi
Statespace In addition let us call the 6N dimensional

space definedbythe Hamiltoniancanonicalvariables ofand p

Preece
Phasespacehas an importantproperty that statespace is not

in iEiii.EEie i
deceit

A perhapssimplisticway to think about this is that

dqdq dqndpdp dpw const guaranteedfor
Pibutnotfor

Thisis a critical mathematical property because itallows us
todefine a probabilitydensity If phasespacechanged
volume then we couldnotnormalizeprobabilities

Anotherwaytothink aboutthis is that pi arethe proper variables

Theyare thecorrect conjugate variable to q

Show Python Example with symplecticand non symplectic

system
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There is an importanttheoremforstatisticalthermodynami's
that resultsfrom this property suppose that g p qi pi t
is the probabilitydensity of a giveninstance of a set of
molecules havingthe positions q andmomentapi The

symplectic property ofphase space implies that phase

space is like an incompressiblefluid i e that the

density isconstant Mathematically this is expressed as
PoissonBracket

If 9 o

Liouville'stheorem
9 or

Liouville'sEquation

1 ftp qi

change in probdensity changein probdensity as
at a given point inphasespace systemmoves inphasespace

This is a foundationalequation for non equilibriumstatmech

Wewillcomeback to it later For now justnotethat phase

space has this importantproperty

Finally notethat Liouville's equationalsoapplies at equilibrium
Here

O S H 0 andg seq
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Keyconcept2 Symmetry

Above we saw that dynamics can bethought of as motion

in phasespace Whatdoessymmetryof thismotionimply

First what do we mean by symmetry we mean that
when we do somekind of transformation somethingdoesnt

change

Example
Rotationof a
circle leavesthe
shapeunchanged

So it is rotationally
invariant or
rotationallysymmetric

Invariance of theequationsofmotion to transformation are

kinds of symmetries as well

Noether'shoremm saysthat it thesystem's dynamics
have a symmetry then this impliesthere is a conserved

quantity that correspondstothat symmetry

Example time invariance

Suppose that H H qi pi not afunction of time

4H H H 3 o is impliedfromabove
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H H I 384 0

Time invariance implies that It doesn't change

18 o 14 07
Inotherwords

ofmotiondon't ff.aeiYm
if the equations

other examples that I won'tprove are that translational

symmetry inphasespace means that linearenomentered

is conserved androtational symmetry inphasespace
means that agreements is conserved

If the Hamiltoniandoesn't explicitlydepend on time
conservedquantities can be identified using thePoisson
bracket

therefore it it
a It ftp.t

conserved

Example Linearmomentum is conserved

p H É 34 Iq Iq
aerobicpig for try
are independent if VFVq in q
variables I then 950
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Example N component harmonic oscillator

00 springpotential µ 22,4
Pringconstant

kineticenergy K I MVifun particlemass

initial conditions

X O Xi Vi o Vigo

tree
compareand contrastwith Lagrangianformalism

L K U q giver

Ei Eq O 184 O

L MV kx ftp.emvify kxi

mri Kx 0 and Kx o

d Ex

4 w xi o w km

Vilo Vip Xild Xio

Hamiltonianformalism

H KtU q Xi pi
MV a Pim

3 pi 2 Hamilton'sequations
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3 Ei H I mV kx

EI thxhx

4 In 4 ex

X 0 Xio Pilo MVico

what about if we add friction a dampedoscillator

Wedon'tgetHamilton'sequations becausethe system
is not conservative The equations of motion are

4 Em If kxi.my
friction proportional
to pi with friction
coefficient 8

410 Xi o Pilo MVico
hasunits ofIme

D Some Extra Examples

Example N component pendulumusingHamiltonian mechanics

compareand contrast withthe Lagrangian frameworkabove

Ñ m amemass.in
same length r

K Ʃ mrO

I mg r roso
K u

Imro mg r roosoi
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Needtowrite intermsofgeneralizedmomenta

Pi 3 _2 2
mr oi 0 It

H Ip 1mg r rcosoil findit intermsof pi
Nowgettheequations of motion

A
weneedthesec.fi p derivatives

Ip Ph o mgrsino now substituteback
intoHamilton'sEq's

It 1 mgrsino

Oilo Oi Pi o mr 0i o

Example Chainslidingoff a table

chainlength e massdensity

chainmass m

2

kineticenergy k xev

mv

Potentialenergy U F dz

Songdz



































































































































































































18

more potentialenergy
need afunction for m z

m O when z l x

m xx when z e
slope x

trent

Nowintegrateto findU const X x e

m Z X Z X l
u

migdz e

g ztx e dz xgz dz g x 1 dz

12 xg x e z xge xg x e l
x x

xge Xglx 17g e x
xgfx tg f fex x

1 9
2

so k Xlv U Xgx

L k U 2 Xlv 2 xgx

Fr 24 0 fixer xgx o

df Ex
dfe
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I QuantumMechanics
classicalmechanics isgreatformany manysituations However
if particles are small enough their quantum natureneeds

to beaccounted for We will quantify what smallenough

means in a fewminutes

Onequicknote I am not a quantummechanicsguy so please
forgive some ofmy ignorance in this area

A Mathematicsofwaves

It reallyhelps in QM to befamiliarwithwaves
let'squicklyreview

Classical wave equation in ID

2
2 2 1 U thingpropagating t time

C wavepropagationspeed X space

solutionfor a traveling wave

u A e ickx
wt Beilkx wt k wavenumber rata

W angularfrequency Usd

w 2nF 2T A B constantsdetermined
frequencly wavelength byICs BCs

continuouswavenumber
Recall Euler'sformula

Solutionfor a standingwave singlemode eit coso isino

U aé bewnt céʰn deik sino e O é I 2

discretewavenumber coso e e to 12

Noteforfuturelectures work thesetwoexamplesout morecarefully
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H ii É
tea

x

Ii Workout the solutionforthetravelingwave

É c k i k'cñ Fouriertransform

Étk'in o
é unit dxke W

u ethick2ⁿ odrder linear homogeneous
constantcoefficient

w so sins cosines

in A k e
kt

B k e ikat Ack eint BLE e wt

Boundary conditionsfor a theme with a

single wavelength Xo ko 24 20 wo Cho

1 o
u x t 1 u x t a e

box wot Definitionof
the B C

x t in o t 2 aé wots k ko TakeF T
of B C

Matchingwithour solutiongives

ñ k t 2 a e
int s k ko Ack eint BCE e int

ACK 0 B k 2 a Sckko
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Nowtake theinverseFouriertransform

u x t a e
box wot thesinglemodetraveling

wave we proscribed

at the boundaries

Iii workout asolutionfor a standing wave
Solvebyseparation ofvariables

2 c let u f t g x

211 a g it

442 112 8 mustequal a constant
because LHS fn of t

YEEifew.EEniEti andRsts fnofx

physical BCS

Solvetime ODE for f t

9 Fcf dff of o
2ndorder linear
constantcoefficient

f t a e
id't

be
t gives sines cosines

a orb depends on ICs
SolvespaceODEforg x

192 982 got
Again 2ⁿ odrder linear
constantcoefficient

Givessines cosines

g x c é de

Whenstationary onlyfixedvaluesof8 are allowed
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Example g o 0 g 2H 0 stringw fixedends

g o ceo de Ctd 0 c d

g2n ce.io2H deiol21t

d e2ti8 e
2ti8 we can identify8

as now
Zid sin 248 0

either do or

g x ce deik En th na 1

Putting it all togethergives

U X t g t f x

a e isn't be let ceilen deiknx

shiftbeett 2 Vnc Wn

UCX t e
wut beiwat c e iknx deing

Thisisforasinglemodeonly Forallmodesthesolutionis

UCXH E aé bent cethnx detent

iii uncertaintyprincipleof waves

Theabove illustrates an uncertainty principle between

X and K I know k exactly Thedeltafunctionsetsk ko
Becauseof this I have aplane wavespread outoverall x
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There is ageneraluncertaintyprinciple of Fouriertransform

conjugatevariables

Suppose I have a Gaussianfunction
4914Tariance

f x t.roexp Eor
TheFouriertransform of f is If
F k exp 144 4914Tariance

This isalso a Gaussian but the

variance is Yo 1
02

lets defineox o and of as follows

f k exp Efi of Yo

Therefore 02_Of 1

If thevariance in the positiongoesup down

then thevariance in the wavenumber k goesdown up

3Blue1Brownhas a good exampleforgiving us intuitionhere

If I am sitting at astoplight in the turn lane andthe
blinkers seem to be in sync frequency the longer I wait

themore sure I am that theydohave the samefrequency

In otherwords longertimestell me more information about

frequencies It wouldtakeinfinitetimetotell theywere
the exact same frequency and notjustoffby a littlebit
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Conversely supposetherewere verymanyfrequencies of
blinkers It wouldonlytakeaveryshort time to tell

theywere all different

whendid I know that theblinkers were thesame

Frequenciesveryclose spreadout over time

Frequencies spread out locatedmoreprecisely in time

B Wave Particle Duality
There is this sort of fundamentalsplit at the heart of
physics andreally in mathematics We have discrete

things e.g numberofapples and continuousthings e.g
time In physicspriorto c1900 and it should benoted
in everydayexperience theworld was neatly divided

into these two things Two pertinentexamples are

Light and else

Light was seen as continuous It obeyedmaxwell's

equations It propagates as a wave see above

2
22 c T E 12 c TB c speedoflight

E electricfield E magneticfield

Particles as we have beentalkingabout were seen as discrete
Elections were knowntobe a type ofparticle
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Therewere a series of surprising experimental discoveries

Thephotoelectriceffectdemonstrated that lighthad a

particlenature

Light t e minimum frequency of light
needed to excite an election

mmmmm higherintensitydidn'tmatter if
metallo fiction frequency toolow

Theconclusion is that light has a particle nature

photon and the energy of the light was hypothesized
tobegiven by

E hf or E hw K

Planck'sFormula h 6.626 1534 Js

Aside Planckdevelopedformula while tryingtosolvetheblackbody
radiation UV catastrophe Einsteinconnected it to thephoto

ÉbÉqueÉelectrohs Tattles Éeri

f

Tired
to have

a wave like character in the double slit experiment

expected

β
obtained
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Matterdiffracted interfered like light Show videofromwikipedia

Notes

Even one particleacts as if interfering withitself

Pattern is built upstatistically Particles appear
in a random fashion
If youtrytodetect the particlebefore it hits it

changes its state smallenough youcan'tmeasureinferring

Resultingconclusion matterparticles are wavelike in some way

I 4k Particlemomentum a wavenumber

Equations for E I are Planck Einsteinequations

They are fundamental to Q M They are like laws

Theyare postulatesbased on experimental observations

Aside Thesecond P E equation is equivalent to the
h verysmallnumberdeBroglie wavelength To a isbigwhenp

is small
Maintakeaways

Lightand matter arenot particles or waves they are
particle waves They are boththings This is whatis
meantby wave particleduality
Theseeffectsonlyhappen formatter if momentum is small

Example Colloidalparticle in water e.g polyethylene
Jie R 1mm speed v mms density g 19 cm
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m g p R 9n 4 1mm 4 1018m

m 4 10 kg

p mV 4 10 kg 1061 4 10
2
ksm s

x I is to my Em t.si'm

5,111 15 157 negligible
55 11

Example Electron accelerated at 100v

E qV ge 1.602 15190

E 1.6 1019c loov 1.6 10175

E 21m p J2meE me 9.109 10
3
kg

P 29.1 10
3
kg 1.6 10

17172

5 10
24
Kgms

x room 1.2A

atomicradiusof hydrogen ry 0.25A

17 5 definitelynot negligible

Measurementsalways result in interactions that cannot

beneglected Again this is a resultof scale E.g even a

single photon messes with the stateof an election
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C The SchrodingerEquation
So withthe idea thatmatteris a dual wave particle the

foundersofquantummechanics wanted to re write mechanics

in terms of wave equations

2 v21 2 waveequation

we saw above that the wave equation has a solution

for atraveling wave in ID

4 X t a e
Ex wt

We will now substitute the Planck Einstein equations into this

expression

E HW

k IDversion pay
Eth

k Plh

Y x t aexpli
ᵗt

This is a traveling wave particle infree space Thefounders

arrived at this by intuition bycombining ideas of waves
and particlemechanics We would like to go backwards
and find a differentialequation that is consistentwith
this solution Then perhaps we can solve more complex
problems What followshere isnotreally a derivation It
is more like theasonningthefounders of

QMusedtor

arrive at the SchrodingerEquation
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Let's first look at the time dependence Todothis we
will takethe timederivative of Taking the time
derivative gives

8 Epaexp i

in 2 E 4 Lik in2 E4

We willpausetherefornow andlook at the spatialdependence
next Taking the derivativeof withrespecttospacetwice

2 a exp i Itu
2 E 4 24 m p24

Recallthat the energy of a freelymovingparticleconsistsof the
kinetic energyonly

E mv Em p 2mE

So

712 E4

Puttingboththe timederivativeand thespatialderivative

togethergives
Hamiltonian

in 3 Em in E a
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For a particle in a potential the Hamiltonian is actually

it K in Em tie
andthe differentialequation can bewritten as

in 3 EmExtue 4

Whatdid wedo
we usedthe Planck Einstein equationsand thesolution

for a planewaveto provide a wave likedifferential

equation in termsof theparticle Hamiltonian
More rigorously thisequation is a postulate or a law

like Newton's 2ⁿᵈ law

of course this equation is called Schrodinger's equation
Let's write out thegeneral 3D Iddntschdingr
Equations

in 4 k t In UCEt 411 t 147Ketvectorin
a Hilbertspace

in314 t Ltl 4 E It Hamiltonian operator

whentheHamiltoniandoesn'tdependon time the time dependent

equation can beformally integrated

14 t exp t 1411,07 operatormatrixin
an exponential
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Using a spectraldecomposition thiscanbewrittenas

411,4 Eanexp Et toner
Moreon thetime dependentsolution laterwhen we do some

examples Substituting justoneofthesemodes any n into

the SchrodingerEquationgives

in e then tis't u e
Entnone

4ir éÉ Eitu an é eating

Entner Emo tu 4n r

thisgivesus the so called TimeIndendantschrodingrequation

EmP u 4cn Enter

H Un Enlyn

This is an eigenvalueproblem Un istheeigenketvector or

eigenfunctionEn the energy is theeigenvalue

TheFouriertransform of the Schrodingerequationgives an
equation explicitin the momentum

in21 Fit ath Up p de
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F U p t theFouriertransformdefinition

FCU I F 4 plan e Ylede

Note thatthemomentumistheFourierconjugatevariabletoposition

uncertaintyprinciple

Anotherreason whypositionandmomentum are the
canonicalvariables in theHamiltonian

DExamples

Example 1 Particle inFreeSpace

Note to selfAddthisone nextyear

Example2 HarmonicOscillator

Reminder classicalHarmonicoscillator

springpotential U kx wmx

1119 particle mass m

initialconditions X o Xo V o V0

m 24

T Enx 0 w x 0 w 4m k wm

t sin wt Xocos wt

V t Nocos wt Xow sin wt
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BacktotheQuantumHarmonicOscillator AHO

The ID time dependent SchrodingerEquation is

in EE a 4 U mwx

in 112 2 tmw x y

Initialcondition 4 40 40 x

BoundaryConditions 41 0 t 4 x t 0

1 DimensionalAnalysis
First tosimplify letsmakethe problemdimensionless

x ̅ Ye title I 4 because 142dx

parameters m h w m kg h J's w Ys
T isprettystraightforward Let t W

l isnot as obvious We can leave it andsolvefor it while
we non dimensional.ae

alle cancelinve Em.de
n kmw EI

alsodivideby
hw

i Iw my éx ̅ i

let
m

1 e Iw e

A i24 17 1 5 x ̅ x 77 E wt
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Thedimensionlessequationhasthenatural length l Fmw and

time t 1 w units for this problem
Quickunitscheck Iw If kniff m

to s

Nowwe can focus on themath and add theunits parameters
back laterwhen we want them

ii separationofvariables

The equation is a linearPDE It is 1ˢ otrderin timeand
secondorderinspace It iscomplex There are various methods

ofsolution We will use themethodof separation of variables

i2 1222 1 24 Drop the tildes
Sort of like a diffusion
equation with a spatially

Assumetheformof a product dependentreaction but
solution complextime

4 f t g x

is f 121 Extg

ig 73 2 x'fg DividebyFg

É 12 222 x X Mustequal a constant

TydependsTfpends
on t on x
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We'vedividedour PDE into two ODES One is an ODE IVP in

time The other is an ODE BVP in space

2 If inf

x 1kg 2g

Thisis an eigenvalueproblem

Lgxg 2 11 2
eigenvalue differentialoperator

Haseigenfunctionsolutions

iii Solve ODE I

d ixf Idf itdt Inf ixt const

fit constexp ixt

Iv Solve ODE 2 time independent Schrodingerequation

1kg Xg 11 xg 2 9

42 2x x g 0

This is a 2ⁿodrder non constantcoefficientODE Non constant
coefficientODES are specialcases RememberBesselfunctions

sphericalBesselfunctions etc
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It turns out this ODE is more well known in a different
form We need to changevariables to beable to look it

up and use numericalpackages

let g x exp x2 h x

AsideWorkout the transformation

9
x e next é the

Fi ethnes meekness we Ii
fit e Ii

1 é n 2 5 2

4 é that

Substitute into theoriginalODE

x2 1 h 2x 1 if 2x x2 edh 0

T 2 h x21 2x x h 0

It 2xkt 2x 1 h 0

Thisequation iscalled Herediffeentialequation
Thisis asingularSturm Liouvilleeigenvalue problem

1h 8h I 2xEx 8 2 1
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Solutionsto Hermites DE are givenby a sumof

linearly independent eigenfunctions

next CHn x Czyn x where 8 2 n o 1,2
eigenvaluesHermitepolynomials Hermitefunctions

ofthe1ˢktind ofthe2ⁿᵈkind 27 1 2n

n

Aside Howdo we calculateHn x andYn x

TheHn x can beobtainedbytheexpression

Hnex i e d
n é

Ho x 1

H x file é e 2x ex 2x

HW 11 e e
X e 2574 25

2

4 2 2

Hyx 8 3 12x Hyx 16
4 48 2 22

fromWikipedia

Let'schecktomakesure these are actually solutions

11h 2xdate 2n next 0

4 0 Ho 1 911 0 o 2x 072.0 1

net H 2x 2 so 0 2 2 2 1 2x 0

4 2 Hz 4 2 2 11 8x 8 8 2x 81 22 422 O



































































































































































































38

the problem is findingwhat istabulated Kummer's DE isgivenby

2122 b z Tz aw 0

It hassolutions M a b Z and U a b z which are called

confluent hypergeometricfunctions ofthefirst M and
second u kind Thesealso come up in theGraetzproblem
in forcedconvection

Alternatenotationfor M is

M a b z F a b z notationforgeneralized
hypergeometricseries

hypft isthenameofthePythontunction

OnecanwriteHermitepolynomialsandfunctionsusingconfluent

hypergeometricfunctions

Hnx 2 Uf 1 x hyperais thePythonfunction

Yn x M 12,1
M isalsoknownas Kummer's confluent hypergeometricfunction

U isalsoknown as Tricomi'sconfluenthypergeometricfunction

TheYn a cannotbephysicalsolutions Theydivergeto infinity at

pointsin the domain so 412 So thesecannot be

wave functions Yn x are notcompatible with BC s

we now have the solutionfor g x

g x c é Hn x








































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































