Lecture 6 - Random Vectors

A. Vectors and Tensors

A vector is defined as components to with unit directions ei,

$$\underline{x} = \sum_{i} x_{i} e_{i} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1}, x_{2}, \dots, x_{n} \end{bmatrix} \xrightarrow{\text{tran spose}}$$

$$\begin{bmatrix} x_{n} \end{bmatrix} \xrightarrow{\text{column vector}}$$

A tensor is defined similarly, except its components are indexed in two dimensions Aij and the directions are a unit dyad eiej

A =
$$\sum_{i}$$
 Aij $e_{i}e_{j}$ = \sum_{i} And Azz ... And Analysis a matrix with directions.

We will need some basic operations for these objects including sums, transpose, inner / dot product, trace, and norm. These are reviewed in the appendix.

B. Distributions

Just as we saw with the case with two variables, we can define multivariate joint cdfs, pdfs, and pmfs.

Joint cdf:

$$F(x_1, x_2, ..., x_n) = F(\underline{x}) = P(x_1 \leq x_1, x_2 \leq x_3, ..., x_n \leq x_n)$$

Joint pdf:

$$P(\underline{x} \in V) = \iint \iint f(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n = \iint f(\underline{x}) d\underline{x}$$

$$V \leftarrow \text{some "hypervolume"} V \qquad V$$

note that as before:

$$f(x) = \frac{\partial^n F}{\partial x_1 \partial x_2 \dots \partial x_n}$$

Relationship between CDF and PDF

Joint pmf:

$$P(X_1=x_1, X_2=x_2, ... X_n=x_n)=P(x_1, x_2, ... x_n)=P(\underline{x})$$

If we want to eliminate one (ormore) variables from the distribution, the process is called marginalization.

cdf marginalization:

$$F(x_1, x_2, ..., x_{n-1}) = F(x_1, x_2, ..., x_{n-1}, \infty)$$

pdf marginalization;

f(
$$x_1, x_2, ..., x_{n-1}$$
) =
$$\int_{-\infty}^{\infty} f(x_1, x_2, ..., x_{n-1}, x_n) dx_n$$

pmf marginalization:
$$p(x_1, x_2, ..., x_{n-1}) = \sum_{i=1}^{\infty} p(x_i, x_2, ..., x_{n-1}, x_n^i)$$

Notes:

- · We can marginalize ("integrate out") any variable, not just the last.
- · If we marginalize everything, we will get one (by axiom).

We can also have multivariate conditional distributions

$$f(x_1, x_2, ..., x_n) = f(x_n(x_1, x_2, ..., x_{n-1})) f(x_1, x_2, ..., x_{n-1})$$

conditional paf

Note: I'm omitting the discrete case. It is nearly identical to the continuous one.

we can decompose a pdf into successive conditional probabilities.

$$f(x_1, x_2, ..., x_n) = f(x_1) \prod_{i=2}^{n} f(x_i | x_1, x_2, ..., x_{i-1})$$

Example: n=3

$$f(x_1, x_2, x_3) = f(x_3 | x_1, x_2) f(x_1, x_2)$$

$$f(x_1, x_2, x_3) = f(x_3 | x_1, x_2) f(x_1, x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_2)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_3)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_3) f(x_2 | x_3)$$

$$f(x_1, x_2, x_3) = f(x_1 | x_2, x_3) f(x_1 | x_3) f(x_2 | x_3)$$

=
$$f(x_3|x_1,x_1)$$
 $f(x_2|x_1)$ $f(x_3|x_1,x_2)$ now do
= $f(x_1)$ $f(x_2|x_1)$ $f(x_3|x_1,x_2)$ ne arrange

Independence means:

$$f(x_1, x_2, ..., x_n) = f(x_1) f(x_2) ... f(x_n)$$

This is a pretty big assumption in multivariate cases. Sometimes less drastic assumptions such as pairwise independence are used.

Example: Full vs. Pairwise Independence for n=3

Full:
$$f(x_1, x_2, x_3) = f(x_1) f(x_2) f(x_3)$$

$$= f(x_3(x_1,x_2)) f(x_2|x_1) f(x_1)$$

$$f(x_2 \mid x_i) = f(x_2)$$

$$= f(x_1) f(x_2) f(x_3) \times (1, x_2)$$

This one stays

C. Expectation and moments

The expectation operator is a straightforward generalization.

$$E[g(\underline{x})] = \iiint g(\underline{x}) f(\underline{x}) d\underline{x}$$

mean:

$$\begin{bmatrix} E[x] \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \end{bmatrix} = m_n$$
we an vector
$$\begin{bmatrix} E[x_n] \end{bmatrix} = \begin{bmatrix} m_n \\ m_n \end{bmatrix}$$

2nd moments give a correlation matrix.

$$E[x_{1},x_{1}] = [x_{1},x_{2}] \dots E[x_{r},x_{n}]$$

$$E[x_{2},x_{1}] = [x_{2},x_{2}] \dots E[x_{r},x_{n}] = R$$

$$\vdots$$

$$E[x_{n},x_{1}] = [x_{n},x_{2}] \dots E[x_{n},x_{n}]$$

Centered second moments give a covariance matrix.

$$E\left[\left(X-\underline{M}\right)\left(\underline{x}-\underline{M}\right)\right] = \left[cou\left(x_{1},x_{1}\right) cou\left(x_{1},x_{2}\right) ... cou\left(x_{1},x_{2}\right)\right] = \underbrace{\left[\left(X-\underline{M}\right)\left(\underline{x}-\underline{M}\right)\right]}_{cou\left(x_{1},x_{1}\right) cov\left(x_{2},x_{2}\right) ... cou\left(x_{2},x_{2}\right)\right]}_{cou\left(x_{1},x_{2}\right) ... cou\left(x_{1},x_{2}\right)} = \underbrace{\left[cou\left(x_{1},x_{2}\right) ... cou\left(x_{1},x_{2}\right)\right]}_{cou\left(x_{1},x_{2}\right) ... cou\left(x_{1},x_{2}\right)}$$

One can also compute a cross-covariance matrix from two different random vectors

$$C_{xy} = E[(x-m_x)(y-m_y)]$$

Notes:

- · Both & and & are symmetric matrices.
- · Diagonal elements of C are the variance
- · If Cij = 0 for i = j (diagonal), then X; and X; are uncorrelated.

Finally, one can calculate the characteristic function using an n-dimensional tourier transform.

$$\phi(\underline{w}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\underline{w} \cdot \underline{x}} f(\underline{x}) d\underline{x} \qquad \underline{w} = \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}$$

$$f(\underline{x}) = \underbrace{1}_{(2\pi)}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\underline{w} \cdot \underline{x}} \phi(\underline{w}) d\underline{w}$$

The mean and components of the correlation matrix can be found using derivatives of \$(1).

$$\frac{\partial}{\partial \omega_{i}} \phi(\omega = 0) = i \, E[\omega_{i}]$$

$$\frac{\partial}{\partial \omega_{i}} \phi(\omega = 0) = -E[\omega_{i}\omega_{j}]$$

$$\frac{\partial}{\partial \omega_{i}} \partial \omega_{j}$$

D. n-Component Normal Distribution

The multivariate normal pof is given by

$$f(x) = \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$[(2\pi)^n \det C]^{\frac{1}{2}} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

$$= \frac{1}{(2\pi)^n \det C} \exp \left[-\frac{1}{2}(x-m) \cdot C \cdot (x-m)\right]$$

The characteristic function is given by: $\phi(\underline{\omega}) = \exp(i\underline{x} \cdot \underline{m} - \frac{1}{2}\underline{x} \cdot \underline{C} \cdot \underline{x})$

- · For a Gaussian random rector, uncorrelated = independent
- · Level sets of the density are ellipsoids centered at m.

Appendix: Vector and Matrix Operations

There are numerous algebraic and calculus operations performed on vectors and tensors. We only need to review a few.

For these examples, lets consider

$$\mathcal{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \mathcal{Y} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \quad \mathcal{A} = \begin{bmatrix} A_{\alpha} & A_{12} \\ A_{u} & A_{22} \end{bmatrix} \quad \mathcal{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{12} & B_{22} \end{bmatrix}$$

Transpose:

$$(Aij)^{-} Aji$$

$$= \begin{bmatrix} A_{ii} & A_{2i} \\ A_{i2} & A_{22} \end{bmatrix} \leftarrow \text{swap rows and}$$

$$= \begin{bmatrix} A_{i1} & A_{21} \\ A_{i2} & A_{22} \end{bmatrix} \leftarrow \text{swap rows and}$$

SUMS :

inner product:

$$\begin{array}{lll}
A \cdot B &= \sum_{k=1}^{n} A_{ik} B_{kj} &= \\
&= \sum_{k=1}^{n} A_{ik} B_{ik} &= \\
&= \sum_{k=1}^{n} A_{ik} B_$$

"matrix multiplication"

$$x \cdot y = \sum_{i=1}^{n} x_i y_i = x_i y_i + x_2 y_2$$
 "dof product"

Trace:

Norm:

$$\| \underline{x} \| = (\underline{x} \cdot \underline{x})^{1/2} = (\underline{x}, 2 + \underline{x}, 2)^{1/2}$$
 "distance formula"