

Douglas Tree and Kevin Dorfman

University of Minnesota Chem. Eng. and Mat. Sci.

APS March Meeting 2014 Denver, CO

The Excluded Volume Problem

Genomic Mapping

Wormlike Chains (WLC)

A Numerical Approach

- Traditional Metropolis Monte Carlo is impractical for chains longer than O(10³) beads.
- Pruned-enriched Rosenbluth Method (PERM)
 - Chain-growth Monte Carlo technique
 - Efficient for $O(10^4-10^5)$ beads
 - Applicable to confined and unconfined systems
 - Off-lattice
 - Can estimate free energies

Tree et al. Macromolecules. (2013) Grassberger. Phys. Rev. E. (1997). Prellberg and Krawczyk. Phys. Rev. Lett. (2004). ٠

Monomer Anisotropy

Free Solution DNA

Confined Chains

Bending Dominates

 $D \ll l_p$

EV Dominates

 $l_p^2/w \ll D \ll R$

Confined Chains

Bending Dominates $D \ll l_p$

Weak EV $l_p \ll D \ll l_p^2/w$

EV Dominates

 $l_p^2/w \ll D \ll R$

Confined Chains

Free Energy of Confinement

Application to DNA

• Using this approach we can calculate and understand relevant properties for DNA mapping devices.

Mean Extension

Tree et al. Phys. Rev. Lett. (2013) Wang et al. Macrmolecules (2011)

Diffusion/ Mobility

 $\mu = \mathcal{D}/k_B T \approx \langle \mathbf{\Omega}_{xx} \rangle$

Tree et al. Phys. Rev. Lett. (2012)

Fluctuations & Relaxation Time

 $\tau \sim \langle {\delta_X}^2 \rangle / \mu$

Tree et al. Biomicrofluidics (2013)

DNA in Nanochannels

DNA in Nanochannels

DNA in Nanochannels

Conclusion

- Genomic mapping is a modern application of the excluded volume problem for the confined biopolymer, DNA.
 - The crossover depends on the monomer anisotropy of the chain.
 - Properties relevant to genomic mapping can be obtained by advanced Monte Carlo techniques (i.e. PERM).

Acknowledgments

Yanwei Wang

Tree, D., Muralidhar, A., Doyle, P., Dorfman, K. Macromolecules. (2013). Doi: 10.1021/ma401507f

Tree, D., Wang, Y., Dorfman, K. Biomicrofluidics. (2013). Doi: 10.1063/1.4826156

Abhiram Muralidhar

Supercomputing Institute

Tree, D., Wang, Y., Dorfman, K. Phys. Rev. Lett. (2012).

Tree, D., Wang, Y., Dorfman, K. Phys. Rev. Lett. (2013).

Doi: 101103/PhysRevLett.108.228105

Doi: 10.1103/PhysRevLett.110.208103

