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Figure 1:  Rheology of various materials. 
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ABSTRACT 

 
As a cylinder spins in an infinite media, viscous shear 

forces induce fluid motion and circular streamlines are 
generated.  For Newtonian fluids, a simple analytical solution is 
possible and widely known.  The hydrodynamics of non-
Newtonian fluids, however, can be quite complex under such 
conditions.  This paper investigates the behavior of a wide 
range of non-Newtonian fluids in the infinite cylinder problem.  
The effective viscosity is determined from Prazyna’s visco-
plasticity model and the governing equation of momentum is 
solved numerically using an iterative control volume approach.  
It is found that velocity profiles for complex fluids can differ 
significantly from a constant viscosity analysis. 

NOMENCLATURE 
 
k   material property [Pa sm] 
m   material property 
Vθ   Fluid velocity [m/s] 
r   radial coordinate [m] 
ro cylinder radius [m] 
 
Greek symbols 
ε   effective strain-rate [1/s] 

θε r   strain-rate [1/s] 
η  effective viscosity [Pa s] 
τ   shear stress [Pa] 
ω   cylinder rotational speed [rad/s] 

 
INTRODUCTION 
 

The problem of an infinite cylinder spinning in a large 
fluid body has been extensively studied and can be found in any 
fluid mechanics textbook [1].  If the cylinder is spun about its 
axis then viscous forces will cause the surrounding fluid to 
move.  In the simplest case, the fluid behaves as a Newtonian 
fluid and streamlines are purely circular, that is, Vθ = f(r) and 
Vr = 0.  Note that this condition satisfies continuity identically.  
For such a case, an analytical solution can be obtained as 

r/rV 2
o ω=θ  and the solution is independent of viscosity.   

This problem has arisen in many engineering applications.  
In friction stir welding (FSW), for example, the welding tool 
consists of a blunt shoulder and a cylindrical pin.  During 

welding, the pin is completely immersed in the weld material 
and an infinite cylinder/fluid model can be used as a simplified 
approximation to determine the effected area of the weld.   

This problem, however, becomes much more complex if 
the fluid is non-Newtonian.  In a non-Newtonian fluid, the 
shear stress is not proportional to the fluid strain-rate.  Figure 1 
illustrates several rheological behaviors. Unlike a Newtonian 
fluid, some fluids may be shear-thinning or shear-thickening.  
Bingham plastics can actually withstand a finite shear force 
without deformation.   

 
 

 
Information currently published that specifically addresses 

a cylinder spinning in a non-Newtonian media is limited.  
Craster [2] has investigated a simplified model of a longitudinal 
shear flow of a Herschel-Bulkley material using Legendre and 
hypergeometric integral transformations.  Nakarmura et al., 
have developed a method to alter the viscosity of a fluid in 
order to control a rotating device [3].   This paper analyzes a 
rotating cylinder in an infinite non-Newtonian fluid.  The 
rheological model includes shear-thinning and shear-thickening 
fluids as well as simple and non-simple Bingham plastics. 
 
ANALYSIS 
 

Consider an infinite cylinder surrounded by an infinite 
non-Newtonian media.  If the cylinder is spun about its axis, 
then viscous forces will cause the surrounding fluid to move 
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(except, perhaps, for a Bingham plastic).  The governing 
equation for momentum is,  
                                  0

r
V

dr
dV

r
dr
d

=
η

−







η θθ                            (1) 

 
where η (the effective viscosity) is a function of strain-rate.  
Since viscosity is dependent on strain-rate (and thus velocity) 
this equation is non-linear.  

In general, the shear stress of the fluid is related to the rate 
of strain as mkε=τ  where k and m are material dependent 
constants and ε  is the effective strain-rate.  Note that for a 
Newtonian fluid m = 1 and k = µ (viscosity).  It can be shown 
that the effective strain-rate, describing strain due solely from 
plastic motion (neglecting any elastic deformation) is,   
                                         

θε=ε r32                                    (2) 
 

where the strain-rate can be determined from, 
 
                                  

r
dV V1

2 dr r
θ θ

θε  = − 
 

                                      (3) 

 
Finally, the effective viscosity of the fluid, η, can be 
determined from Prazyna’s visco-plasticity model [4] as,  
                                             3

τη ε=                                         (4) 
 
Since the governing equation is second order, two 

boundary conditions must be imposed.  The first bound 
condition, at the pin/fluid interface, can be quite complex.  For 
many fluids (especially Bingham plastics), this interface may 
experience a slip or even sticking and slipping condition.  Here 
only the simplest case of no slip is imposed:  
                                     ω== θ oo rV:rr                               (5) 
 

As the radial distance from the cylinder becomes large, the 
fluid velocity and the velocity gradient must both go to zero.  
Only one of these conditions may be applied, the latter is 
chosen here (the size of the domain is chosen such that the fluid 
velocity reaches zero before the end of the domain is reached),    
                                     0

dr
dV:r =∞→ θ                              (6) 

 
Because of the non-linear nature of Eq. (1), it is solved 

numerically using an iterative control volume approach [5].  
The radial domain is discretized and integration of the 
governing equation is preformed over an arbitrary cell (see 
Appendix A).  Boundary conditions are applied by integration 
of Eq. (1) over the boundary cells and applying the imposed 
conditions. This discretization procedure yields a system of 
coupled linear algebraic equations for the velocity distribution 
at all node points.  Iterations were preformed until the absolute 
maximum residual in Vθ (local imbalance in conservation of Vθ 
at any cell) was less than 10-5.  The solution requires 
specification of material properties k and m, the speed of the 
rotating cylinder, and the yield stress of the material (for 
Bingham plastics). 
 

RESULTS 
 

Figure 2 shows the variation of the effective viscosity in 
the radial domain.  At m = 0.1 (highly shear-thinning), the 
viscosity is low at the surface of the cylinder where velocity 
gradients are large.  Just a small distance away from the 
cylinder, however, the viscosity has increased several orders of 
magnitude.  Since η increases so rapidly, once it has increased 
by 2-3 orders of magnitude, the fluid must come to rest because 
their is not sufficient momentum to move such a “stiff” fluid.  
In reality, the viscosity would reach a limiting value at low 
strain-rates, but this limit would not effect the velocity profile 
as long as it is a few orders of magnitude larger than that 
predicted at r = ro.  As m increases, the variation of η becomes 
much less dramatic.  Once m becomes greater than one, the 
material is said to be shear-thickening, and high strain-rates 
near the rotating cylinder result in larger values of η compared 
to the far-field fluid.   

 
Changes in viscosity throughout the fluid significantly 

effect fluid motion. An investigation of velocity profiles, both 
for shear-thinning and shear- thickening fluids are presented in 
Figure 3 for a constant value of k.  Note that for m = 1, the 
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Figure 3:  Radial velocity profiles for shear-thinning (m < 1) and shear-
thickening (m > 1) fluids. 

Figure 2:  Radial viscosity distribution for shear-thinning (m < 1) 
and shear-thickening (m > 1) fluids. 
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material behaves as a Newtonian fluid, where by definition, the 
shear stress is directly proportional to the strain-rate of the 
fluid.  Although a simple analytical solution for this case is 
readily obtainable (Vθ = constant / r), it is shown in Figure 3 for 
comparison and completeness.  

In a highly shear-thinning fluid (m = 0.1) very little of the 
fluid is affected by the spinning cylinder.  This can be 
explained by the viscosity distribution throughout the media.   
Since η increases so rapidly, fluid a short distance away from 
the cylinder essentially behaves as a solid, where momentum in 
the thin region near the cylinder cannot move such a highly 
viscous material. 

At the other extreme, in a highly shear-thickening fluid (m 
= 1.7), η is large near the cylinder and decreases as the fluid 
motion decreases.  Since the momentum of the spinning shaft is 
imparted to such a relatively high viscous fluid (compared to 
the far-field fluid) momentum transfer is diffused more readily 
through the material.  This results in a significant area of 
influence in the fluid, where for m = 1.7 the effected area is 
greater than 100 times the shaft radius.   

Figure 4 shows the influence of k on the velocity profile 
(m being constant = 0.2).  It is interesting that the velocity 
profile becomes independent of k at both extreme values of k.  
For m = 0.2, for example, values of k less than approximately 1 
Pa sm produce an identical velocity distribution and likewise for 
k greater than approximately 1 kPa sm.  As m → 1, the range of 
the influence of k becomes even less, where at m = 1, k must 
have no influence as explained previously (constant viscosity).   

 

 
Another type of fluid behavior that is commonly 

encountered is that of Bingham plastics.  The major difference 
in these types of materials is that they can withstand a finite 
shear stress without deformation.  In reality, a rotating cylinder 
may not induce motion in such a material unless the friction 
generated is larger than the yield stress.  Here, for 
simplification, the no-slip condition is still imposed.  The yield 
condition is imposed in the numerical model by comparing the 
computed shear stress with the yield stress of the material.  If 
the shear stress computed at a particular node is not sufficient 
to cause yielding to occur, the effective viscosity is set several 
orders of magnitude larger than computed.  This ensures that 
the material at that node is stationary.    

Figure 5 illustrates velocity shapes for simple and non-
simple Bingham plastics.  The effect of the yield condition is 
apparent.  Once the velocity gradient of the plastic becomes 
sufficiently small, such that the yield condition is not met, the 
material suddenly stops.  The result is that penetration is 
retarded.   

 
 
CONCLUSION 
 

Fully-developed flow induced by a rotating cylinder has 
been investigated for several non-Newtonian fluids.  The 
governing differential equation for fluid momentum has been 
solved using an iterative numerical approach.  Results show 
that the velocity profile and area of influence for non-
Newtonian fluids differ from a simple Newtonian fluid.  A 
shear-thinning fluid results in reduced velocities and a smaller 
effected area, while the opposite is true for a shear-thickening 
material.  The penetration distance for Bingham Plastics is 
reduced due to the ability of the plastic to resist a shear load. 
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Figure 4: Radial velocity profiles of shear-thinning (m < 1) fluids at 
several stiffness, k, values. 
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APPENDIX A 
 

Derivation of Finite Difference Equations for Numerical 
Solution 

 
Consider viscous flow of a non-Newtonian fluid created by 
rotating an infinite cylinder in an infinite media.  The governing 
differential equation can be expressed as,  
 
                                    dV Vd r 0

dr dr r
θ θη

η  − = 
 

                             (A1) 

 
Assuming that the velocity profile is linear between nodes and 
treating the second term on the left-hand side of Eq. (A1) as a 
source term that is constant over the cell, integration over an 
arbitrary cell (P) gives, 
 
                            e e

w w

dV Vd r dr dr 0
dr dr r

θ θη
η  − = 

 
∫ ∫                      (A2) 

                                           
,E ,P ,P ,W e

e e w w P ,P
w

V V V V r
r r V ln 0

r r r
θ θ θ θ

θη η η
δ δ
− −

− − =                           (A3) 

 
where δr is the distance between nodes (also the cell width for a 
uniform grid), re and rw are the locations of the cells right and 
left control surfaces respectively.  (The definitions of all 
subscripts used here are shown graphically in Figure A1 unless 
specifically stated otherwise.)   

 
 
 
 
 
 
 
 
 
 
 

Adopting a standard form for the finite difference equations as 
aPVP = aEVE + aWVW + b, we now recognize from Eq. (A3) 
that  
 
                               e e

E
e

r
a

r
η
δ

= ,      w w
W

w

ra
r

η
δ

= ,              (A4a, b) 

                     
w

e
PWEP r

r
lnaaa η++= ,      b = 0            (A4c, d) 

 
Since the boundary condition at the cylinder/fluid interface is of 
Dirichlet type, we need only set aE = aW = 0, aP = 1, and b = roω 
(where ro and ω are the radius and angular speed respectively, 
of the cylinder) and no integration is required.  Integration over 
the boundary cell at r → ∞ (denoted as node “B”) yields, 
 

                            
B

B
B ,B

ww

dV rr V ln 0
dr r

θ
θη η− =                        (A5) 

 

By applying a Neumann type boundary condition (dVθ/dr = 0) 
at node “B” we obtain, 
 

,B ,W B
w w B ,B

w

V V rr V ln 0
r r

θ θ
θη η

δ
−

+ =                (A6) 

 
The coefficients for the finite difference equation are now 
recognized as, 
 
                              Ea 0= ,      w w

W
w

r
a

r
η
δ

= ,                          (A7a,b) 

                        B
P E W B

w

ra a a ln
r

η= + + ,      b 0=     (A7c,d) 

 
An important note is that the effective viscosity is evaluated at 
the control surfaces.  Since velocities are only determined at 
node points, η is only determined at node locations.  In order to 
calculate η at control surfaces, the harmonic mean is used.  For 
example, the viscosity at the right control surface of a cell 
would be,  
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Figure A1: Notation for an arbitrary discretized cell.


