8i.   Using the power series method, find complete solutions for the following differential equation

                                       

 

Solution:               

                                 is a singular point of given ODE (the only one).  It is desired to find a power series

                                solution about this point because in this case solution will be convergent for any .

 

                                Check if the point  is a regular singular point.

                                Rewrtite equation in normal form

                                           

 

                               

 

                                Then

 

                                                   is analytic with    

                                       is analytic with    

 

                                Construct indicial equation:

 

                               

                                                              

                                Let  and , then   (positive integer)

 

                                Consider case 2 of the Frobenius Theorem.

 

                                First solution can be found in the form:

                               

                                Differentiate it and substitute into equation

                               

                               

 

                               

 

                                                            recurrence formula for

 

 

                                Traditional function can be recognized.          

                                       

                                For second solution use Reduction formula:

 

                               

       

 

ALTERNATIVE Solution: 

       

                                Look for solution with the second root of indicial equation (if we anticipate the presence of ):

                               

 

                                Differentiate it and substitute into equation