8i.   Using the power series method, find complete solutions for the following differential equation

                                       

 

Solution:               

                                 is a singular point of given ODE (the only one).  It is desired to find a power series solution about this point because in this case solution will be convergent for any .

 

                                Check if the point  is a regular singular point.

                                Rewrtite equation in normal form

                                           

 

                               

 

                                Then

 

                                                   is analytic with    

                                       is analytic with    

 

                                Construct indicial equation:

 

                               

                                                              

                                Let  and , then   (positive integer)

 

                                Consider case 2 of the Frobenius Theorem.

 

                                First solution can be found in the form:

                               

                                Differentiate it and substitute into equation

                               

                               

 

                               

 

                               

 

                               

 

                                                 divide by

 

                                                                                       

                                                                                                           

 

 

                               

 

 

                               

                               

 

 

                               

                                       

                               

 

                                Use Identity Theorem (Theorem 2.6 p.160) – all coefficients in expansion are equal to zero:

 

                               

 

                               

 

                                                            recurrence formula for

 

                                               

                                               

                                Evaluate coefficients:

                               

                                           

 

                                           

 

                                           

 

                                           

 

                               

                                               

                                         

 

                                   

 

 

                                Write general solution:

 

                                  

                                                                                       

                                                                                       

                                                                                       

 

                                                                                           (see Theorem 2.5 4. p.159)

 

                                                                                       

 

                                                                                       

 

 

                                Second solution – Reduction formula:

 

                               

 

                               

 

                               

 

 

                                Therefore, absorbing coefficients by the arbitrary constants ,

                                The general solution can be written as

                                (see Section 5.6  Bessel Functions of half orders):

 

                                                                            

 

                                                                                               

 

                               

 

                                The graph of solution curves:

 

2.4-5 #8i

> restart;

General Solution:

> f:=c1/2*cos(x)/sqrt(x)+c2/2*sin(x)/sqrt(x);

Generate family of solution curves:

> f:={seq(seq(f,c1=-3..3),c2=-3..3)}:

> plot(f,x=0..4,y=-5..5,color=black);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALTERNATIVE Solution: 

 

                               

                                Look for solution with the second root of indicial equation (if we anticipate the presence of ):

 

                               

 

                                Differentiate it and substitute into equation

                               

                               

 

                               

                               

 

                               

                                                      divide by

 

                                                                                       

                                                                                                           

 

                               

                               

                               

 

                               

                               

                               

 

                                Use Identity Theorem (Theorem 2.6 p.160) – all coefficients in expansion are equal to zero:

 

                               

                               

 

                                                            recurrence formula for

 

                                               

                                               

                                Evaluate coefficients:

                               

                                           

 

                                           

 

                                           

                                           

                               

                                         

 

                                   

 

                                Write general solution: