#6

 

1)     Find the solution of the Poisson Equation

       

       

 

        in the domain subject to the boundary conditions:

        , ,  ,

 

2)     Sketch the graph of the solution for  ,  and

 

        a)     ,    

        b)    ,    

 

 

Feel free to modify the conditions, if you think that it improves the problem.

 

 


Solution:

 

I               Non-homogeneous equation with 2 homogeneous and 2 non-homogeneous boundary conditions.

Use the superposition principle to reduce the problem to set of basic problems (4.6.2 7-8, pp. 284-285):

 

1)    

 

        in the domain subject to the boundary conditions:

        , ,  ,

 

2)    

 

        in the domain subject to the boundary conditions:

        , ,  ,

 

3)    

 

        in the domain subject to the boundary conditions:

        , ,  ,

 

Then the total solution will be:

 

 

 

II             Solution of the basic problems:        

 

 

1)    Separation of variables:     

                                   

 

        Sturm-Liouville Problem (equation with two homogeneous b.c.):

                                                   

                                                               

       

 

        Second equation:

       

       

 

        Use shifted form of solution:

       

                       

        Apply          

        Therefore

       

       

 

        Write the solution in the form of infinite series:

       

 

        Apply the last b.c. to determine coefficients :

       

Treat it as the cosine Fourier series expansion of function , then coefficients are:

                                                       

    

Then solution is:

 

               

                       

 

2)    Separation of variables:     

                                      

 

        Sturm-Liouville Problem (equation with two homogeneous b.c.):

                                                

                                                             

       

 

        Second equation:

       

       

 

        The solution:

                              

 

       

        Apply  

        Therefore

       

       

 

        Write the solution in the form of infinite series:

       

 

        Apply the last b.c. to determine coefficients :

       

Treat it as the sine Fourier series expansion of function , then coefficients are:

                                                                       

    

Then solution is:

 

               

 

                               

 

3)  Poisson’s Equation

 

Sturm-Liouville Problem for X:

                                                     

                                                             

 

Sturm-Liouville Problem for Y:

                                         

                                                        

 

Solution:

 

               

 

         

 

 

Then the solution is:

 

 

 

The graph of solution for the case a):

,    

 

 

 

 

 

 

 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

Solution for case b) see in the Maple example.