9.     1.    Solve the Dirichlet problem for the Heat Equation:    

 

                       :    ,          

 

        Initial condition:                  

               

        Boundary conditions:         ,                  (Dirichlet)

                                                                          (Dirichlet)

       

        2.    Sketch the graph of solution for L=3 and a=0.1 and initial conditions:

 

                                a)           

                                b)   

                                c)                  cc)

 

        3.    Observe the Maximum principle for the Dirichlet problem for the Heat Equation

                       

 

Solution:

 

The Heat Equation.  1-D. Finite domain . Basic case:  2 b.c. are homogeneous, equatuion is homogeneous.

 

1) Separation of variables: 

                             

 

Sturm-Liouville Problem (equation with two homogeneous b.c.):

 

                               

                                 

 

Second equation:

 

The solution:

               

 

Write the solution in the form of the infinite series:

   

 

Apply the initial condition to determine coefficients :

 

Treat it as the sine Fourier series expansion of the function , then coefficients are:

                                               

   

       

Then solution is:

 

  

 

               

 

 

2) 

 

a) Case

 

 

 

b) Case

 

 

 

 

c-corrected) Case

 

then

 

    for  (orthogonality)

 

 

 

And solution becomes: