#16

                       

a)     Reduce the following BVP to Sturm-Liouville problem:

       

                                                                       

        and find eigenvalues and eigenfunctions        .

 

b)   Use the obtained set of eigenfunctions for generalized Fourier series representation of the                                

        function

 

        in the interval

 

        Sketch the graph for  and .

 

 


Solution:

 

The 2nd order ODE includes parameter.

We have to find the values of this parameter ()

for which ODE with boundary conditions has non-trivial solution .

 

The existence of such solution is provided by the Sturm-Liouville Theorem (4.5.3  p.268).

 

1)  Reduce our BVP to SLP:

 

 

Rewrite equation in self-adjoint form with the help of the multiplication factor (4.5.4 Eq.19 p.271):

Identify coefficients

 

        (self-adjoint form,  Eq.5)

 

           (operator form, Eq.13)

 

                                (both conditions are of the Dirichlet type)

 

According to Sturm-Liouville Theorem, this SLP has

infinitely many positive eigenvalues  for which

boundary value problem has non-trivial solution  (eigenfunctions).

 

2) Find eigenvalues and eigenfunctions (solve BVP)

 

2nd order ODE, homogeneous, with variable coefficients, linear, Euler-Cauchy type

 

Auxiliary equation (see table “linear o.d.e.” Euler-Cauchy Equation):

 

 

case 1                    

 

general solution  

 

apply boundary conditions:

 

     

    

 

Rewrite as a system in matrix form:

 

  because

Therefore, system has only the trivial solution

which yields the trivial solution of BVP.

Therefore, there is no eigenvalues in the interval

 

case 2        

 

general solution  

 

apply boundary conditions:

 

               

                    

It also yields the trivial solution.

case 3                    

 

 

 

general solution  

 

apply boundary conditions:

 

         

 

 

    

 

non-trivial solution only if

      

 

               eigenvalues

 

 

        eigenfunctions

 

 

 

     

               

               

               

               

               

 

 

 

b) Generalized Fourier series expansion:

 

 

 

Maple example for :

 

 

 

> f:=x*exp(-x);

> u[n]:=sin(n*Pi*ln(x))/sqrt(x);

> N2[n]:=int(u[n]^2,x=1..exp(1));

> c[n]:=int(f*u[n],x=1..exp(1));

> f5:=sum(c[n]*u[n]/N2[n],n=1..5):

> f20:=sum(c[n]*u[n]/N2[n],n=1..20):

> plot({f,f5,f20},x=1..exp(1),axes=boxed,color=black);