9. Hermite's differential equation with parameter λ is

$$y'' - 2xy' + \lambda y = 0 \qquad x \in (-\infty, \infty), \ \lambda \in \mathbb{R}$$
(HE)

a) Solve the HE by the power series method

b) Consider two linearly independent solutions $y_1(x) = ...$ $y_2(x) = ...$

which include parameter λ

c) If λ is a non-negative even integer, $\lambda = 0, 2, 4, ..., 2n, ...,$ then the series terminates, and one obtains, alternating for y_1 and y_2 , polynomials of degree *n*, which are multiples of so called Hermitian polynomials $H_n(x)$.

d) Rewrite HE in self-adjoint form and determine the weight function w(x)

e) Check if the HP are orthogonal with the weight function w(x) over $(-\infty,\infty)$:

$$\int_{-\infty}^{\infty} H_m(x) H_n(x) w(x) dx = 0 \quad \text{if} \quad m \neq n$$

f) Give an example of function representation into Fourier-Hermite series