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6.9 Solutions to the Exercises
HOMEWORK SET 6.1 (TOPOLOGY)

1. Letx, y ∈ R. Consider the maps

(a) d1(x, y) := (x− y)2

(b) d2(x, y) := |x2 − y2|

(c) d3(x, y) := |x− 3y|

(d) d4(x, y) :=
|x− y|

1 + |x− y|

Determine, which of these maps are metrics onR.

SOLUTION: (a) d1 is not a metric.d1 satisfies (M1) and (M2) but not (M3):
Choose for instancex = −1, y = 1 andz = 1. Then

4 = d1(−1, 1) 6≤ d1(−1, 0) + d2(0, 1) = 1 + 1

(b) d2 is not a metric.d2 does not satisfy (M1): Choose for instancex = 1 and
y = −1. Thend2(1,−1) = 0, however1 6= −1.

(c) d3 is not a metric.d3 does not satisfy (M1): Choose for instancex = 3 and
y = 1. Thend3(3, 1) = 0, but3 6= 1.

(d) d4 is a metric. (M1) and (M2) are clearly satisfied, sinced(x, y) = |x− y| is
a metric. To verify (M3) consider

|x− y|
1 + |x− y|

=
(

1
|x− y|

+ 1
)−1

which, since|x− y| ≤ |x− z|+ |z − y|,

≤
(

1
|x− z|+ |z − y|

+ 1
)−1

=
(

1 + |x− z|+ |z − y|
|x− z|+ |z − y|

)−1

=
|x− z|

1 + |x− z|+ |z − y|
+

|z − y|
1 + |x− z|+ |z − y|

≤ |x− z|
1 + |x− z|

+
|z − y|

1 + |z − y|

�

2. Let x = (0, 0) ∈ R2 and letr = 1. Visualize the neighborhoodN1(x) with
respect to
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(a) the Euclidean metric onR2,

(b) the maximum metric onR2,

(c) the city block metric onR2.

SOLUTION:

(a)

x

y

1

1

The neighborhood N1(0) relative
to the Euclidean metric on R

2. (b)

x

y

1

1

The neighborhood N1(0) relative
to the maximum metric on R

2.

(c)

x

y

1

1

The neighborhood N1(0) relative

to the city block metric on R
2. �

3. Construct a bounded set of real numbers with exactly three limit points.

SOLUTION: For instance, consider the set

E := { 1−n
n | n ∈ N} ∪ { 1

n | n ∈ N} ∪ {n+1
n | n ∈ N}.

�

4. LetE′ denote the set of all limit points of the setE ⊆ R.

(a) Show thatE′ is closed.

(b) Show thatE andE have the same limit points.

(c) DoE andE′ always have the same limit points?
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SOLUTION: (a) We have to show that every limit point ofE′ is a limit point

p q

x
Nr(p)

Nr−|p−q|(q)

The light gray disk visualizes the
neighborhood Nr(p). The dis-

tance between p and q is |p −
q|, the distance from q to the

boundary of the neighborhood
is r − |p − q|. The neighbor-

hood Nr−|p−q|(q) is visualized by
the gray disk. The point x of

Nr−|p−q|(q) is clearly in Nr(p).

of E. Supposep ∈ R is a limit point ofE′. By definition, for anyr > 0 there
exists a numberq ∈ Nr(p) ∩ E′ different fromp. As q ∈ E′, q is a limit point
of E. Hence, for all—and thus in particular—fors := r − |p − q| > 0 there
exists a numberx ∈ Ns(q) ∩ E different fromq. By the choice ofs, we have
Ns(q) ⊆ Nr(p). Thusx ∈ Nr(p)∩E andx 6= p. Hence,p is a limit point ofE.

(b) We have to show thatE′ =
(
E

)′
or, E′ ⊆

(
E

)′
andE′ ⊇

(
E

)′
.

We first showE′ ⊆
(
E

)′
: Let p ∈ E′ andr > 0. By definition, there exist a

point q ∈ Nr(p), q 6= p andq ∈ E. SinceE ⊆ E, q ∈ E. Hencep is a limit
point ofE, i.e.p ∈

(
E

)′
.

We now showE′ ⊇
(
E

)′
: Let p ∈

(
E

)′
and letr > 0. By definition, there

exists a pointq ∈ Nr(p), q 6= p andq ∈ E = E ∪E′. If q ∈ E′, we are done. If
q ∈ E thenp is a limit point ofE, i.e.p ∈ E′.

(c) No! Consider the set{ 1
n | n ∈ N}. ThenE′ = {0}, while

(
E′)′ = ∅. �

5. LetE ⊆ R2 be open. Is every point ofE a limit point ofE?

SOLUTION: Yes! Letx ∈ E. SinceE is open, there existsr0 > 0 such that
Nr0(x) ⊆ E. Now let r > 0. Without loss of generality, we can assume that
r ≤ r0, i.e.Nr(x) ⊆ Nr0(x) ⊆ E. Hence there exists a pointq ∈ Nr(x), q 6= x
andq ∈ E. Hencex is a limit point ofE, i.e.x ∈ E′. �

6. LetE ⊆ R2 be closed. Is every point ofE a limit point ofE?

SOLUTION: No! Consider the setE := {0}. E′ = ∅, thusE is closed.
However0 is not a limit point ofE (0 is an isolated point ofE). �

7. LetE ⊆ R. The setE◦ of all interior points ofE is called theinterior of E.

(a) Show thatE◦ is always open.

(b) Show:E is open⇔ E = E◦.

(c) DoE andE always have the same interior?

(d) Show that the complement ofE◦ is the closure of the compliment ofE.

SOLUTION: (a) By definition, we have to show that every pointx ∈ E◦ is
an interior point ofE◦, i.e. for anyx ∈ E◦ there exists ar > 0 such that
Nr(x) ⊆ E◦. To this end, letx ∈ E◦. Sincex is an interior point ofE, there
existsr > 0 such thatNr(x) ⊆ E. To show thatNr(x) ⊆ E◦, we have to
show that every point ofNr(x) is an interior point ofE. Let y ∈ Nr(x). Let
s := r − |x− y| > 0. Then,Ns(y) ⊆ Nr(x) ⊆ E. Hence,y is an interior point
of E, i.e.Nr(x) ⊆ E◦.
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(b) (⇒): SupposeE is open . Since, by definition,E◦ ⊆ E, we only have to
show thatE ⊆ E◦. To this end, letx ∈ E. SinceE is open,x is an interior
point ofE, i.e.x ∈ E◦.

(⇐): Now suppose thatE = E◦. We have to show thatE is open. But this is
clear, since every point ofE = E◦ is an interior point ofE.

(c) No! ConsiderE = Q. ThenQ◦ = ∅, while Q = R and thus
(
Q

)◦ = R.

(d) We have to show thatR \ E◦ = R \ E or equivalently:E◦ = {R

(
{RE

)
.

Recall that forX ⊆ Y , we use the abbreviation:{Y X = Y \X.

x ∈ E◦ ⇔ ∃r > 0 : Nr(x) ⊆ E

⇔ ¬ (∀r > 0 : Nr(x) 6⊆ E)

⇔ ¬
(
∀r > 0 : Nr(x) ∩ {RE 6= ∅

)
⇔ x ∈ {RE

Here “¬” denotes the negation operator, while “∀” and “∃” denote the “for all”
and “there exists” quantifiers, respectively. Notex 6∈ {RE since by assumption,
x ∈ E◦ ⊆ E. �

8. LetX be an infinite set. Forx, y ∈ X, we define

d(x, y) :=

{
1, x 6= y

0, x = y
.

Show thatd is a metric onX. Which subsets ofX are open. Which subsets of
X are closed?

SOLUTION: (M1) and (M2) are clear. (M3) can be easily verified by consider-
ing the casesx = y, x 6= y, z = y, z 6= y. We first consider ther-neighborhoods
relative tod. Let x ∈ X andr > 0, then

Nr(x) =

{
{x}, if r < 1
X, if r ≥ 1.

Therefore, subsetE ⊆ X is open and closed. �


