6.9 **Solutions to the Exercises**

HOMEWORK SET 6.1 (TOPOLOGY)

1. Let $x, y \in \mathbb{R}$. Consider the maps

(a)
$$d_1(x, y) := (x - y)^2$$

(b) $d_2(x, y) := |x^2 - y^2|$

(b)
$$d_2(x,y) := |x^2 - y^2|$$

(c)
$$d_3(x,y) := |x - 3y|$$

(d)
$$d_4(x,y) := \frac{|x-y|}{1+|x-y|}$$

Determine, which of these maps are metrics on \mathbb{R} .

SOLUTION: (a) d_1 is not a metric. d_1 satisfies (M1) and (M2) but not (M3): Choose for instance x = -1, y = 1 and z = 1. Then

$$4 = d_1(-1, 1) \not\leq d_1(-1, 0) + d_2(0, 1) = 1 + 1$$

(b) d_2 is not a metric. d_2 does not satisfy (M1): Choose for instance x = 1 and y = -1. Then $d_2(1, -1) = 0$, however $1 \neq -1$.

(c) d_3 is not a metric. d_3 does not satisfy (M1): Choose for instance x = 3 and y = 1. Then $d_3(3, 1) = 0$, but $3 \neq 1$.

(d) d_4 is a metric. (M1) and (M2) are clearly satisfied, since d(x, y) = |x - y| is a metric. To verify (M3) consider

$$\frac{|x-y|}{1+|x-y|} = \left(\frac{1}{|x-y|} + 1\right)^{-1}$$

which, since $|x - y| \le |x - z| + |z - y|$,

$$\leq \left(\frac{1}{|x-z|+|z-y|}+1\right)^{-1} \\ = \left(\frac{1+|x-z|+|z-y|}{|x-z|+|z-y|}\right)^{-1} \\ = \frac{|x-z|}{1+|x-z|+|z-y|} + \frac{|z-y|}{1+|x-z|+|z-y|} \\ \leq \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|}$$

2. Let $x = (0,0) \in \mathbb{R}^2$ and let r = 1. Visualize the neighborhood $N_1(x)$ with respect to

- (a) the Euclidean metric on \mathbb{R}^2 ,
- (b) the maximum metric on \mathbb{R}^2 ,
- (c) the city block metric on \mathbb{R}^2 .

SOLUTION: For instance, consider the set

$$E := \left\{ \frac{1-n}{n} \mid n \in \mathbb{N} \right\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \left\{ \frac{n+1}{n} \mid n \in \mathbb{N} \right\}.$$

- 4. Let E' denote the set of all limit points of the set $E \subseteq \mathbb{R}$.
 - (a) Show that E' is closed.
 - (b) Show that E and \overline{E} have the same limit points.
 - (c) Do E and E' always have the same limit points?

2

6.9. SOLUTIONS TO THE EXERCISES

SOLUTION: (a) We have to show that every limit point of E' is a limit point of E. Suppose $p \in \mathbb{R}$ is a limit point of E'. By definition, for any r > 0 there exists a number $q \in N_r(p) \cap E'$ different from p. As $q \in E'$, q is a limit point of E. Hence, for all—and thus in particular—for s := r - |p - q| > 0 there exists a number $x \in N_s(q) \cap E$ different from q. By the choice of s, we have $N_s(q) \subseteq N_r(p)$. Thus $x \in N_r(p) \cap E$ and $x \neq p$. Hence, p is a limit point of E.

(b) We have to show that $E' = (\overline{E})'$ or, $E' \subseteq (\overline{E})'$ and $E' \supseteq (\overline{E})'$.

We first show $E' \subseteq (\overline{E})'$: Let $p \in E'$ and r > 0. By definition, there exist a point $q \in N_r(p), q \neq p$ and $q \in E$. Since $E \subseteq \overline{E}, q \in \overline{E}$. Hence p is a limit point of \overline{E} , i.e. $p \in (\overline{E})'$.

We now show $E' \supseteq (\overline{E})'$: Let $p \in (\overline{E})'$ and let r > 0. By definition, there exists a point $q \in N_r(p)$, $q \neq p$ and $q \in \overline{E} = E \cup E'$. If $q \in E'$, we are done. If $q \in E$ then p is a limit point of E, i.e. $p \in E'$.

(c) No! Consider the set $\{\frac{1}{n} \mid n \in \mathbb{N}\}$. Then $E' = \{0\}$, while $(E')' = \emptyset$.

5. Let $E \subseteq \mathbb{R}^2$ be open. Is every point of E a limit point of E?

SOLUTION: Yes! Let $x \in E$. Since E is open, there exists $r_0 > 0$ such that $N_{r_0}(x) \subseteq E$. Now let r > 0. Without loss of generality, we can assume that $r \leq r_0$, i.e. $N_r(x) \subseteq N_{r_0}(x) \subseteq E$. Hence there exists a point $q \in N_r(x)$, $q \neq x$ and $q \in E$. Hence x is a limit point of E, i.e. $x \in E'$.

6. Let $E \subseteq \mathbb{R}^2$ be closed. Is every point of E a limit point of E?

SOLUTION: No! Consider the set $E := \{0\}$. $E' = \emptyset$, thus E is closed. However 0 is not a limit point of E (0 is an isolated point of E).

- 7. Let $E \subseteq \mathbb{R}$. The set E° of all interior points of E is called the *interior* of E.
 - (a) Show that E° is always open.
 - (b) Show: E is open $\Leftrightarrow E = E^{\circ}$.
 - (c) Do E and \overline{E} always have the same interior?
 - (d) Show that the complement of E° is the closure of the compliment of E.

SOLUTION: (a) By definition, we have to show that every point $x \in E^{\circ}$ is an interior point of E° , i.e. for any $x \in E^{\circ}$ there exists a r > 0 such that $N_r(x) \subseteq E^{\circ}$. To this end, let $x \in E^{\circ}$. Since x is an interior point of E, there exists r > 0 such that $N_r(x) \subseteq E$. To show that $N_r(x) \subseteq E^{\circ}$, we have to show that every point of $N_r(x)$ is an interior point of E. Let $y \in N_r(x)$. Let s := r - |x - y| > 0. Then, $N_s(y) \subseteq N_r(x) \subseteq E$. Hence, y is an interior point of E, i.e. $N_r(x) \subseteq E^{\circ}$.

The light gray disk visualizes the neighborhood $N_r(p)$. The distance between p and q is |p - q|, the distance from q to the boundary of the neighborhood is r - |p - q|. The neighborhood $N_{r-|p-q|}(q)$ is visualized by the gray disk. The point x of $N_{r-|p-q|}(q)$ is clearly in $N_r(p)$.

(b) (\Rightarrow): Suppose *E* is open. Since, by definition, $E^{\circ} \subseteq E$, we only have to show that $E \subseteq E^{\circ}$. To this end, let $x \in E$. Since *E* is open, *x* is an interior point of *E*, i.e. $x \in E^{\circ}$.

(\Leftarrow): Now suppose that $E = E^{\circ}$. We have to show that E is open. But this is clear, since every point of $E = E^{\circ}$ is an interior point of E.

(c) No! Consider $E = \mathbb{Q}$. Then $\mathbb{Q}^{\circ} = \emptyset$, while $\overline{\mathbb{Q}} = \mathbb{R}$ and thus $(\overline{Q})^{\circ} = \mathbb{R}$.

(d) We have to show that $\mathbb{R} \setminus E^{\circ} = \overline{\mathbb{R} \setminus E}$ or equivalently: $E^{\circ} = \mathcal{C}_{\mathbb{R}} \left(\overline{\mathcal{C}_{\mathbb{R}}E}\right)$. Recall that for $X \subseteq Y$, we use the abbreviation: $\mathcal{C}_Y X = Y \setminus X$.

$$\begin{aligned} x \in E^{\circ} \Leftrightarrow \exists r > 0 : N_{r}(x) \subseteq E \\ \Leftrightarrow \neg (\forall r > 0 : N_{r}(x) \not\subseteq E) \\ \Leftrightarrow \neg (\forall r > 0 : N_{r}(x) \cap \mathbb{C}_{\mathbb{R}}E \neq \emptyset) \iff x \in \overline{\mathbb{C}_{\mathbb{R}}E} \end{aligned}$$

Here "¬" denotes the negation operator, while " \forall " and " \exists " denote the "for all" and "there exists" quantifiers, respectively. Note $x \notin C_{\mathbb{R}}E$ since by assumption, $x \in E^{\circ} \subseteq E$.

8. Let X be an infinite set. For $x, y \in X$, we define

$$d(x,y) := \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

Show that d is a metric on X. Which subsets of X are open. Which subsets of X are closed?

SOLUTION: (M1) and (M2) are clear. (M3) can be easily verified by considering the cases $x = y, x \neq y, z = y, z \neq y$. We first consider the *r*-neighborhoods relative to *d*. Let $x \in X$ and r > 0, then

$$N_r(x) = \begin{cases} \{x\}, & \text{if } r < 1\\ X, & \text{if } r \ge 1. \end{cases}$$

Therefore, subset $E \subseteq X$ is open and closed.