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6.9 Solutions to the Exercises

HOMEWORK SET 6.1 (TOPOLOGY)
1. Letz,y € R. Consider the maps

@) di(z,y) = (z —y)?
(b) dy(x,y) = |2* — y?

() da(w,y) := |z — 3y

|z —yl
L+ [z —yl

(d) dy(z,y) :
Determine, which of these maps are metricdRon

SOLUTION: (@) d; is not a metric.d; satisfies (M1) and (M2) but not (M3):
Choose forinstance = —1,y = 1 andz = 1. Then

A4=d(-1,1) £ di(~1,0) + d(0,1) =1+ 1

(b) d2 is not a metricd, does not satisfy (M1): Choose for instance- 1 and
y = —1. Thends(1, —1) = 0, howeverl £ —1.

(c) ds is not a metricds does not satisfy (M1): Choose for instance- 3 and
y = 1. Thends(3,1) = 0, but3 # 1.

(d) d4 is @ metric. (M1) and (M2) are clearly satisfied, sinke, y) = |« — y| is
a metric. To verify (M3) consider

|z — y| 1 -
:< +1)
L+ [z -y |z —y|

which, sincelz — y| < |z — z| + |z — y],

1 —1
()
|z = z[+ |2 =y
_<1+M—A+Z—M)1

|z — 2|+ ]z =y
_ |z — 2| |z — y
= +
Itz —zl+|z—yl 1+[z—z[+]z—y
|z — 2| B

T l+lz—2z 1+]z—1y|
]

2. Letz = (0,0) € R? and letr = 1. Visualize the neighborhood/; () with
respect to



(a) the Euclidean metric dR?,
(b) the maximum metric oik?,
(c) the city block metric ofiR?.

SOLUTION:
Y Yy
1 1
x x
1 1
The neighborhood Ny (0) relative The neighborhood Ny (0) relative
(&) to the Euclidean metric on R2. (b)  to the maximum metric on R
Y

The neighborhood Ny (0) relative
(© to the city block metric on R2. ]

3. Construct a bounded set of real numbers with exactly three limit points.

SOoLUTION:  For instance, consider the set

E={52|neN}U{|[neN}U{%L |neN}.

4. Let E’ denote the set of all limit points of the sEtC R.

(@) Show thatf’ is closed.
(b) Show thatF and E have the same limit points.
(c) Do E andE’ always have the same limit points?



6.9. SOLUTIONS TO THE EXERCISES 3

SOLUTION: (a) We have to show that every limit point & is a limit point N:(p)
of E. Suppose € R is a limit point of E’. By definition, for anyr > 0 there

exists a numbeg € N,.(p) N E’ different fromp. Asq € E’, ¢ is a limit point No—ppsi ()
of E. Hence, for all—and thus in particular—fer:= r — |p — ¢| > 0 there

exists a numbet € N,(¢) N E different fromg. By the choice ofs, we have

N,(q) € Ny(p). Thusz € N,.(p) N E andx # p. Hencep is a limit point of .

, — , . , . The light gray disk visualizes the
(b) We have to show thaf’ = (E> or, E" C (E) andE’ 2 (E) : neighborhood N,(p). The dis-

e

We first showt” C (E)":  Letp € E’ andr > 0. By definition, there exista ‘@2 between b and ¢ is I =
q|, the distance from ¢ to the

point g iNr(p)a q ip/ andq € E. SinceE C F, g € E. Hencep is a limit boundary of the neighborhood
point of £, i.e.p € (E) . is 7 — |p — ¢q|. The neighbor-

—\ — o hood N,_|,_(q) is visualized by
We now showE’ O (E): Letp € (E) and letr > 0. By definition, there ¢ gray disk. The point z of

exists a point € N,.(p),q #pandqg € E= EUE'. If ¢ € E’, we are done. If N,_p—q(q) is clearly in N, (p).
g € E thenpis a limit pointof £, i.e.p € E'.

(c) No! Consider the set! | n € N}. ThenE’ = {0}, while (E')' =0. ®
5. LetE C R? be open. Is every point df a limit point of E?

SOLUTION: Yes! Letx € E. SinceF is open, there existg > 0 such that
N,,(z) C E. Now letr > 0. Without loss of generality, we can assume that
r <ro,i.e.N.(x) C N,,(z) C E. Hence there exists a poiptc N, (z), g # x
andg € E. Hencez is a limit point of E, i.e.x € E'. |

6. LetE C R? be closed. Is every point df a limit point of E?

SOLUTION:  No! Consider the seff := {0}. E’ = 0, thusE is closed.
However0 is not a limit point of £ (0 is an isolated point of). |

7. Let E C R. The setE° of all interior points ofE is called thenterior of E.

(&) Show that° is always open.
(b) Show:FE isopens E = E°.
(c) Do E andE always have the same interior?

(d) Show that the complement & is the closure of the compliment @&f.

SOLUTION: (&) By definition, we have to show that every pointe E° is
an interior point of £°, i.e. for anyx € E° there exists a > 0 such that
N,.(z) C E°. To this end, lett € E°. Sincez is an interior point ofF, there
existsr > 0 such thatV,(z) C E. To show thatN,(z) C E°, we have to
show that every point oiV,.(x) is an interior point ofE. Lety € N,(z). Let
s:=r—|z—y|l>0. Then,N,(y) C N,(z) C E. Hencey is an interior point
of E,i.e.N,.(z) C E°.



(b) (=): SupposeF is open . Since, by definitiory° C E, we only have to
show thatE C E°. To this end, letr € E. SinceFE is open,x is an interior
pointof £, i.e.x € E°.

(«<): Now suppose that' = E°. We have to show that is open. But this is
clear, since every point df = E° is an interior point ofF.

(c) No! ConsiderE = Q. ThenQ° = 0, while Q@ = R and thus(Q)° = R.
(d) We have to show th& \ E° = R\ E or equivalently: E° = Cg (BRE).
Recall that forX C Y, we use the abbreviation:Cy X =Y \ X.

x€E°<Ir>0:N.(x) CFE
& (Vr>0:N.(z) L E)
& (Vr>0:N(z2)NCrE #0) &z elgFE
Here “=” denotes the negation operator, whil¢'‘and “3” denote the “for all”

and “there exists” quantifiers, respectively. Note Cr F since by assumption,
r e FE°CFE. |

. Let X be aninfinite set. Fat, y € X, we define

1, z#y
d(z,y) == {O ey’

Show thatd is a metric onX. Which subsets oK are open. Which subsets of
X are closed?

SoLuTioN:  (M1) and (M2) are clear. (M3) can be easily verified by consider-
ing the cases = y, x # y, 2 = vy, z # y. We first consider the-neighborhoods
relative tod. Letx € X andr > 0, then

No(z) = {z}, ifr<1
S B

)

Therefore, subsdl C X is open and closed. |



