4.5.0   BANACH AND HILBERT SPACES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  Normed Space                                                 Norm is a map  such that for all  and

 

                                                                                1.                               

                                                                                           if and only if

                                                                                2.                      

                                                                                3.              (triangle inequality)

 

 

                                                                                Example:         in space  of all continuous functions in                                                                                                                         

                                                                                                        norm can be defined as

                                                                                                       

 

2.  Metric Space                                                   Vector space  is a metric space if there exists

                                                                                a function  such that for all

 

                                                                                1.                       

                                                                                                                                                   for

                                                                                2.                                                     (symmetry)

                                                                                3.     for all                    (triangle inequality)

                                                                               

                                                                                 is called the distance between .

 

                                                                                Vector space with introduced metric is called a metric space.

 

       

                                                                                In the normed vector space the metric can be introduced as

                                                                                                       

 

3.  Inner Product                                                 Inner product is a map such that for all

                                                                                1.                                             ()

                                                                                2.        

                                                                                3.    

                                                                                          if and only if

 

                                                                                Vector space with introduced inner product is called an inner product                                                                                    

                                                                                space.  In inner product space the norm can be defined as

 

                                                                                       for all

 

4.  Convergence                                                   Let be normed (metric space) and let   ,

                                                                                The sequence  converges to  if

                                                                                  as

                                                                               

 

                                                                                The sequence  is called the Cauchy sequence (convergent in                                                                                      

                                                                                itself) if

                                                                                  as  and

                                                                                The vector space is called complete if all its Cauchy sequences are                                                                                    

                                                                                convergent in .

 

                                                                                A complete normed space is called the Banach space.  For example,                                                                                        

                                                                                 is a Banach space with .

 

                                                                                A complete inner product space is called a Hilbert space.

 

5.  Orthogonality                                                 In the inner product space  are called orthogonal if .

 

                                                                                If set consists of mutually orthogonal vectors,                                                                                      

                                                                                when , then this set is called an orthogonal set.

 

                                                                                If in addition, , then set is called orthonormal.

 

                                                                                Orthogonal set is linearly independent set.

 

                                                                                If set is linearly independent then it can be converted to the                                                                                    

                                                                                orthonormal set with the help of the so called Gram-Schmidt                                                                                     

                                                                                orthogonalization process:

 

Gram-Schmidt process                                                        

 

                                                                                                  

 

                                                                                               

 

                                                                                                  

 

 

                                                                               

                                                                                This algorithm can be formalized with the help of Gram’s determinant:

 

                                                                                ,  

 

                                                                                Orthonormal vectors are detrmined by the formula

                                                                                     

                                                                                The orthonormal set  is said to be complete   if there does not                                                                                  

                                                                                exist a vector ,  such that it is orthogonal to all vectors                                                                                         

                                                                                from .    

 

6.  Fourier Series                                                Let  be an orthonormal set.                             

                                                                                         is called the Fourier series (generalized Fourier series)

 

                                                                                          are called the Fourier coefficients,             

 

                                                                                Theorem        The Fourier series        is convergent to the                                  

                                                                                                        function if and only if

                                                                                                                                                  (Parseval’s equation)

 

                                                                                Proof:             Let

 

                                                                                                                      

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                               

                                                                                                                                                                                   

 

                                                                                Let  be an orthonormal set .

                                                                                 If for any  its Fourier series

                                                                               

                                                                                converges to  in , then is said  complete in .                                    

 

7.  Vector Space                                             Consider a particular case of Equation 3.3 from Definition 3.13 (p.205),

                                                                                with  and interval:

                                                                               

 

                                                                                Inner product in vector space :   For define:

 

                                                                                                         inner product in

 

                                                                                            weighted inner product in

                                                                                                                                                with the weight function  

                                                                                Inner product vector space  belongs to the class of Hilbert spaces.

 

                                                                                Introduced inner product induces the norm in :

 

                                                                               

                                                                                         

 

                                                                                Historically, the first complete set was used by Fourier set of trigonometric functions 

                                                                                ,  in the interval .

 

                                                                                The complete orthogonal sets used in the solution of PDE will be

                                                                                generated by the solution of the Sturm-Liouville problems.

 

 

 

8.  Exercizes:                                                        The set of monoms  is linearly independent in .

 

                                                                                a) Using the Gram-Schmidt orthogonalization algorithm with inner product

 

                                                                                 

 

                                                                                construct an orthonormal set in

                                                                                (the obtained set will be the set of the Legendre polynomials up the the scalar multiple).

 

                                                                                b) Using the Gram-Schmidt orthogonalization algorithm with inner product

 

                                                                                 

 

                                                                                construct an orthonormal set in

                                                                                (the obtained set will be the set of the Tchebyshev polynomials up the the scalar multiple).

 

                                                                                c)  Use the obtained orthonormal sets for generalized Fourier series expansion of the function:

 

                                                                               

 

                                                                                Compare the results for truncated series with 2,3,4 terms.  Make some observations.

 

The Scottish Cafe in Lvov

 

 

 

 

 

 

 

 

 


The original Szkocka Café (Scottish Café) in Akamemichna Street in Lvov, Ukraine

 (on the left, shown at the time when it was the Dessert Bar at Shevchenko Prospekt 27)  Now is a Bank (on the right).

 

The café was a meeting place for many mathematicians including Banach, Steinhaus, Ulam, Mazur, Kac, Schauder, Kaczmarz and others.

Problems were written in a book kept by the landlord and often prizes were offered for their solution.

 A collection of these problems appeared later as the Scottish Book. 

R D Mauldin, The Scottish Book, Mathematics from the Scottish Café (1981) contains the problems as well as some solutions and commentaries.

 

 

 

 

 

 

 

 

 

 

 Lvov University

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                  

 

 

 

 

 

 

LVOV