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 1   Dirichlet-Dirichlet boundary conditions 
 

Consider BE in the annular domain  

                          ( ) 0yxyxyx 2222 =−+′+′′ νλ ,    ( )21 L,Lx∈   

Boundary conditions: 
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Apply boundary conditions to the general solution of BE: 
  ( ) ( ) 0LYcLJc 1211 =+ λλ νν  
  ( ) ( ) 0LYcLJc 2221 =+ λλ νν  
This is a homogeneous system of two linear algebraic equations for 1c  
and 2c .  Rewrite it in the matrix form 
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We are looking for non-trivial solution of BVP, i.e. both coefficients in 
general solution cannot be zero 
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A homogeneous linear system has a non-trivial solution only if the 
determinant of the system matrix is equal to zero: 
 
 

Equation for eigenvalues nλ :     
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νν ( ) ( ) ( ) ( ) 0LYLJLYLJ 1221 =− λλλλ νννν  

 
 

The roots of this equation yield the eigenvalues nλ    for which BVP has 
non-trivial solutions ( )xyn   (eigenfunctions).  Oscillatory property of 
Bessel functions provides an infinite set of eigenvalues nλ  and 
corresponding eigenfunctions are 
 ( ) ( ) ( )xYcxJcxy nn,2nn,1n λλ νν +=  
Determine now the coefficients n,1c  and n,2c  from a system where 
eigenvalues are substituted 
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 Because a linear system has a singular matrix, solutions for n,1c  and n,2c  
are linearly dependent and can be determined just from one equation, let it 
be the second one 
 ( ) ( ) 0LYcLJc 2nn,22nn,1 =+ λλ νν  
one of the unknowns in this equation is a free parameter, choose 
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Then eigenfunctions have the form: 
 

Eigenfunctions         ( ) ( )
( )

( )
( )2n

n

2n

n
n LY

xY
LJ
xJxy

λ
λ

λ
λ

ν

ν

ν

ν −=  

 
 

1L 2L x0



Chapter 5   SPECIAL FUNCTIONS   Orthogonal sets for annular domain      1   Dirichlet-Dirichlet boundary conditions 
                                                                                                                                        

The norm of eigenfunctions is given by: 
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            ...=    express in terms of  1J +ν , … 
 
 
 
 
 
 
 
 
 

Summary: For an annular domain with boundary conditions: 
     0y

1Lx
=

=
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2Lx
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=
 

Eigenvalues nλ  are positive roots of the characteristic 
equation   
        

( ) ( ) ( ) ( ) 0LYLJLYLJ 1221 =− λλλλ νννν  
 

    The eigenfunctions are 
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   Fourier-Bessel series: 
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             Maple examples:     0=ν  SF-AD-1-0.mws 
                  1ν =  SF-AD-1-1.mws 
 
             2L1 = , 5L2 =   ( ) ( )3xH1xf −−=  
 
 


