Laura Hansen

6 Neumann-Robin boundary conditions

Consider BE in the annular domain

$$x^{2}y'' + xy' + (\lambda^{2}x^{2} - v^{2})y = 0, \quad x \in (L_{1}, L_{2})$$

with homogeneous boundary conditions:

$$\left[\frac{dy}{dx}\right]_{x=L_1} = 0 (Neumann)$$

$$\left[k_2 \frac{dy}{dx} + h_2 y\right]_{x=L_2} = 0 \qquad H_2 = \frac{h_2}{k_2}$$
 (Robin)

The general solution is given by

$$y(x) = c_I J_{\nu}(\lambda x) + c_2 Y_{\nu}(\lambda x)$$

The derivative of the general solution (use chain rule and differential identities)

$$\frac{d}{dx}y(x) = c_{I}\lambda \left[-J_{\nu+I}(\lambda x) + \frac{\nu}{\lambda x}J_{\nu}(\lambda x) \right] + c_{2}\lambda \left[-Y_{\nu+I}(\lambda x) + \frac{\nu}{\lambda x}Y_{\nu}(\lambda x) \right]$$

Substitute into boundary conditions:

$$\begin{aligned} x &= L_I & c_1 \lambda \Bigg[-J_{v+1} (\lambda L_1) + \frac{v}{\lambda L_1} J_v (\lambda L_1) \Bigg] + c_2 \lambda \Bigg[-Y_{v+1} (\lambda L_1) + \frac{v}{\lambda L_1} Y_v (\lambda L_1) \Bigg] = 0 \\ x &= L_2 & c_I \lambda \Bigg[-J_{v+I} (\lambda L_2) + \frac{v}{\lambda L_2} J_v (\lambda L_2) \Bigg] + c_2 \lambda \Bigg[-Y_{v+I} (\lambda L_2) + \frac{v}{\lambda L_2} Y_v (\lambda L_2) \Bigg] + c_I H_2 J_v (\lambda L_2) + c_2 H_2 Y_v (\lambda L_2) = 0 \\ & \text{Collect terms} \\ x &= L_I & c_1 \Bigg[\lambda J_{v+1} (\lambda L_1) - \left(\frac{v}{L_1} \right) J_v (\lambda L_1) \Bigg] + c_2 \Bigg[\lambda Y_{v+1} (\lambda L_1) - \left(\frac{v}{L_1} \right) Y_v (\lambda L_1) \Bigg] = 0 \\ x &= L_2 & c_1 \Bigg[-\lambda J_{v+1} (\lambda L_2) + \left(H_2 + \frac{v}{L_2} \right) J_v (\lambda L_2) \Bigg] + c_2 \Bigg[-\lambda Y_{v+1} (\lambda L_2) + \left(H_2 + \frac{v}{L_2} \right) Y_v (\lambda L_2) \Bigg] = 0 \\ & \text{Denote:} \\ a_{11} &= \Bigg[\lambda J_{v+1} (\lambda L_1) - \left(\frac{v}{L_1} \right) J_v (\lambda L_1) \Bigg] \\ a_{12} &= \Bigg[-\lambda J_{v+1} (\lambda L_2) + \left(H_2 + \frac{v}{L_2} \right) J_v (\lambda L_2) \Bigg] \\ a_{2I} &= \Bigg[-\lambda J_{v+I} (\lambda L_2) + \left(H_2 + \frac{v}{L_2} \right) J_v (\lambda L_2) \Bigg] \\ a_{2I} &= \Bigg[-\lambda J_{v+I} (\lambda L_2) + \left(H_2 - \frac{v}{L_2} \right) J_v (\lambda L_2) \Bigg] \end{aligned}$$

Then a system for coefficients has the following matrix form:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

A necessary condition for a system to have a non-trivial solution is

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = 0$$

it yields a characteristic equation for values of the parameter λ for which the BVP has a non-trivial solution:

Equation for eigenvalues λ_n :

$$\left[\lambda J_{\nu+1}(\lambda L_1) - \left(\frac{\nu}{L_1}\right) J_{\nu}(\lambda L_1)\right] \left[-\lambda Y_{\nu+1}(\lambda L_2) + \left(H_2 + \frac{\nu}{L_2}\right) Y_{\nu}(\lambda L_2)\right] - \left[\lambda Y_{\nu+1}(\lambda L_1) - \left(\frac{\nu}{L_1}\right) Y_{\nu}(\lambda L_1)\right] \left[-\lambda J_{\nu+1}(\lambda L_2) + \left(H_2 - \frac{\nu}{L_2}\right) J_{\nu}(\lambda L_2)\right] = 0$$

The positive roots of this equation provide an infinite set of eigenvalues λ_n . Then for the determined eigenvalues λ_n , coefficients $c_{I,n}$ and $c_{2,n}$ can be found from one of the equations of the system (choose the second one):

$$a_{2l}c_1 + a_{22}c_2 = 0$$

One of the coefficients can be taken as a free parameter, choose

$$c_1 = \frac{1}{a_{21}}$$
, then $c_2 = -\frac{1}{a_{22}}$

With determined coefficients, solutions of the BVP $y_n(x)$ (eigenfunctions) have the form:

Eigenfunctions:

$$y_{n}(x) = \frac{J_{\nu}(\lambda_{n}x)}{a_{2l,n}} - \frac{Y_{\nu}(\lambda_{n}x)}{a_{22,n}}$$

$$= \frac{J_{\nu}(\lambda_{n}x)}{\left[-\lambda_{n}J_{\nu+l}(\lambda_{n}L_{2}) + \left(H_{2} + \frac{\nu}{L_{2}}\right)J_{\nu}(\lambda_{n}L_{2})\right]}$$

$$- \frac{Y_{\nu}(\lambda_{n}x)}{\left[-\lambda_{n}Y_{\nu+l}(\lambda_{n}L_{2}) + \left(H_{2} + \frac{\nu}{L_{2}}\right)Y_{\nu}(\lambda_{n}L_{2})\right]}$$

The norm of the eigenfunctions is determined by the integral

$$N_{\nu,n}^2 = \int_{L_I}^{L_2} x y_n^2(x) dx$$

Fourier-Bessel series:

$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x)$$

where
$$a_n = \frac{\int_{L_I}^{L_2} x y_n(x) f(x) dx}{\int_{L_I}^{L_2} x y_n^2(x) dx} = \frac{\int_{L_I}^{L_2} x y_n^2(x) f(x) dx}{N_{v,n}^2}$$