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| ntroduction

One of the main problems in signal analysis is: Given the samples f(tx), k € Z, of a
function f € L2(R), determine f. If f is band-limited and if the samples are equally
spaced and dense enough, then it is well-known that f can be uniquely recovered by the
cardinal series. In practice, the sampling sequence (1 )rcz can be irregularly spaced.
Several approaches have been made to recover f from irregular samples.

In this note we present the notions and results which are fundamental for both the
regular and irregular, starting with the discrete sampling theory (cf. [1] and [2]).
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Chapter 1

Discrete Periodic Functions

In this chapter we consider signals that are discrete and periodic. We first present the
mathematical background and setting.

1.1 The Hilbert Space ¢(Zx)

Let N € N := {1,2,3...,} be a positive integer and a,b € Z. Recall that « is said
to be congruent to b mod N, notation a = b (mod N), if N | (b — a). Clearly, the
congruence is an equivalent relation on Z. We will denote the congruence class or
residue class of a € Z by a. Recall that

a={beZ|a=b (mod N)} (1.1)
=a+NZ={a+kN|keZ}. 1.2)
There are precisely IV distinct congruence classes modulo IV, namely 0,1,..., N — 1,

defined by the possible remainders by division by N. These classes form a partition of
Z. The set of all congruence classes modulo N is usually denoted by

7Z/NZ:={0,1,...,N —1}. (1.3)

and called the integers modulo N. Recall that Z/NZ forms a ring (with 1) under the
operations defined by

a+

S
I

a+b (1.4)
a-b, (1.5)

a -

A function f : Z — C is said to be N-periodic if f(a + N) = f(a) forall a € Z.
We denote the set of all N-periodic function on Z by ¢ (Z), i.e.

In(Z):={f:Z— C| fis N-periodic}. (1.6)
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Clearly, ¢ (Z) forms a C-algebra under the operations defined by

(f +9)(a) := f(a) + g(a)
(af)(a) := af(a)
(f-9)(a) = f(a)g(a)

for f,g € {n(Z)and o € C. Letny : Z — Z/NZ a — @ = a + NZ denote
the canonical projection from Z onto the quotient ring Z/NZ. For each N-periodic
function f : Z — C there exists a unique function f : Z/NZ — C such that f =
fomn,ie.

f(a) = f(a)
forall o € Z. Let
UZ/NZ):={f:Z/NZ — C| fisamap}

denote the set of all maps from Z/NZ into C. Clearly, the association f +— f defines
a canonical bijection ¥ : {n(Z) — ¢(Z/NZ), as can be easily verified. Moreover,
U, is an (algbra-) isomorphism if ¢(Z/NZ) is endowed with the operations induced
by ¥,.:

(f+9)@
( ?)(6) = ( )
(f9)(@) = f(a)g(a)

forall f,g € {n(Z) and forall « € Z and a € C. Thus, ¢(Z/NZ) forms a C-algebra
which is isomorphic to £y (Z).

For convenience, we will usually denote the elements 0,1,2,..., N — 1 of Z/NZ
by 0,1,2,..., N — 1 and write for Z/NZ simply

Zn ={0,1,2,...,N -1}

where addition and multiplication are reduced mod N. Note that the additive inverse
of the element a € Z is N — a which we will denote by —a.

Similarly, we will usually denote the function f € ¢(Z/NZ) simply by f and
abbreviate ¢(Z/NZ) by

UZNn)={f:Zny — C| fisamap}.

We thus identify a function f : Zx — C with its periodic extension which is justified
by the isomorphism ¥y : ¢n5(Z) — ¢(Z/NZ) defined above. It is customary to
call the functions f : Zx — C Nth order periodic sequences on C or just periodic
sequences if the reference to IV is clear. Since Z y is finite, the C-algebra ¢(Z ) can
be considered as any of the ¢P-spaces on Z .

Definition 1.1 (Even, Odd, Real, Imaginary Periodic Sequences)
1. A Nth-order periodic sequence f is called even if f(—m) = f(m) forall m €
Zn,and odd if f(—m) = —f(m) forallm € Zy.
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2. Moreover, a Nth-order periodic sequence f is said to be real if im(f) C R and
imaginary if im(f) C iR.

Definition 1.2
For convenience, we set
Wy = e 27/N, (1.7)

Some important properties of Wy are listed as

Lemma 1.1
1. Wk = lifandonlyif k = 0 (mod N) (which is equivalenttok € NZ). In
particular, Wy # 1 forall N € N

2. ForalkeZ
N—-1
> Wi
n=0

PROOF: (1) Wk = 1ifand only if e=27*/N = 1 if and only if —k/N € Z if and
onlyif k € NZ.
(2) From the summation formula for geometric sequences

Nz‘:l LN ifr=1
T =
1 e,

n=0 1—r

N ifk=0 (mod N)
0 ese

follows by (1) that

N-1
Z Wnk —

n=0

N ifk=0 (mod N)
1-wh*
1-wk

else,

However, applying (1) a second time, we see that W{'* = 1, which implies that

JvileLk: N ifk=0 (modN)
0 else,

n=0
as claimed. O

Theorem 1.1 (Inner Products)
Themaps (-, Yo, (,")a : {(Zn) x £(Zn) — C defi ned by
1 N—-1
(f,9)0 = N IHZ::O f(m)g(m)

and

o= > Fm)g(m)
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The figure shows the graphs of the real part of the
functions W} (heavy) W3 (medium) and W%,
(light) with N = 51 plotted as a curve on the
interval [—26, 26].

Im(W}) Re(W})

The figure shows the graphs of real part (black)
and imaginary part (light gray) of the function
W with N = 19 plotted as a curve on the inter-
val [—26, 26].
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The figure shows the graph of the Dirichlet kernel
function Doy with N = 51 plotted as a curve.

The figure shows the graph of the Dirichlet kernel

function D5 with N = 11 plotted as a curve on
the interval [—26, 26].
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forall f,g € {(Zn) constituteinner productson the space{(Zy ) and inducethe norms

N-1 1/2
/ 1 2

m=0

and

N-1 1/2
Ifll2 =V {f. 2 = (Z If(m)|2> = VN | fllo

m=0

forall f € ((Zn)) on{(Zy). The unitary spaces (((Zy), (-, -)2) and (((Zn), (-, -)o)
represent the time and frequency space, respectively. They are complete with respect
to the metrics induced by the norms and are therefore Hilbert spaces.

The follwing sequences will often be used to define basis for ¢(Z ) or subspaces
like the space By, of all M-bandlimited sequences which well be introduced later.

Definition 1.3 (Dirichlet Kernel)
1. Let W?V :Zn —C, m— WJ’\“,"” = e 2mimk/N forall k € Zy.

2. Moreover, let el : Zy — C, m — &, for all k € Zy, where Gy, de-

notes the Kronecker-delta as usual. The Nth-order periodic sequence eéN) is the
discrete version of the shifted Dirac delta function.

3. Finally, for M € Nand M < N/2, we define the function Dy, : Zy — C by
M
Dy =D5Y = 3T Wik,
k=—M
which is called the discrete Dirichlet kernel of order M.

The functions defined in Definition 1.3 are clearly N-periodic and therefore elements
of ¢(Zy). The following identities follow directly from the definitions of the functions.

Lemma 1.2 (Closed Form Representation of Dirichlet Kernel)
1. Clearly, W%, - W4 = W3 forall s,t € Zy.

2. M f = (6kmf(K)) foral f € ¢(Zy) andk € Zy.
3. TheDirichlet kernel is areal-valued function. In particular,

sin((2M + 1)mn/N)
Dp(n) :== sin(mn/N) ’
2M + 1, ese

ifn #0
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ProoF: (1) and (2) are immediate. To establish identity (3), recall the geometric
series identity: Forany K, L € Z with K < L and r € C we have

L
E rk =

L-K+1, ifr=1
pLtl K (1.8)
k=K ﬁ, |f T 7é 1
or equivalently
L
(r—1) Z rk =Ll K (1.9
k=K
Applying identity (1.9) to
Mo M N
Dy = 30 = 3 ()
k=—M k=—M

we first obtain

(e% — ].)DM(TL) = e%(M+1) — 67#1\4,

win

and after multiplying this equation by 2%@* N

eﬂzirn 7677’71 (3217\;7'(M+%) 767%(1V1+%)
———— | Du(n) = .
21

which is equivalent to

. (TN . 2m™n
sin (W) Dys(n) = sin (T(M + %))
. ™
=sin ((2M + DW) ,
and from which follows the assertion. O

Theorem 1.2 (Orthogonal Families)
Let the systems of N -th order periodic sequences be defi ned by

1. O = (Wy [nefo,...,N—1})

N n
2. 0 = (\/—%WN

nE{O,...,N—l})
3 &M .= (\/Ne,im‘ke{o,...,zv—u)
4. &M = (efﬁN)‘ke{O,...,Nfl})

Then O(()N ), 5(§N ) and OéN ), 52(N )" constitute orthonormal bases for the (frequency)
space (((Zn, (-, -)o) and (time) space (((Zn, (-, -)2), respectively.
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PROOF:  Suppose k,n € Zy, then

<\/_WN’ TR >

ZIH

<WN7W > <W]1€V7WK7>0
N—

E mk W —mn

W;Vn(k*")
=0
1 ifk=n

0 else.

clm =i
?ﬁ

3

I
—N—

Hence Oj(m (7 = 0,2) are orthonormal and thus linearly independent. Since ¢(Zy) is
a N-dimensional vector space over C, they constitute orthonormal basis for the spaces

(U(Zn), -+, )0) and (L(Zn), (-, -, )2), respectively. The corresponding statement for
EJ(.N) ( =0,2) is obvious. O

1.2 The Convolution Product

Definition 1.4 (Convolution)
The convolution f * g of two Nth-order periodic sequences f, g € ¢(Z ) is defined by

(f*9)(n §jf )= fgn-

JELN
foralln € Zy.

It can be easily verified that f g is NV-periodic, i.e. ¢(Z ) is closed under convolution.
Note that because of the NV-periodicity of f we have forallm € Zy

N—-14+m N—-1
oG =] 16). (1.10)
j=m j=0
In fact,
—14+m N—-1 N—1+m
Z FG =Y+ Y, f0) (112)
j=m j=m Jj=N

and with the index substitution ¢ := j — N, noting that f (i + N) = f(4), this equals

N—-1 m—1

= ST+ Y fi+ N (112)
j=m 1=0
N-1 m—1 N-1

=26+ 3 10) £G). (1.13)



1.2. THE CONVOLUTION PRODUCT

The convolution product has the following properties:

Lemma 1.3
Foradll f,g,h € ¢{(Zn) and X € C we have:

1 fr(gxh)=(f*g)*h

2 frg=gx[;

3 fr(g+h)=Ffrg+fxh;

4. fx(Ag) = (Af)xg=Af*g)

1S *gll; < [1£1l;1lgll; forj € {0,2};

oo (£ (o)

n= 0 n=0 n=0

&)

, J if i =
7 Wi s Wh = NWy, ifj=k (mod N)
0, ese
8. TS(DM) * Tt(DM) = NTs+t(DM);

PROOF: (2)Let f,g € ¢{(Zn)and n € Zy, then

(fxg)n)= > f()g

JELN

and with the substitution i :=n — j, notingthatn — Zy = Zxn

Y. fln—igli)= > g(i)f(n—1)

1EN—ZN 1ELN
= (g f)(n).
(7) By Definition 1.4 and Lemma 1.1(2), we have
(W‘Z\/’ *Wk Z WJt k(n t) Z WknWZ(\‘/vj k)t
tELN teEZN
_win. N ifj=k (modN).
0 else.

Hence,

W&*W?V{ngv’ ifj =%k (mod N)

0, else.

13
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(8) With Definitions 1.4, 1.5 and Lemma 1.3(3),(7) follows immediately that

M M
7o(Dar) * e(Dar) = ( > W?\,Wﬁk“") x ( > WQWg“)

k=—M l=—M
M M
= > (Wh = W)Wt wy
k=—M t=—M
M
= > NWEWLCT = Nroyo (D).
k=—M

1.3 Translation, Reflection and Modulation

We now introduce the operations of translation, reflection and modulation (also known
as frequency translation) on the space £(Zy).

Definition 1.5 (Translation, Reflection, Modulation)
For ng € Zn, we define the maps

Tnov 0, p’no : K(ZN> - K(ZN>

by setting

and

fing (f)(n) := W (n) - f(n).

for all n € Zy. We call the maps 7,,,, dn,, and u,,, translation, reflection and modu-
lation (by ng), respectively.

Lemmal.4
The maps ., 0, tin, : L(Zn) — ¢(ZN) are (vector space) automorphismson {(Zy).
Tno aNd o also preserve multiplication, i.e. they are C-algebra automorphisms.

PROOF:  The proof is straightforward. We just mention p.,,,(f) = 0 if and only if
FW3R =0ifandonly if f(n)W*" = 0forall n € Zy ifand only if f(n) = 0 for
alln € Z,, since Wk # 0forall k € Zy. O
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1.4 The Discrete Fourier Transform

Definition 1.6 (Discrete Fourier Transform)
Given a Nth-order periodic sequence f € ¢(Zy ), the discrete Fourier transform (DFT)
of f is defined to be the function F' : Z — C, defined by

N-1

F(TL) — Z f(m)e—QTrinm/N

m=0

foralln € Zy.

Since e*2™" = 1 forall n € Z, F is N-periodic. In fact
F(n) — Z f(m)e—Qm'mn/N
m=(
— Z f(m)e—Qm'mn/N . g~ 2min
m=(
_ f(m)e—QTrim(n-i-N)/N _ F(n+N)

foralln € Z.

The association f — F defines an vector space automorphism F : {(Zy) —
¢(Zn) as we will see below. It is often convenient to denote the DFT of f by f. Using
the basis functions (W7, | j = 0,..., N — 1), the DFT of f can be written compactly
as

f=7 fmwg

meEZN
foralln € Zy.

Theorem 1.3 (Inversion Formula for the DFT)
Let N e NwithN > 1 and suppose f € ¢(Zy) hasDFT F. Then

f:% S Fn)Wi.

neLN

PROOF: For 0 # k € Zy, follows from Lemma 1.1 that

N-1
> WRE=0.

n=0
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Figure 1.1: The Discrete Fourier Transform. The figure depicts the Dirichlet kernel and
its Fourier transform. The domain of the tranformed function is centered at 0. Note
that the Dirichlet kernel is “3-band-limited”.

Dirchlet kernal: Period N=28 samples M=3 d=4
1 T T T

0.5 A

value
o

T I
— LV L

-0.51 b
-1 1 1 1 1 1
0 5 10 15 20 25
sample index 0:N-1 over one period
Spectrum
20 T
101 1
3 of i
_10 - -
-20 1 1 1 1 1
-10 -5 0 5 10
frequency index —N/2:N/2
Hence
1 N-1 1 N-1
- F(n eQTri'nm/N _ n)Womn
5 > Fn) ~ > FmWy
n=0 n=0
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O

Suppose V' and W are two finite-dimensional vector spaces over the field K with
(ordered) bases B = (vo,...,v,) and C = (wo,...,w,,), respectively. Let £@) =
(eo, . . ., ep) denote the canonical basis of K7 and let 5 : V — K™ : v; — e; denote
the canonical isomorphism which associates to each element v € V its coordinates
with respect to the (ordered) basis B. Moreover, for any homomorphism f : V. — W,
let Me(f) € Ky, denote the representation matrix of f with respect to the (ordered)
basis Band C, i.e.:

F(0) = vt (Mes(Fus())

forallv e V.

Lemma 1.5
1. F(NV2WE) = VN e, foralk € Zy.

2. F(el™) = Wk foral k € Zy.

3. The representation matrix Mgmgm)(}") of the DFT F : {(Zn) — ¢(Zn) with
0 2

respect to the orthonormal basis £ 2(N ) and E(EN ) in thetime and frequency space,
respectively, is given by

1 n
MSéN)SéN)(}-) = (—W}ff )

\/N k,n€EZLN
Wy Wy WR e Wy
whoowh o owp oo wy
S L o w e
W}(\){ Wjjv;[71 WJ%[(}V—l) . WJ(VN—i)(N—l)

Thus
F() = VN (Mg gon (F) ) f

foral f € ¢(Zn).

4. Dy = My v (F) is unitary, i.e Dy' = DY = Dy. Dy is called the
0 2
DFT-matrix.

5. Therepresentationmatring(N)(]-‘) = Mg(mg(m(}") of theDFT F : {(Zn) —
2 2 2

¢(Z ') with respect to the orthonormal basis € Q(N ) in both the time and frequency
space, is given by

Mg g0 (F) = VN Dy
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PrROOF: (1) Letk,n € Zy. then

N-1
F(NTVPWE)(n) = N7V2 3" W (m)Wim
m=0

N-1
_ k—+mn
— N Y

m=0
which, by Lemma 1.1, equals

_ JNY2 ifn=—k (mod N)
o else,

hence
F(NV2WE) = VN e,

(2) Let k,n € Zx. then

N-—1
FleM)n) = 3 ex(m)W™ = Wl = Whn).

o

(3) Since for k € Zx the image f(e,gN)) of e;]” under the DFT has the basis repre-

sentation

N-1
1
FlefM) = wk = = S Wh(n)(VNeM),
n=0

with respect to EO(N ), it follows that

1 kn
Mepmegn P = (5W8), -

Moreover, using the identification £(Zy) = CV and setting Dy := M) o) (F),
0 2
we see that the diagram

cN _F . N

Pe, l ld)so

cN —— ¢V
Dn

commutes. Note that 1g, = idC and 1g, = 1/VN idC, thus v;' = VN idC.
Hence
F(f) = g, Dnte, (f)
= VNDy f.
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(5) Since by (2)
we have

Theorem 1.4 (Properties of the DFT)
Foradll f,g € ¢(Zn) andng € Zy, we have

. Fislinear.
. m = Hng (f)

— N

1
2
3. Hno (f) = T*no(f)'
4. FoF = Noy.

5 o(f) = o(f)-
PrROOF: (1) For f,g € ¢(Zy) and «, 5 € R follows immediately that

Flaf+89)= Y (af +B9)(m)WF = > (af(m)WF + Bg(m)WF)

MmeEZLN MmeEZLN
=a Y fmWR+8 D gm)WR = aF(f)+ BF(g)
MmEZLN MELN
(2) Letng € Zy and f € £(Zx ), then follows
Tno(f): Z Tno( WXIL: Z f 7”0
MmELN MmELN

which equals, using the substitution & := m — ny,

= Y TEWR™ =) fWRWR

k—noEZN k€EZN
= FIN)WR = pino (f).
(3) Again, let ng € Zy and f € ¢(Zy), then follows

fno(F) = Y 1o (AW = 3 f(m)WEHW
mMELN mMELN
= Y fmWET = Y fm)r, (WR)
mMELN mMELN

—— ( ST f(m W"“’) = Tuo (f).

MELN
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(4) For f € £(Zy) follows

(FoF)(f) = f( > f(m)W’A’%>

meZN

and using the linearity of F

=3 fmFWH =N Y fm)el = No(f).

MELN mMELN

(5) Applying the previous identity twice, we obtain:
olf) = 1/N(Ne(F(f))) = INF(F(F(f))) = 1/NF(Ne(f)) = Fle(f)) =

o(f).
6)If f € £(Zn)isodd, ie. f = —p(f), then we obtain by applying the previous

identity that —o(f) = —o(f) = —(—f) = f,i.e. fisalso odd. The other case can be
shown similarly. O

Corollary 1.1 R
Themap F : {(Zn) — U(ZN) : f — F = f isan automorphism.

PROOF:  Trivial. O
The discrete Fourier transforms interacts well with the convolution product.

Theorem 1.5 (DFT and Convolution)
Fordl f,g € ¢{(Zn) andk € Zy holds

PrROOF: (1) Let f,g € ¢(Zn), then

N-1 N-1
F(HF(9) = <Z f(m)W’z(?> <Z g(k)W?v>

m=0 k=0

_ [2 T f(m)g(k)] Wit

m=0 k=0



1.4. THE DISCRETE FOURIER TRANSFORM 21

substituting j := m + k and using equation (1.10) we obtain

N—1N-14+m

=12 X f(m)g(jm)} Wy

m=0 j=m

—1N-1

- ZZf ]W%

m=0 j=0

which equals if we change the order of summation

—2 [Z_f ]wzv—z_u*g)(j)w&,

=F(f*g)
(2) This statement also follows directly from Definition 1.4 and Lemma 1.3(3),(7):

L(F*5) =% ( > f<m>W§G> . (Z 9<k>W5“v>

mELN kEZN
£ 3 Nfm)gm)W3 = fg.
rnEZN

(3) Let f € £(Zn) and k € Zx, then follows from Theorem 1.4(2) and the defini-
tion of yuy, that F (14 (f)) = pu(f) = W% - f. Since by Lemma 1 5(2) Fle éN)) =
WX it follows that 7 (7,,(f)) = f(e,(cm)]:(f) and thus 7 (f) = e « f.

@) Letn € Zy, then (Wh x elM)(n) = 7(Wh)(n) = Whi(n — ) =
WN(n 0 _ WknW 174 Wﬁ“W’fV( ).

(5) Again, Iet f € L(Zn) and k € Zn. Then we conclude with Theorem 1.4(3)
that F (1u1.(f)) = 7&(f), which by Theorem 1.5(3) equals e,(cN) « f,asclaimed. O

Theorem 1.6 (Further Properties of the DFT)
If f € l(Zy) and F = F(f) denotesits discrete Fourier transform, then follows:

If f isodd/eventhen F' is odd/even.
If fisrea then I’ = o(F). If F isreal then f = o(f).
If f isimaginary then F = —o(F). If ' isimaginary then f = —o(f).

If f isreal and odd then F' isimaginary and odd.

1

2.

3.

4. If f isreal and eventhen F isreal and even.

5.

6. If f isimaginary and even then F' isimaginary and even.
7.

If f isimaginary and odd, then F is real and odd.
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Theorem 1.7 (Parseval’s Formula)
The discrete Fourier transform F : £(
phism fromthe (time) space (¢(Zx ), (

ie:rif f,g € U(Zn), then(f,g)2 = (f,

— UZy) : f — [ isan isometric isomor-

ZN)
,-)2) ontothe (frequency) space (¢(Zn), (-, -)o).
f.4)

0-

PROOF: Let f,g € {(Zn), then

2
L

<fvg>2 )

—
3
S
g
=N

I
iNg

o

I
3NA2
LM

l—lk'j

7N
2|~
i
=
2
3
3
~_—

7
7
7

2|
2|~

3

I

o

3

I

o

I

I

o

2
L
2
L
2
L

Il
=2l =
N
.,
3
S&
=
=2l =
N
3

2

3

=

i
2 o
‘1

—_
— 3
= 1

=

3

Il

>~

3
I

\
2|~
z 3
ol
)
bl
g

I
2|+
s
S
Q>
=

o

Il
—~
?ﬁ)
@ 3
~
<

Corollary 1.2 (Parseval’s Formula)
Fordll f,g € ¢(Zy) holds

N-1 _ 1 N-1 )

1. Z f(m)g(m) = N Z f(n)g(n)
m=0 n=0

2. VNl|fll2 = I £1l2

3 1 fll2 = lIfllo-

PrROOF: (1) This identity is just a restatement of (f,g)2 = <f, d)o. (2) Follows
directly from (1) by choosing g = f. (3) Follows directly from (2) by the definition of
the norms on ¢(Z ) (see Theorem 1.1).

O
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1.5 Reconstruction from Regular Samples
in Bandlimited Spaces

For M € Nand 0 < M < N/2, we define the set of all band-limited N-th order
periodic sequences of bandwith A by setting

Bar = {f €l(Zy) | f(n) =0for|n| > M},
which constitutes a subspace of £(Z ) of dimension 2M + 1, since
By — ]—"_1(<\/Nek | 1k| < M>).

For S C Zx let x5 denote the characteristic function of S, i.e.

(n) 1 ifnesS
n)= .
s 0 ifneZy\S

The orthogonal projection Py, from £(Z ) onto B, is given by

—

Pu(f) =x{-m,..., M}f- (1.14)

Note that 74, (Dys) = e,iN) * Djs. Also note that D, is M-band-limited, in fact,
we have the following

Lemma 1.6 (Properties of the Dirichlet Kernel)
1 j:(Tno(DIVI)) = WK[ONX{_M _____ M}- Inparticular, f(DM) = NX{—JW ..... M}
andt,, (D) € By foralng € Zy.

2. <7-TL0(D1\/I)77-‘!L1(D1\/1)>2 = NDM(’I’Ll — ’ng). Hencer,LO(DM) 1 Tn, (DM) if
and only if (ny —no)(2M + 1) = nN for somen € N.

3. ||7-n0(D1\/I)H2 = \/N(QM—F 1) foralng € Zy.

PrROOF: (1) If ng € Zy, then follows immediately from Lemma 1.4 that

F (7o (Dar)) = pino (F(Dar)) = ing <f< EM: WX/C))

k=—M
M M
_ N
o ( 5 f(Wm) = ( 5 Nexzk)
k=—M k=—M

M
=NWi Y7 e = NWix(ar.an-
k=—M
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Figure 1.2: The Dirichlet kernel. The figure depicts the Dirichlet kernel and its spec-
trum.

Dirchlet kernal: Period N=28 samples M=3 d=4
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o
T
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(2) Let ng,n1 € Zy, then follows with Parseval’s Formula (Theorem 1.2), Theo-
rem 1.4 and Lemma 1.6 that

—

<Tn0 (DM)7 Tny (DM)>2 = <Tn0 (DM)’ Tny (DM)>0
= <:u’710 (DM)a My (DM)>0
= (WX Nx{-m,...m3 W NX{-M,....M})0

N—-1
1 n n
=N Y WRONX -, any W (W)NX (v
n=0

N—-1
=N Z WJQ("I*"")”X{fM,,.,,M}

n=0

M
_ —(ni1—no)n
N Y Wy
n=—M
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which, by the definition of the Dirichlet kernel, equals

= NDM(’I’Ll — TLQ).

Thus (7, (Dar), 7oy (Dar))2 = 0 if and only if Dy, (ng — n1) = 0 which holds if and
only if there exists an integer n € Z, n # 0 such that (2M + 1)m(ng —n1)/N = nrw
and thus if and only if (ng — n1)2(M + 1) = nN.

(3) Clearly, [ 7n, (D)2 = \/<Tn0 (D) Tog (Dar))2 = \/NDM(no —ng) =

JN@M 1), 0

The following lemmas are crucial for the discrete sampling theorem which we will
prove below.

Lemma 1.7
Suppose0 < M < N/2, then

1 7j0Py =Pyortjforanyj e Zy;
2. Py(Dyr) = Dy forany M < M’ < N/2;
3. P (75(Dar)) = 75(Dr).

PROOF: (1) Let f € {(Zy)and j € Zy, then

— -

(75 0 Pu)(f) = 75 (Pur(f)) = 13 (Par () = Wi - (F - Xq=ar.oonay)
= (fwfv) CX{-M,...M} = Mj(f)X{—M,...,M}

= 75(f)X{=m,..py = Pur(75(F)) = (Pas o 75)(f)-
Hence, 7; 0 Ppy = Py o 7.
(2) From the definition of the orthogonal projection and Lemma 1.6 follows imme-
diately

—

Pr(Dypr) = Eﬂ;’X{fM,...,M} = (NX{—m,m) X (=Moo} = NX (o0,
= Dur.
Hence, PM(DM/) = Dyy.
(3) This identity follow directly from (1) and (2). Indeed,
PM(’T]'(DI\/[/)) = (PI\/I OT]')(DM/) = (Tj OPM)(DI\/I/)
= 7 (P (D)) = 75(Dr)

O

We now make some remarks on the topic of extending our sampling space ¢(Z ).
To this end let N, N’ € N with N < N’. We define the imbedding monomor-

phismS 10,02 : K(ZN) — K(ZN/ by Z()(ng) = ng/ and ZQ(B_SN)) = e;N/) for
j=0,...,N — 1, respectively. Then we can show the following
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Lemma 1.8
LetN,N' e NwithN < N andlet M € Nwith0 < M < N/2. Then

1. Fn:oig =igo Fn, i.e thefollowing diagram commutes:

UZn) —2— UZn)

.l e

UZnN) — UZn)

0

2 igor™ = W) o4 foral j =0,...,N — 1. Inparticular, ig (™) « f) =
J J J

e wio(f), and thusio (r ™ (DY) = 7, (D)) forall j=0,...,N — 1.
3 io(BY) = BY.

PrRoOF: (1) Using Lemma 1.5(2) and the definition of 4, i5, we obtain immediately
that Fy: (ia(e}")) = Far (M) = Wi, = ig(Wh) = io(Fn(e)) for all
j=0,..., N — 1, which proves the assertion.

(2) By definition, we have forall j,k = 0,..., N—landn € Zy thatio (1, (W) (n) =
WWh)n — 5 = wy' = g Wh)m) =

N') /.

7 (i (Wh)) ().

(3) By definition 7 (B))) = (VNel™ | k € {—M, ..., M}). Hence, since F is
an isomorphism,

BY) = 7 (VNel™ [k {-M..... 1))
- <j-‘*1(\/ﬁe§fv)) ke {—M,---,M}>

which equals by Lemma 1.5(1)

1 —k
:<\/—NWN |ke{_M,...,M}>:<w’;V|ke{_M,...,M}>.

Thus, utilizing that i¢ is a monomorphism,

io(BY) = (Wh | ke {-M,...,M}) =B}
We now define a “right-inverse” jo : ¢(Zn+) — ¢(Zn) for iy by setting

: W9, ifje{0,...,N—1}
(W) =3 N o
Jo(Wi) {0 else.

Then we can show
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Lemma 1.9
With the assumption from above, we have

1. jo isan epimorphism.
2. j() 9] i() = idé(ZN)-

ProoF: (1) Clear from the definition. (2) Also clear, since by definition for all
j€{0,...,N — 1} we have jo (Z()(ng) = Jo (ng/) = ng O

The following lemma presents a specialized form of the discrete classic sampling
theorem.

Lemma 1.10 (Weak Form of the Discrete Sampling Theorem)
Suppose0 < M < N/2,2(M +1)|N andd := N/(2M + 1). Then

1 Foradlj,k=0,1,...,2M we have

0, k#j

Tja(Dar)(kd) = {2M+ Lol

2. By = (15¢(Dum) | j = 0,...,2M) constitutes an orthogonal basis of B,
3. Any f € B, hasabasis representation of the form
2M d
f=3 ~ fUd)ja(Dar)
j=0

with respect to By, i.e.

d
f=(foxDur).
where f, := 32" f(jd)el)) € ((Zy).
PrROOF: (1) Letj, k=0,1,...,2M, then follows by Lemma 1.2 that

7ja(Dar)(kd) = Dy (kd — jd) = D ((k — j)d)
)

_ sin (7(2]”“1\7;(167]')(1) , k#j
oM +1, k=

and since (2M + 1)d = N

_)sin(n(k—j)) =0, k#j
C2M +1, k=3
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(2) Ifjlan € {Oa ceey 2M}’ jl 7& j2! then (J2d - ]ld)(QM + 1) - (.72 - jl)N;
and by Lemma 1.6 (7j,a(Dr), Tj,a(Dar))2 = 0. Hence By, is an orthogonal family
consisting of 2M + 1 elements. Since dim By, = 2M + 1, By is a basis of B,,.

(3) Suppose f € By, is an arbitrary M -bandlimited function. Since B, is a basis
of By, there exist unique coefficients a; € C such that

2M
f = ZajTjd(DM).

j=0
Since By, is an orthogonal basis, these coefficients are of the form

(f,7ja(Dpr))2
(Tja(Dar), mja(Dr))2’

By Lemma 1.6, (7;4(Ds), Tja(Dar))2 = ||7ja(Dar)||3 = N(2M + 1). On the other
hand, by Parseval’s Theorem, we have

aj:

-

(f,7ja(Dar))2 = (f,m5a(Dar))o
which by Lemma 1.6 equals

= <f7 W%INX{—M,...,J\IQO

N-1
1 A jdn
=N <N Z f(n)- WJJv LX{M,...,M})

n=0

and, since f is M-bandlimited,

1 N-1 R
=N <N ; f(n)Wy (Jd)>
which by Theorem 1.3 equals

= Nf(jd).

Hence, a; = Nf(jd)/(N(2M + 1)) = f(jd)/(2M + 1), which equals d/N f(jd),
sinced = N/(2M + 1). O

We can now formulate and prove the discrete Sampling Theorem:

Theorem 1.8 (Discrete Sampling Theorem)
If0 < M < N/2andd|N withd < N/(2M + 1) and if r := N/d — 1, then for al
J € Bu

f =0 S FGd)ria(Dar)

=0
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with respect to By, i.e.
d
f = N (fs * DM)v

where f, = 7_ f(jd)el}) € ((Zy).
Note that in this setting the family (1;¢(Dar) | 7 = 0,...,r) in generd is neither
orthogonal nor linearly independent over C!

PROOF:  Since d|N, there exists an integer  + 1 € N such that d(r + 1) = N. Let
M’ := 1/2r (r has to be even!), then (2M’ + 1)d = (r + 1)d = N, in particular,
(2M’ 4+ 1)|N. Moreover, since d < N/(2M + 1), it follows that 2(A + 1)d <
N = (2M’' 4+ 1)d, hence 2M + 1 < 2M’' + 1ie. M < M’'. Thus By, C By isa
subspace of By,. Therefore, if f € By, then f € By, and since By = (Tj(DM/) |
j=0,....2M" = r) by Lemma 1.10 is an orthogonal basis of 5., f has the basis
expansion

F=Y %f(]’d)Tjd(DM')-
=0

We now apply the orthogonal projection Py, from £(Z ) onto B, to this equation and
note that Pys(f) = f, since f € Bys. Then, follows by the linearity of Py,

/= Pu (Z %f(jd)rjdwm) = >0 2 ) Pag (ria(Dar)

=0 =0

and by Lemma 1.7(1)
T N ‘
=> S Gd)m5a(Par (Do)
j=0

and by applying Lemma 1.7(2,) finally,

T N -
=> — FGd)TjaDr-
=0

1.6 Reconstruction from Regular Samples
in Bandpass Spaces

The Sampling Theorem established in the previous section has a natural extension to
bandpass spaces. We first consider the case of an asymmetric spectrum obtained by
frequency shifting or modulation by a fixed “frequency” ko € Zy, i.e. the associated
frequency 2%%e.
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As before, let N, M € N, M < N/2and d(2M +1) = N. Moreover, let ko € Zy.
As shown above (cf. Lemma 1.4), modulation i, by the “frequency” ko constitutes
an automorphishm on £(Zy ). Therefore, the image

By =piry (By) = { o (f) € U(Zn) | f(n) # 0 only for n € [—M, M]}
={f € U(Zn) | f(n) #0onlyforn € [-M — ko, M — ko]}

of the space B, of all M-bandlimited functions in ¢(Zy) under modulation by kg
constitutes a vector space isomorphic to 5,,. Moreover, we can show

Theorem 1.9
Suppose N, M € N, M < N/2,d(2M + 1) = N andky € Zn. Then

2M

d
9= ————-9(d) (1, 0 T5a) (Dar)
2 NG 0 o
2M

d _ i
=)~ 90D Ta(Dar) W
; NWHR (jd)” N
foral g € B}y.

PROOF: Letg e B]’fg. Then there exists a unique f € By suchthat g = pg, (f). By
Lemma 1.10(3), f has the basis expansion

2M d
F=> ~ fd)ja(Dar)

=0

and thus

2M d
g = o (f) = ik, ( Nf(jd)Tjd(DM))

§=0
2M d
=> ~ /Do (7ja(Dar))
§=0
By Lemma 1.10(1)
2M d
g(kd) = ~ /Dty (7ja(Dar) (kd))
§=0

=¥ F(kAYWR (kd)(2M + 1) = f(kd)W5 (kd)

Hence
g(kd)

T W
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and thus

2M

a JZ::O WQ(J@MO (1ja(Dar))

as claimed. O

Again, let N, M € N, M < N/2and d(2M + 1) = N. We now pick 2M + 1
“frequencies” kg, k1, . .., kons € Z . Consider the homomorphism

© = P(ko,.... kant) - By — L(ZN)
7ja(Dar) = i, (Tja(Dar)) = Tja(Dar) Wy

forj =0,1,...,2M. Note that ¢ modulates each elements of the canonical orthogonal
basis By := (Tjd(DM) |i=0,..., 2M) of B, individually and in general is not an
isomorphism. Thus the dimension of the vector space

B = Blko, ... kaat) = 9(Bar) = (7ja(DaYW™ | j = 0,1,...,2M)
is less than or equal to 20 + 1. However, we can show

Theorem 1.10
Supposethat N, M € N, M < N/2 andd(2M + 1) = N and ko, k1, ..., kans € Zn.
Then

2M
d . —k;jd k;
9= 9UdWy " Tia(Da)Wy
j=0
foral g € B(ko, ..., ko).
PROOF:  Suppose g € B(ko, ..., kaar). Then there exists a (not necessarily unique)

function f € B such that g = ¢(f). As above, we conclude with Lemma 1.10 and
the linearity of ¢ that

2M d
g=¢(f)=¢ | D Gda(Du)
j=0

2M

= Z%f(jd)Tjd(DM)Wlf\?

J=0
which equals
2M

d . kg )
=> Ng(Jd)WNk”ded(DM)Wﬁf

=0
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since
2M d
g(kd) =" <= F(jd)ria(Das) (k) W, (kd)
i=0
2M .
B d ... k; DA k#j
;;me@“mam>{mw+l el
= CFRAYWAS (kD)(2M + 1) = [(kd) W
and thus

Fid) = g(Gaywy 7",

1.7 Reconstruction from Irregular Samples
in Bandlimited Spaces

We now turn to the problem of reconstructing a bandlimited function from irregularly
spaced samples. The sampling map which assigns to each bandlimited function its
sample vector at the (irregularly spaced) sampling location is an isomorphism from
the vector space B, of all M-bandlimited functions onto the space ¢(Zaps41). This
isomorphism can be used to transform irregular samples into regular samples from
which the corresponding function can be recovered using Lemma 1.10.

As before, let N,M € N, M < N/2, (2M + 1) | Nandd := N/(2M + 1).
Moreover, let By, = (Dys * eﬁ,dN) | j = 0,1,...,2M + 1) denote the canonical
orthogonal basis of B,;. Finally, let 0 < ng <ni; <ng < --- < nopyr < N — 1 bethe
(irregular) sampling locations where we assume the function values of the elements of
B to be known.

Definition 1.7 (Sampling Homomorphism)
We call the unique homomorphism sy : Bas — €(Zanr+1) defined by linear extension
through the association

(D = egfiv)) (no)
(N) (D * eE‘dN)) (1)

D[\/[ *ejd —

(DM * eEN)) (TLQM)
(j=0,1,...,2M) the sampling homomorphism of B, with respectto ng, n1, ..., nan.
The representation matrix
(DM * eéN))(no) e (DM * eéjj\\[}d) (no)
Sy = M€§2NI+1),BA4 (SM) = . .

(Das * e(()N))(WM) (D= e(QJI\\il)d) (n2ar)
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is called the sampling matrix of B;; with respect to ng,n1,...,n9. Recall that
g2M+1) _ (e(2M+1) e2M+1)
2 - 0

,...,€5y ) denotes the canonical basis of £(Z2as41).

The coordinate isomorphism ¢, : By — £(Zan+1) of By relative to By,
defined by the association Dy * e\ - e{***" for j = 0,1,...,2M, assigns to
each function f € By, its coordinate vector ¢p,, (f). We know from the Discrete
Sampling Theorem (Theorem 1.8) that the coordinates of f relative to B, are given

by
e (F)) = 3 7(7)

forj =0,1,...,2M, i.e. they are just the sampling values of f at the regular locations
0,d,2d,3d,...,2Md scaled by &.

Theorem 1.11
Themap sys : By — €(Zanr+1) IS anisomorphism.

PROOF:  Clearly, s, is linear by construction. Since dim By = dim £(Zapr41) =
2M + 1, we only have to show that ker(s»;) = {0}. To thisend, let f € ker(sys). We
have to show that f = 0.

(e,(cm | ke {—M,...,M})isabasis of 7 (Bx). Since F is an isomorphism and
F(e)M) = LWRE, the family OFPM Y .= (Wh | k e {~M,...,M})isa

basis of B;;. Therefore, there exist unique coefficients x_,;, ...,z € C such that
M
f= > W,
n=—M
Since f € ker(sys) the coefficient vector X := (z_ps,...,2a7)" € C2M+1 of f has
to satisfy the equations
M
0=flne) = > Wz,
n=—M

for k = 0,...2M or equivalently, the matrix equation

0=AX,
where D
no(— noM
WNO( " - WNUM
wrl= - wm
A = (er\};\n) = N N
W}”\?ZZV.I(—JW) L. Wﬁv;MIVI

If we set o, := Wy, then the entries ay,, := W*" of A can be written as

agn = (ag)"

B

¥Buy

U Zoni41)

SM

U(Zapr41)
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and the matrix A as

- -1
g y ag 1 ag aé”
oy al_l 1 a aMt
A= . :
-M -1 M
Agpp vt gy Loaanm cee o agly
. -M -M
:dlag(ao ,...,aQM)~V(a0,...,a2M)
its first factor being the diagonal matrix
ag™ 0 0 - 0
-M
a4 Y YN 0 a 0 0
iag(ag™,... a0y ) =
0 0 e agiy

and the second factor, the Vandermonde matrix

1 04(2) oz%M
1 o a? .o a2M
V(Ozo,...,agju): i
2 2M
1 aom a5y -0 a3y

In order to show that f = 0, we need to verify that ker(A) = {0} which is equiva-
lent to det(A) # 0. However this can now be easily established:

det(A) = det(diag(agM, cee agj\lf) -V(ag, ..., agM))

= det<diag(a5M, .. .,agj\l‘f)) det(V(ao, .. .,agM))

2M

_ —M

=T I (-0
k=0 0<s<t<2M

Since by definition, o, = WF # 0forall k = 0,...,2M, the first product is unequal
zero. Moreover, a; — s = 0 if and only if Wy — Wyt = 0 which is equivalent to
Wyt ™" = 1landthus n, — ns € NZ. By assumption 0 < ng < n3 < --- < ngy <
N — 1, thus n, — ns € NZ implies that s = ¢. Therefore, the second product is also
unequal to zero and det(A) # 0 as claimed. O

Corollary 1.3 (Transforming Irregular Samples into Regular Samples)
If X € ¢(Zy) is the sampling vector of a bandlimited function f € By with respect
to the (irregularly spaced) locations0 < ng < nj < --- < ngpyy < N — 1 then

Yf = 5;41 -Xf

is the sampling vector of f with respect to the regular locations 0,d, 2d, . ..,2Md
scaled by .
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Figure 1.3: Reconstruction from irregular samples. The red dots in the upper graph
are the irregular samples of the signal. The black dots on the horizontal axis mark the
locations of the regular samples into which the irregular samples are transformed by
(Sar)~t. The dark-blue graph in the lower diagram depicts the spectrum of the signal.
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PROOF:  Since all the maps sas, ¢B,, and Lg,, are isomorphisms and s); = Lg,, o
©B,, it follow that s o gp;}t = Lg,, and thus
-1 -1
©YBM © SI\/I = LSM = L(S]w)—17

Where Lg,, denotes the linear map defined by the matrix Sy, i.e. Ls,,(X) = Sy - X.
Hence

e (f) = o (531 (X7)) = S - X .

Note that ¢5,, (f) is the coordinate vector of f relative to the basis By, i.e.

f(0)
f(d)
- f(Qd) = ¥Bum (f) = 51;11 ’ Xf'

F(2Mad)
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O

In order to transform irregular samples into regular ones, we first have to invert the
sampling matrix S, defined above. This can be facilitated by the following factoriza-
tion obtained from suitable change of base for the space 5.

Theorem 1.12
The sampling matrix Sy, has the factorization

Sy = HDV
where
1 W]I\\]/Id WJ{]VI(M) . WJJ\\[42]\4d
1 W](\[Mfl)d W](\[Mfl)(2d) W}(VMfl)QAId
H:
1 W](\;M)d W](\;M)(2d) WJ(\;M)QJWd

D = diag (WM, wym M, e

no2 no2M

LWRe  WRet RS e
W Hm12 ”rmS Hm12M
IJVTLQ]\/[ IJ[MLQJ\/IQ IJV’!LQJ\/[3 I;[rTLQ]\/jQM

i 1 ; i i -1 _ _1_(77\? ;
Moreover, the matrix ——=— H is hermitian, i.e. H™' = 5315 (H)", the diagonal

matrix D has all nonzero entries andV is a Vandermonde matrix.

PROOF:  Asabove, let By = (D * eg) | k=0,...,2M) denote the canonical,

orthogonal basis of By, and O™ = (W, | k € {~M, ..., M}} the basis of
By introduced in the proof of Theorem 1.11. We first compute the representation
matrices Mo, . g,, (id) and Mg, o, (sar) of the identity map id relative to the basis Bs
and O, (base change) and the sampling homomorphism s, relative to O; and Eq,
respectively. We begin with the first matrix and compute the basis representation for

the image id (D * eEfiV)) of each basis vector Dy * eg) of By under id relative to
the basis O,. Clearly,

M
id(DM *eyj)) = Dy #el)) = ( 3 W&k> rel)
k=—M

M M ‘
— Z (Wlfv*eyj)) = Z W];deW]fV

k=—M k=—M
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using Theorem 1.5(4). Thus the representation matrix of id relative to B, and O is

1 W]]\\[4d WJZ\\]/I(Qd) . W}IVVI2Md
1 WJ(VMfl)d W](VM71)(2d) W](VMA)QMd
H = M027B]\/j(id) =
1 W}(V—M)d W}(V—M)(Qd) W}(V—M)QMd
Since
Wz\,(no)
W3 (no) M
SIVI(W?V): . = Z W]l\clnjeg‘N)a
: =M
W (nanm

the representation matrix of sy, relative to O and & is

no(—M) no(—M+1) noM
W;VLO( M) WJrVLO( iy WNLOM
W e
V/ = Mgzon(SM) =
W]Zzn.f(*fw) W]ZzM (.*JWJrl) . WJ%2]\IM
Since
1L Wwpe o WM

V! =diag(Wy™M, . WMy : :
1 W]”\;M\/I . W]”\;M\/f 2M
we finally obtain

Sy = Me, By, (sm) = Mg, B,y (50 0id)
= MSQ,OZ(SM) . MO2,B}\/[ (ld) = H . VI = HDV

We finish the proof by showing that \/_H is hermitian.

1 — 1
H - H) = fkyd (Wgzd)
oM + 1( ) oM + 1 Wi je

_ —kjdwjkd
2M +1
k¢
1 2M +1 ifk=1¢
— —wy (k—£)d(2M+1)
2M +1 ifk #£¢
1_ W-(—0d k0

B 2M+1 itk=0\  _,
*2M+1 ithte) — M



38 CHAPTER 1. DISCRETE PERIODIC FUNCTIONS

since by assumption d(2M+1) = N and, by Lemma 1.1, Wy *=9% = (w) =" =
1ifk # £ (mod N). O
Corollary 1.4
The inverse of the sampling matrix Sy, is given by
1 ~
-1 _ —1
S = 5a1 + TV
where
W]”\;OM W]”\;OM . WJT\;OM
W]’f\}lM*Md W]réle(Mfl)d . WJ%IIVIJer
f{ _ W;\;ﬂ\/lfM(Qd) W;\lszf(Mfl)@d) o W]fy\;21\/j+M(2d)
WJ’I\?QJ\{M*M(QMd) W[TGQ@{M*(M*I)(QJV[d) .. WJ’I\;Q]WIV[J,*M(QMd)
and
1 ,
v-l— " Z (_1)2M+1—mWNZzeUni
7 jeucqo,...2m}
#U=2M+1—m m=1,...,2M+1
j=0,....2M
and where
2M )
45 =TT (W - wk).
k=0
k#j
PROOF:  We have
S, =(HDV) ' =v-D g~}
1 -1 1 noM nem M\ (T
= M1 V= diag(WmeM L WM L (H)
1 -
=— -H.
2M +1 v
the closed form representation of V! follows from Lemma 1.11. |

Lemma 1.11

Let ap,...,an bedistinct elements of an arbitrary fi eldF and n € N. Then the Van-
dermonde matrix

n—1
1 w ad o
1 o o3 o abt
V.= ) )
n—1
1 Qp-1 Qg Qp_q
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isinvertible and its inverse is given by

vl = Ai Z (71)n—m H a;

I jeucqo,...n—1} €U
#U=n—m (ﬂ:l,...,n
J=U,...,n—
where
n—1
A]’ = H(aj — ak).
k=0
k#j
PROOF: The proof follows an idea from J.J. Rushanon. Let «,..., a1 € F

distinct elements of the field F, f(z) := (z — ag)(x —a1) -+ - (x — an—1) € Flz] and
let R := F[z]/f(x), which is isomorphic (as an algebra) to {h € Flz] | deg(h) <
n—1}. Let X = (1,z,22,...,2" ") for R denote the canonical basis for R and
M := (ey,...,e,) the canonical basis of F™. Let ¢ : R — F" be defined by

forj=0,...,n—1landletV := M¢w)xm () denote the representation matrix of
relative to the basis X (™ and £(™). Clearly,

1 ag az o bt
1 o a? - 04?_1
V =
1 an1 o2 an~l
is the Vandermonde matrix defined by the numbers «y, . .., a,—1. Since, by assump-
tion, the numbers «y, ..., a,_1 are all distinct,
det(V) = H (aj —a;) # 0,
0<i<j<n—1
i.e. V is invertible and ¢ an isomorphism. For j = 0,1,...,n — 1, let
Wy, j
Wo +
wo = |
Wn,n—1

denote the j-th column of the inverse matrix V —! of V. By definition, W) satisfies
the equation 4
VW(]) = €41
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for j = 0,1,...,n — 1. Using the isomorphism ¢, we can restate this condition in
terms of polynomials. To this end, let

pi(@) = ot (WD) € R
forj =0,...,n — 1. Then follows immediately (see diagram)

pj(ao)
pj(.oa) _ L, (@X(n) (pj(x))) — VWO = ey,
Pj(a.nfl)
forj =0,...,n— 1. L.e p;(z) is the unique polynomial in R satisfying the condition
pjei) = i

fori,j =0,...,n— 1. Thus p;(z) is the j-th Lagrange interpolation polynomial

(x — ay)
pj(x) = Lj(z) =
! ! ,};[0 (oj — o)
k#j
1 n—1
= A Z (7]-)]C H Q; xnilikv
7 k=0 \ jguc{o,...,n—1} ieU
# =

where

Hence, since W) = o) ((pj(2)),

Wy j = Ai Z (_1)n—m H a;

J jeucqo,...n—1} ieU
#U=n—m
form=1,...,nandj=0,...,n— 1. 0

1.8 Reconstruction from Aperture-filtered Samples

In this section we address the problem of reconstructing a bandlimited function from
its aperture-filtered samples.

Let M,N,r e N, M < N/2,(2M + 1)|N and d := N/(2M + 1). Moreover, let
By = (DM*eEdN) | 7 =0,1,...,2M) denote the canonical orthogonal basis of B,;.
Moreover, let v := (vo, .. ., v,-) denote the sequence of aperture functions vy, ..., v, €
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{(Zy) and letn := (no, . .., n,) denote the sequence of (irregular) sampling locations
0<ng<ni<---<n, <N — 1, where we assume that the function values of the
bandlimited functions f € B, are known relative to the apertures v. More precisely,
we assume that we know the values

(f *vo)(no), ..., (f *vanr)(nr).

Definition 1.8 (Sampling Homomorphism)
As above, we call the unique homomorphism s%, : Basr — ¢(Z2ar+1) defined by linear
extension through the association

(D]\/[ * eﬁg) * ’U()) (n())

Dy * e(.N) *v1 ) (N
Dy *eédN) = ( ]d. )

(D * eg.fiv) * vy ) (ny)

(j =0,...,2M) the sampling homomorphism of B, with respect to n relative to the
apertures v. The representation matrix

Sy =M
M 82(21\4+1)7Bm

(DM*eéN)*UO)(NO) (DM*ngZ\Qd*UQ)(no)
(Do + el 5 v,)(ny) -+ (Dar SN xv,) (n)

is called the sampling matrix of 13, with respect to n relative to the apertures v. More-
over, let B, (v) denote the set of all bandlimited functions f € B, that can be recon-
structed from their samples at n relative to the apertures v.

Recall that €M1 = (eFM*1 ... &2 denotes the canonical basis of
U(Zap+1). As above, p,, : By — €(Zaar41) denotes the coordinate isomorphism
relative to B, which assigns to each function f € B, its coordinate vector ¢, (f).
We know from the Discrete Sampling Theorem (Theorem 1.8) that the coordinates of
f relative to B, are given by

o (1)) = £

forj =0,1,...,2M, i.e. they are just the sampling values of f at the regular locations
0,d,2d,3d,...,2Md scaled by &.

We first consider the special case where » = 2M and s}, is invertible. Then
follows from the diagram that ¢ 5,, o (s,)"! = L;le = L(ss,)-1 and thus we can
easily recover the coordinates of f relative to the canonical basis By :

e (f) = 082 ((85) 71 (X7)) = (984 © (S3) 7)) (X7)
= Lisy)— (X7) = (S3n) - X},

Hence, we have the following

B il
¥By : $
P
U Zapry1)
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SM
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Theorem 1.13
SupposeX}’ = ((f *v0)(no), ..., (f * UQM)(nQM))t is the vector of the aperture-
fi Itered samples of a bandlimited function f € By, with respect to the (irregularly
spaced) locations0 < ng < --+ < napyr < N — 1 and the gpertures vy, . .. ,vaps. If
the sampling homomorphism is an isomorphism, then f can be uniquely reconstructed
fromX}’. In fact

Y= (%)X}

isthe coordinate vector of f relativeto By, i.e.

et (8507 X5) = S ((83)7 X5) ma(Dun).

j=0

We will now investigate under which conditions on the aperture functions the ho-
momorphism s}, is invertible. We begin with the trivial case where all apertures are
the same and where r = 2.

Theorem 1.14
Supposev = (v,...,v). Thens, isanisomorphism if and only if 4(n) # 0 for all
[n] < M.

PROOF: Consider the function ¢, : By; — By defined by f — f xv. By
Lemma 1.3, ¢, is an homomorphism. We have to show that ker(c,) = {0} < 9(n) #
0 for all |n| < M. The surjectivity of ¢, follows since its domain and codomain have
the same dimension. Clearly, f v = 0 is equivalent to fo = 0. Thus f(n) = 0 for
all n € Zy (since f is M-bandlimited, we only have to worry about |n| < M !) if and
onlyif &(n) # 0 forall |n| < M. Hence ¢, is an isomorphismand, since s%, = saroc,
(cf. diagram), s, as composition of isomorphism, is an isomorphism. O

Theorem 1.15
Supposev = (v, ... ,v) and the gperturev has the basis representation

v = Z a W4

ey
relativeto the basis O, = (W4, | £ € Zy). Then
Sty = NSy diag(a_pr, ..., anr)
andifay, #0for¢ =—M,..., M, then theinverse matrix exists and is given by
(S}Q)fl = N~ 'diag(a"},, ..., a3 )Sy -

ProoF:  Let OFMTY — (Wk | ke {-M,...,M})and OY) = (Wk, | k €
Zy). OSMFY) s a basis of By and O a basis of £(Z ). Moreover, let

v = Z aW4

LELN
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where a;, € C. We will compute the representation matrices MO@MH) Bas (¢cy) and
2 B
My pemin (id) and begin with first one. Since
M,V

o (Do * e%”) = Dy * eg.g) * U

M
= < Z W’X,) * <Z a4W§V> *egg)
k=—M VASYAN,
and by Lemma 1.3(7) and Theorem 1.5(4)
M M _
- ( 3 akNWﬁ,) sell) = 37 NaWw Wk,
k=—M k=—M

the representation matrix of ¢, relative to the basis By, and O§2M“) is given by
M @M g (cy) = (Nakwjgjdk)k,j = NH diag(a_pr,-..,an), Where

o
sY,
1 WJJ\\%d W]]\y@d) L. W]I\\]/IQMd By By — M E(ZQM+1)
| oD penEd g (-2
H =
Cy
| WM ) gz
We now compute first compute M, 1) 5 (id):  Since 0: By S
2 )
M
id (D * e;fiv)) =Dy *eg.g) = < Z W’X,) * eg.fi\” id
k=—M
M .
= Z W];Jdkwécv’ Bu By
k=—M

: . —jdk
we conclude that the base change matrix Mo§2M+1>7BM (id) = (W4’ )m = H and
therefore MBM’OQWH) (id) = H~1. Thus

v 0
SM = M5§2M+1)’BM (SM)

o
= SyH 'NHdiag(a_n, ..., an)
= NSM diag(a_M, . .,aM).

= SMMBM’052M+1) (id)M @M g (CU)

By Lemma 1.5(1)

F(v) ={ <Z agWﬁ,) = Z agNeg\é).

LELN LeELN
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In particular, o(n) = Na_,,. Note that ¢(n) # 0 for all |n| < M ifand only if a,, # 0
forall |n| < M.

Ifag #0forall ¢ € {—M,..., M} then diag(a_ns, . .., ans) eXists and is given
by (diag(a_M, ce aM))_l = diag(a:}w, cee a&l). Hence,

-1

(88,) 7" = (N Sy diag(a_nr, ..., an))

=N"1 diag(a:}w, ceey a;II)SI;II
as claimed. O
We now return to the general case » > 2 M and first formulate some general results.

Theorem 1.16
Suppose M, N,r € N, M < N/2,(2M+1) | N,d := % andsh; : By — U(ZN)
is the sampling homomorphism with respect to the samplesn = (no, ..., n,) relaive

to the gperturesv = (vy, ..., v,). Then

1. Y € ¢(Zy) isthev-gperture-fi Itered sample of a band-limited function f € By
ifandonly if Y € im(s5,).

2. The band-limited functions f,, fo € Bjs have the sample v-aperture-fi ltered
sampleif and only if f, — f1 € ker(s},).

3. The space of all M -band-limited functions that can be reconstructed from their
samples at n relative to the gpertures v is isomorphic to B/ ker(s}“w), ie
Bas(v) = Bas/ ker(s%,). Moreover, dim By (v) = rank(s5,).

PROOF:  These statements follow directly from the Homomorphism Theorem, see
the diagram in the margin. O

Remark 1.1

Ifker(s%,) # {0}, then Bas(v) is aproper subspace of By. B (v) is not necessarily
of the form By, for some0 < M’ < M. We will consider the question, under which
condition only the higher frequency terms are missing later-on.

If r = 2M then we can easily formulate the conditions on the apertures under
which we can reconstruct all elements of ;.

Theorem 1.17

SupposeM, N € N, M < N/2, 2M+1) | N,d := 537° and sy, : By — ((Zn) is

the sampling homomorphism with respect to the samplesn = (no, ..., nap) relative
to the gperturesv = (vy, . . ., vapr). Thenthe following statements are equivalent

1. s}, isanisomorphism.

2. BM(U) =By

3. rank(Sy,) =2M +1
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Figure 1.4: Reconstruction from aperture-filtered samples. The samples are plotted in
red. The light-blue graphs in the lower diagram depict the spectra of the two aperture
functions used in the sampling. The dark-blue graph depicts the spectrum of the signal.
The dark dots on the horizontal axis mark the locations of the regular samples into
which the aperture-filtered samples are transformed by (S%,)~'.

Period N=28 M=3 d=4 Samples R=7
1.5 T T T T T

1F i

|

0.5

value
o
T

|
5 10 15 20 25
sample index 0:N-1 over one period

Spectrum

frequency index —N/2:N/2

4. (eWNX{—m,...ay | £ =0,...,2M) islinearly independent.

5. (PM (okxe™N) ) k=0,..., QM) is linearly independent.

6. The matrix
@()(*M)W]”\;O(—M) S f)QM(*M)W;\?M(_JM)
ﬁO(M)W;\}OM ﬁ2]\4(M)W]\L[2MM

hasrank 2M + 1.

PrRoOOF:  Conditions (1), (2) and (3) are clearly equivalent (Homomorphism theo-
rem). Moreover, condition (6) is just the matrix formulation of condition (4). Condi-
tions (4) and (5) are equivalent since the system in (4) is the isomorphic image of the
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system in (5) under the discrete Fourier transform (see also 1.14). We can therefore
confine ourselves to establishing the equivalence of the conditions (3) and (4).
Consider the sampling matrix

o __
SM = M€§2M+1),Bm

(DM * eéN) * UO)(nO) e (D * egx[)d * UO) (ng)
(D * e & varr)(nanr) - (Darx eé?\;)d x van ) (n2nr)

of B, with respect to n relative to v. Clearly, rank(Sj'v) = 2M + 1 if and only if the
system

((s30)™ [k =0,....201) (1.15)
of all row vectors
(Dar * e vy ) (1) ((Dar * vi) * €g) (nk)
(5™ = s = .
(Das * eansa * vg) () ((Das * vi) * e2nra) ()

(D * v ) (n)

(DIVI * vk)(nk — 2Md)

of S8, is linearly independent. Note that for k& = 0,...,2M, the vector (S}’VI)(k)
contains 2M + 1 distinct samples of Dy, x v, € Bys. Therefore, suppose that for
certain coefficients x;, € C we have the relation

oM oM (Das * o) (1)
0= ar(s5)™ =3 : (1.16)
k=0 k=0 (D * vk ) (ng — 2Md)
2M (D * vg x e, )(0)
~S : (1.17)

k=0 (DM * Vg * e—nk)(_QMd)

This is equivalent to
2M
0= (Z x (Dar % vk * enk)> (jd) (1.18)
k=0

forall j = 0,...,2M. Since Das*vg*e_p, € By also Y s zx (Dar kv xe_y, ) €
B Therefore, Equation (1.18) is equivalent to

0= <Z z (Dar * g * e_nk)> (n) (1.19)

k=0
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by the Discrete Sampling Theorem (Theorem 1.8), and thus also to the equation

2M

0= ax(Dar* vk xe_p,). (1.20)
k=0

Applying the discrete Fourier transform to Equation (1.20), we obtain the equivalent
condition

2M
0= akNx(-a,..ary 0k WHE. (1.21)
k=0

Thus we see that the system (1.15) is linearly independent if and only if the system
(X{,M"w]w}@kwlek | k= O,. . ,QM) (122)
is linearly independent. 0

Remark 1.2
From the proof of Theorem 1.17 follows that the association

k ~ Nk
(SR4)( ) g PI\/I (Uk * e(_]\fb)k) — UkW]i}'kX{fM,...,M}
defi nes canonical isomorphisms between the row space of the sampling matrix Sy,
(PM(vk * e,nk) | k=0,..., 2M>, <’0’W§<{kX{_M,___7]\4} | k=0,..., 2M> and the
column space of the matrix

’lA)()(*M)Wj”\;O(—M) S f)QM(*M)W;\;QM(_J\l)

do(MYWgeM o b (M)W M M
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