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2.6 SYSTEMS OF ODEs Systems of Linear 1st order ODEs        
 

In this section we will study the theory of the systems of linear 1st order ODEs.  
It can be shown that such systems are equivalent to a single linear differential 
equation of a higher order; and for both of them the most theoretical results have 
a similar description.  Although, we will try to avoid duplication of the 
theoretical justification, in a practical approach, the methods of solution for a 
single equation and for the systems are different.  In many cases, the description 
of the physical model is more natural to perform with the systems of ODEs, and 
investigation of the physical models such as dynamic, stability etc. is more 
visual when it is made with the help of systems. 

 
1.  DEFINITIONS AND NOTATIONS:  
 
Normal form     Consider a system of n linear first order ODE written in the normal form (solved 
        for the derivatives of unknown functions): 
                     

  ( ) ( ) ( ) ( )tfxtaxtaxtax nn 112121111 ++++=′ "   
            ( ) ( ) ( ) ( )tfxtaxtaxtax nn 222221212 ++++=′ "  
            #                        (1) 
            ( ) ( ) ( ) ( )tfxtaxtaxtax nnnnnnn ++++=′ "2211  
 
 where ( ) ( ) ( )txtxtx n,,, 21 …  are unknown functions to be determined from the 

system (1), and coefficients ( )taij , ,...2,1, =ji  and functions ( )tf i  are 
continuous functions in D R⊂ . 

  
Matrix form Introduce the following column vectors and a matrix with entries which are the 

elements of the system (1): 
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 Then the system (1) can be written in the compact matrix form: 
   

     fAxx +=′                                 (2) 

 

 This is a non-homogeneous system.   

Without a free term f , the system is homogeneous: 
   

     ′ =x Ax                                    (3) 

 

Solution vector The solution vector (particular solution) is any column vector ( )tx , t D∈  
which satisfies the system (2) or (3). 

        
Initial value problem Find the solution of the system of ODEs subject to initial conditions: 

fAxx +=′  subject to ( )0 0t =x x       where 

0
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, 0
ix ∈R               (4) 
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 The initial value problem (4) for normal system has exactly one solution 

(unique). 
 
Existence Theorem Theorem 1 (existence theorem)  
 

Let the system of linear 1st order ODEs 
        fAxx +=′   

be normal for t D∈ ⊂ R  (means that the functions ( )taij and 

( )tf i  are continuous on D ⊂ R ) and let 0
ix ∈R .   

Then there exist exactly one solution ( )tx  such that 
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0
1
0
2

0

0
n

x
x

t

x

 
 
 =  
 
  

x
#

 0t D∈  

 
 
 The particular solution ( )tx  of the system (2) or (3) is a vector valued function  

     ( ) nt : →x R R   

 which can be treated as a parametric definition of the curve in the space nR : 

     ( )
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( )
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x x t
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 =
 == 

 =
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#

 t D∈          (5) 

 with the coordinates 1 2 nx ,x ,...,x .   
 

This space is called a phase space, and the solution curve defined parametrically 
by the equation (5) is called the trajectory or the orbit in the phase space.  For 2-
D and 3-D cases, the traditional notations for the coordinate system and, 
correspondingly, for unknown functions in the system are used: 

  ( ) ( ) ( ) ( )11 12 13 1x a t x a t y a t z f t′ = + + +   

            ( ) ( ) ( ) ( )21 22 23 2y a t x a t y a t z f t′ = + + +                 (1b) 

            ( ) ( ) ( ) ( )31 32 33 3z a t x a t y a t z f t′ = + + +               
        with the particular solutions written as          

            ( )
( )
( )
( )

x x t
t y y t

z z t

=
= =
 =

x   t D∈         (5b) 

The graph of the equation (5b) defines a trajectory in the phase space (phase 
plane, for 2-D case).  The independent variable t D∈  can be treated as the time 
(can also be negative), and for any moment of time equation (5b) defines the 
position of a point on the trajectory – therefore, the parametric equation (5b) can 
be interpreted as a motion of material point along the trajectories defined by the 
linear system of ODEs. The arrows on the trajectories indicate the direction of 
motion with the increase of time t.  The family of all trajectories of the linear 
system is called the phase portrait. 
 
An initial value problem defines the trajectory which goes through the 
prescribed point.  According to the Existence Theorem, the solution of any 
initial value problem of the linear system is unique – it means that there is only 
one trajectory which goes through any point of the phase space, and that the 
trajectories of the linear system do not intersect. 

trajectory

phase
space

phase portrait
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2.  THEORY OF LINEAR SYSTEMS OF ODEs  
 

It can be shown that a linear nth order ODE can be transformed to a system of n 
linear 1st order ODEs, and a system of n linear 1st order ODEs can be reduced to 
a linear nth order ODE.  Therefore, the description and the properties of the 
general solution of the system will be similar to those of the general solution of 
a linear nth order ODE.  Here, we will list the major results of the theory of the 
systems of linear 1st order ODEs. 

 
I) Homogeneous System:     ′ =x Ax               (3) 
  
linear independent solutions Vectors (vector functions) ( ) ( ) ( )1 2 nt , t ,..., tx x x  are linearly independent if 

their  linear combination equals zero for all t D∈  

     ( ) ( ) ( )1 1 2 2 n nc t c t ... c t 0+ + + =x x x         (6) 

 only if all coefficients are zero 1 2 nc c ... c 0= = = = . 
 
 If vectors ( ) ( ) ( )1 2 nt , t ,..., tx x x  are not linearly independent, then they are 

linearly dependent.  It means that in the linear combination at least one 
coefficient kc 0≠  can be non-zero. 

  
Wronskian The Wronskian of the set of solution vectors of the homogeneous system  

( ) ( ) ( )1 2 nt , t ,..., tx x x  is defined as a determinant of the matrix which columns 

are the vectors ( )k tx : 

     ( ) ( ) ( ) ( )1 2 nW t  = det t   t   ...  t    x x x        (7) 
 
 There is a relationship of the Wronskian  (7) to the Wronskian defined in 5.3. 
    
 If ( )W t 0≠  at least  at one point t D∈ , then the solution vectors 

 ( ) ( ) ( )1 2 nt , t ,..., tx x x  are linearly independent. 
 
 There always exist n linear independent solutions ( ) ( ) ( )1 2 nt , t ,..., tx x x  of the 

homogeneous system (3).  But any n 1+  solutions of the homogeneous system 
(3)  are linearly dependent.  

 
Fundamental set Any set of n linearly independent solutions of the system (3) 

( ) ( ) ( )1 2 nt , t ,..., tx x x  is called a fundamental set. 
 
 It is obvious that a homogeneous systems always possesses a zero solution 

( )t ≡x 0  (trivial solution).  But any set which includes the zero vector is 
linearly dependent.  Therefore, the fundamental set cannot include the trivial 
solution. 

 
 
Fundamental matrix A matrix with the columns which are constructed from the fundamental set is 

said to be the fundamental matrix:  
 
 
     ( ) ( ) ( ) ( )1 2 nt  = t   t   ...  t    X x x x         (8) 
 
General Solution Any solution of the homogeneous system (3) can be written as a linear 

combination of the vectors from the fundamental set. Therefore, the general 
solution (complete solution, complimentary solution) of the homogeneous 
system is a set of all its solutions and it is given by all linear combinations of the 
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vectors from the fundamental set (span of the fundamental set) and it can be 
defined as: 

 

      ( ) ( ) ( ) ( )c 1 1 2 2 n nt c t c t ... c t= + + + =x x x x Xc      (9) 

 where c  is a vector of arbitrary constants.  Equation (9) defines a family of 
curves in the phase space which represents the solutions of the homogeneous 
system. 

 
Solution of IVP  The solution of the initial value problem for a homogeneous system: 
     ′ =x Ax          subject to ( )0 0t =x x        (10) 
 is given by  
 

     ( ) ( ) ( )1
0 0t t t−=x X X x           (11) 

 where       ( )tX   is the fundamental matrix and 

( )1
0t

−X   is the inverse of the fundamental matrix at 0t t=  
 
 

II) Non-Homogeneous System:     ′ = +x Ax f              (2) 
  
 
 Denote by ( )p tx  any particular solution of the system (2).  A particular solution 

can be found by the method of undetermined coefficients (similar to the case of 
linear ODE) or by the method of variation of parameter: 

      

     ( ) ( ) ( ) ( )1
p t t t t dt−= ∫x X X f                 (12) 

 
The general solution of the non-homogeneous system (2) is given by a sum of 
the general solution of the homogeneous system (complementary solution) and a 
particular solution: 
 
    ( )tx  ( ) ( )c pt t= +x x  
 

General Solution  Using equations (9) and (12), the general solution of the non-homogeneous 
system can be written as: 

    ( )tx  ( )t= X c ( ) ( ) ( )1t t t dt−+ ∫X X f                (13a) 

 
Solution of IVP      The solution of the IVP for the non-homogeneous equation (4) can be given by: 

     

     ( )tx  ( ) ( )1
0 0t t−= X X x ( ) ( ) ( )

0

t
1

t

t s s ds−+ ∫X X f       (13b) 

 
 In a conclusion, the general solution and the solution of IVP for homogeneous 

and non-homogeneous systems (9), (11), (12) and (13) can be determined if the 
fundamental matrix of the homogeneous system ( )tX  is known.  In the next 
section we will consider the case of linear systems with constant coefficients 
(autonomous systems) for which there exist the developed methods of finding 
the fundamental matrix. 
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3.  FUNDAMENTAL SET OF LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS 
  
 Consider the homogeneous system of linear 1st order ODEs  

  1 11 1 12 2 1n nx a x a x a x′ = + + +"   
            2 21 1 22 2 2n nx a x a x a x′ = + + +"  
            #                                   (14) 
            n n1 1 n2 2 nn nx a x a x a x′ = + + +"  

 where all coefficients ija ∈R , i, j 1,2,...=  are constants. 
 In the matrix form:    

     ′ =x Ax    

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

a a a

 
 
 =
 
 
 

A

"
"

# # % #
"

    (15) 

 The Eigenvalue Problem, matrix diagonalization, matrix exponential are among 
the techniques used for construction of the fundamental set for the system with 
constant coefficients.  

 
Eigenvalue Problem: Because the linear system is of the first order, we look for the non-trivial 

solution of the exponential form  

            ( ) tt eλ=x k ,       
1

n

k

k

 
 = ≠ 
  

k 0#        (16) 

k  is a non-zero (non trivial) vector of constants, where ik  and λ  can be the 
real or the complex numbers which have to be found from satisfying the 
equation (15).  Substitute the trial form (16) into matrix equation (15): 

     ( ) ( )t te eλ λ′ =k A k  

     t te eλ λλ =k Ak  
     t te eλ λλ − =k Ak 0  
     t te eλ λλ − =Ik Ak 0   I  is the identity matrix 
     ( ) teλλ − =I A k 0    can be divided by te 0λ >  

     ( )λ − =I A k 0  

     ( )λ− =A I k 0           (17)   
 This is the homogeneous system of algebraic equations, which according to the 

Theorem has the non-trivial solution if the determinant of the matrix of 
coefficients is equal to zero.  Therefore, the following condition should be 
satisfied: 

     ( )det 0λ− =A I           (18) 

 Equation (18) is the thn  order algebraic equation for constant λ : 

     ( )det λ−A I  

11 12 1n

21 22 2n

n1 n2 nn

a a a 1 0 0
a a a 0 1 0

det

a a a 0 0 1

λ

    
    
    = −    
        

" "
" "

# # % # # # % #
" "

 

        

11 12 1n

21 22 2n

n1 n2 nn

a a a
a a a

det

a a a

λ
λ

λ

− 
 − =
 
 

− 

"
"

# # % #
"

 

        n n 1
n n 1 1 0c c ... c cλ λ λ−

−= + + + +  
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 Expansion of the determinant yields an algebraic equation with real coefficients 

which is called the characteristic equation.  According to the Fundamental 
Theorem of Algebra it has n roots 1 2 n, ,...,λ λ λ which can be real or complex, 
distinct or repeated.  These roots are called the eigenvalues.  After the 
eigenvalues are determined, they can be substituted into equation (17) and the 
corresponding non-zero solutions 1 2 n, ,...,k k k of the vector equation can be 
found.  These solutions  1 2 n, ,...,k k k  are called the eigenvectors corresponding 
to eigenvalues 1 2 n, ,...,λ λ λ .  The solution of the eigenvalue problem (17) is not 
unique; they can be chosen in such a way that the desired solutions (16) have 
only the real-valued components.  Then the constructed fundamental matrix also 
will have only real-valued entries.  Let us show how it can be made: 

 
Fundamental Matrix: Case 1: All eigenvalues 1 2 n, ,...,λ λ λ  are real and distinct.  Then the  

corresponding eigenvectors vectors 1 2 n, ,...,k k k are also real-valued 
and linearly independent.   Therefore, the fundamental matrix can be 
defined as 

 
       ( ) n1 2 tt t

1 2 nt e   e  ... eλλ λ =  X k k k                 (19) 

   Exercise: show that the Wronskian is not equal to zero for any t ∈R .   
 In general, for real distinct eigenvalues 1 2 m, ,...,λ λ λ the corresponding 

entries of the fundamental matrix are  
 
       m1 2 tt t

1 2 me   e  ... eλλ λk k k       (20) 
 

Case 2: Let eigenvalue λ  be the repeated real root of the characteristic 
equation (18) of multiplicity m .  Then if: 

 
a) there are m linearly independent eigenvectors 1 2 m, ,...,k k k  

corresponding to the eigenvalue λ .  Then the fundamental matrix 
includes   

    m1 2 tt t
1 2 me   e  ... eλλ λk k k  

b) there is only one linearly independent eigenvector k  
corresponding to the eigenvalue λ .  Then the other linearly 
independednt solutions can be constructed in the following way: 
find the vectors , , ,...k p q which are solution of the vector equations 

    ( )λ− =A I k 0  

    ( )λ− =A I p k  

    ( )λ− =A I q p  
    …  

    Then the fundamental matrix will include the vectors 
       t t t 2 t t te ,  te + e , t e + te e ,  ... λ λ λ λ λ λ+k k p k p q   (21) 

It can be verified with the help of the Wronskian that these vectors 
are linearly indenedent. 
 

Case 3: The eigenvalue λ  is complex.  We know that the complex roots of 
the algebraic equation with real coefficients appear in conjugate 
pairs: 

 1,2 iλ α β= ±  
 The corresponding eigenvectors are also a complex conjugates 1k  

and 1k .  Therefore for distinct eigenvalues 1,2 iλ α β= ±  there are 

two linearly independent solutions   ( )i t
1e

α β+k  and ( )i t
1e

α β−k .  But 
they are complex-valued functions which is not convenient for 
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representation of the physical problems.  It can be shown that the 
linear combinations of these two solutions and application of the 
Euler formula ( ( )a bi ae cos b i sinb e+ = + ) yield the two 
independent real-valued solutions which can be included in the 
fundamental matrix: 

 
    ( ) t

1 1 2cos t sin t eαβ β= −x b b     
               (22) 
    ( ) t

2 2 1cos t sin t eαβ β= +x b b    
    
 where vectors are ( )1 1Re=b k  and ( )2 1Im=b k . 
 
 
Conclusion: The solution of the eigenvalue problem for the homogeneous linear 

system of 1st order ODEs with constant coefficients yields the 
fundamental matrix X . 

 
 
 
 
 
 
Matrix exponential: The system of 1st order ODEs in matrix form ′ =x Ax  resembles a 1st order 

ODE for which it is very tempting to write the solution in the traditional 
exponential form teA .  But how can the exponential function with the matrix be 
calculated?  Again, we can use the analogy with the calculus of functions of a 
single variable and define the matrix-valued exponential function in the form of 
the Taylor series: 

            
( )k 2 3

t 2 3

k 0

t t te   =  t ....
k ! 2! 3!

∞

=

= + + + +∑A A
I A A A    (23) 

in which we know how to calculate the powers of the matrix 
k  times

k =A AA A
����
"   

(it can be shown that the infinite series (23) is always convergent for any t).   
  
Then the fundamental matrix of the linear system (15) can be written as 

    te= AX             (23) 

Then the general solution in matrix exponential form is 

    ( )t t te e e t dt−= + ∫A A Ax c f         (24) 

The solution of the IVP can be defined by  

    ( ) ( )0

0

t
t t t s

0
t

e e e s ds− −= + ∫A A Ax x f       (25) 

The matrix exponential form of the fundamental matrix is not used very often 
for the actual solution of the linear system of ODEs.  But it is very convenient 
for derivation and proofs of the theoretical results such as existence theorems 
etc.  
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4.  AUTONOMOUS SYSTEMS:  

A system of 1st order ODEs is called autonomous if it can be written in the 
form: 

  ( )1 1 1 2 nx f x ,x ,...x′ =   

            ( )2 2 1 2 nx f x ,x ,...x′ =  
            #                          (26a) 
            ( )n n 1 2 nx f x ,x ,...x′ =  
        and in a matrix form: 

( )′ =x f x                (26b 

 The unknown functions ( ) ( ) ( )1 2 nx t ,x t ,...x t  are functions of t, but the 
independent variable t does not appear explicitly in the right hand side of the 
system (26).  Autonomous systems are not necessarily linear. 
 

 
plane linear      Here, we will consider only plane linear autonomous systems, which for  
autonomous systems    simplicity can be written as 

     
x ax by
y cx dy
′ = +
′ = +

  a,b,c,d ∈R   t−∞ < < ∞         (27a) 

        and in the matrix form 

            ′ =x Ax                 (27b) 

The particular solution of the plane system is a 2-dimensional vector which 
parametrically describes a trajectory (orbit) on the phase plane: 

    ( ) ( )
( )

x t
t

y t
 

=  
 

x  
( )
( )

x x t
y y t

=
=

 t−∞ < < ∞     (28) 

The general solution also includes an arbitrary constant vector 

    ( ) ( )
( )

1

2

x t ,c
t ,

y t ,c
 

=  
 

x c          (29) 

It defines the family of trajectories in the phase plane (phase portrait) and 
describes the motion of the points along the solution curves with the change of 
time t .  The arrows on the trajectories indicate the direction of the motion of the 
point with the increase of time.  This mapping defined by the equation (29) is 
called a dynamical system. 
 
 
The initial value problem ′ =x Ax , ( ) 00 =x x  has a unique solution  

( ) ( )
( )

0
0

0

x t ,x
t ,

y t , y
 

= =  
 

x x x  

        the trajectory which goes through the prescribed point 0x . 
 

 
 
The right hand side of the vector equation (27b) defines the vector field in the 
phase plane .  At any point on the plane x  we can draw a vector Ax  and obtain 
a geometrical representation of the directional field.  These directional vectors 
are tangent to the trajectories defined by the system (27b). The directional vector 
field can be drawn even without solving the system (27), but it provides a 
qualitative  picture of the dynamical system. 
 

0x

( )0t ,x x
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Critical Points: The important characteristics of the autonomous systems are the critical 

(equilibrium, stationary) points, which can be defined as the solutions not 
changing in time (constant solutions): if a point is placed at the equilibrium 
point it will remain there forever.  The critical points can be defined as the 
solutions of the equation: 
    ( ) =f x 0  
For the plane system, critical points are the solutions of the system of equations: 

    
ax by 0
cx dy 0

+ =
+ =

 

If the determinant  

     
a b

det ad bc 0
c d

 
= − ≠ 

 
 

 there is only one critical point 
     ( )cr 0,0=x  
 (isolated critical point). 

If the determinant  

     
a b

det ad bc 0
c d

 
= − = 

 
 ⇒   ad bc=  

 then there are infinitely many critical points which are located on the line 

     ay x
b

= −  

 These critical points are not isolated. 
 For a non-linear dynamical system, the situation with the critical points is more 

complicated. 
 
Stability of critical points: Let crx be the isolated critical point of the autonomous system (27): ( )cr =f x 0  
 
 1. crx  is said to be stable if for any neighborhood  ( )crU x  there exists a 

smaller neighborhood ( )crV x  such that for any ( )0 crV∈x x  the trajectory  

     ( ) ( )
( ) ( )0

0 cr
0

x t ,x
t , U

y t , y
 

= = ∈ 
 

x x x x  for all t 0≥  

 It means that the trajectory which starts in V  remains completely in U . 
 
 
 
 2. crx  is said to be unstable if it is not stable.  It means that it does not matter 

how close to the critical point the starting point 0x  will be, some trajectory will 
go outside of any neighborhood ( )crU x of the critical point. 

 
 
 
 
 
 3. crx  is said to be asymptotically stable if 
    a) crx  is stable; 
    b) there exists a neighborhood ( )crW x  such that  

      ( )0 crt
lim t ,
→∞

=x x x  

 
 Here, we will investigate the stability of the plane dynamical systems (27) which 

can have only one isolated critical point ( )cr 0,0=x  depending on the matrix of 
coefficients A .     

stable

unstable

asymptotically
stable
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Phase Portrait of the Plane System:    

x ax by
y cx dy
′ = +
′ = +

         
a b
c d

 
=  

 
A        

a b
det det ad bc

c d
 

= = − 
 

A  

  
Eigenvalue Problem: The characteristic equation: 
 

 ( )2 2a b
det a d ad bc Tr det 0

c d
λ

λ λ λ λ λ
λ

− 
− = = − + + − = − + = − 

A I A A  

 

 Eigenvalues:  
( ) ( ) ( )2

1,2

a d a d 4 ad bc
2

λ
+ ± + − −

=  

 The form of eigenvalues depends on the expression under the square roo which 
is called the discriminant: 

 
 Discriminant:  ( ) ( ) ( )2 2a d 4 ad bc Tr 4 det∆ = + − − = −A A  
 
 I)  If  0∆ >   then the eigenvalues are real and distinct  1 2λ λ≠  

 II) If  0∆ =   then the eigenvalues are rea land repeated   1 2λ λ λ= =  

 III) If  0∆ <   then the eigenvalues are complex conjugates 1,2 iλ α β= ±  
 
 Consider the possible configurations of the plane phase portrait (for simplicity 

of presentation, the details of solution will be skipped;  derivation of some of the 
results will be conducted in the examples and the exercises)  : 

 
 I)  0∆ >    General solution:  ( ) 1 2t t

1 1 2 2t c e c eλ λ= +x k k  
 
 
 
 a) 1 20,  0λ λ> >  Both eigenvalues are positive 
 
 

Unstable node 
 
 
 
 
 
 
 b) 1 20,  0λ λ< <  Both eigenvalues are negative  
 
  ( ) 1 2 1 2t t t t

1 1 2 2 1 1 2 2t t t t
lim t lim c e c e c lim e c lim eλ λ λ λ

→∞ →∞ →∞ →∞
 = + = + = x k k k k 0  

 
  Stable node 
 
 
 
 c) 1 20,  0λ λ> <  The eigenvalues are of the opposite sign 
 
 

Saddle point  (unstable)  
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 II)  0∆ =    1 2λ λ λ= =   
 

a) There are two linearly independent eigenvectors 1 2, k k  

General solution:  ( ) ( )t t t
1 1 2 2 1 1 2 2t c e c e c c eλ λ λ= + = +x k k k k   

 
i) 0λ >    degenerate (proper) unstable node 
 
ii) 0λ <    degenerate (proper) stable node 
 
 
 
 

b) There is one linearly independent eigenvector k  (find , , ...p q ). 
General solution: 

 ( ) ( )t t t1 2
1 2 2

c c
t c e c t e c te

t t
λ λ λ = + + = + + 

 
x k k p k p k   

 
i) 0λ >    degenerate (improper) unstable node 
 
ii) 0λ <    degenerate (improper) stable node 
 
 
 

III) 0∆ <    1,2 iλ α β= ±     eigenvectors 1 1 2 2 1 2i , i= + = −k b b k b b  
 
    a) 0α ≠   
 

General Solution: 
    ( ) ( ) t

1 1 2 2 1 2x c cos t sin t c cos t sin t eαβ β β β = − + + b b b b  
 
      i) 0α >   unstable focus (spiral point) 
 
           
 

 
 
 
      ii) 0α <   stable focus (spiral point)  
 
          asymptotically stable 
 
 
 
  

b) 0α = ,  1,2 iλ β= ±  (pure imaginary, when a d= − )   
 
General Solution: 
 

    ( ) ( )1 1 2 2 1 2x c cos t sin t c cos t sin tβ β β β= − + +b b b b  
 
 
    stable center (not asymptotically stable) 
 
 
 

 

0λ >

0λ >

0α >

0α <

0α =
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Classification of the critical points of the plane linear system  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure for Solution of the Linear System of 1st Order ODEs with Constant Coefficients: 

 
          1. Write the system in the normal matrix form (2): 
             ′ = +x Ax f  
 
          2. Solve the Eigenvalue Problem (17): 
             ( )λ− =A I k 0  
           to find eigenvalues iλ  and eigenvectors ik . 
 
          3. Construct the fundamental matrix (8) 
             ( )tX  
           in correspondence with equations (19-22). 
 
          4. Calculate the general solution according to  

the variation of parameter formula (13a): 

           ( )tx ( )t= X c ( ) ( ) ( )1t t t dt−+ ∫X X f  

          5. For solution of the IVP (4) with ( )0 0t =x x , 
           use the variation of parameter formula (13b):     

           ( )tx ( ) ( )1
0 0t t−= X X x ( ) ( ) ( )

0

t
1

t

t s s ds−+ ∫X X f  

det A

TrA

( )2Tr
det

4
=

A
A

0∆ =

unstable
deg enerate
node

unstable
node

unstable
focus

stable
focus

stable
deg enerate
node

stable
node

stable 
center

saddle point
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5.  EXAMPLES:     1) (reduction of the system of 1st order ODEs to a higher order ODE) 
 
        Consider the system of two 1st order ODEs: 

            x 3x 2y′ = −  
            y 2x y′ = −  

Reduction is performed by the differentiation of the equations and consecutive 
replacement of the unknown functions until a differential equation for a single 
unknown function is obtained. 
 
Consider the second equation: 

    y 2x y′ = −   ⇒  1 1x y y
2 2

′= +      (☼) 

Differentiate the second equation with respect to t 

    y 2x y′′ ′ ′= −  ⇒  1 1x y y
2 2

′ ′′ ′= +       

Substitute expressions for x  and x′  into the first equation 

    x 3x 2y′ = −  

    1 1 1 1y y 3 y y 2y
2 2 2 2

   ′′ ′ ′+ = + −   
   

 

 
Rearrange it to the equation for the function y 

            y 2 y y 0′′ ′− + =  

This is a single 2nd order ODE, linear homogeneous with constant coefficients, 
which can be solved by the standard method: 

    auxiliary equation  2m 2m 1 0− + =  ⇒  1,2m 1=  

    general solution  t t
1 2y c e c te= +             (♂)  

The function ( )x t can be found from equation (☼):     

1 1x y y
2 2

′= +  ( ) ( )t t t t
1 2 1 2

1 1c e c te c e c te
2 2

= + + +  

    ( ) ( )t t t t
1 2 1 2

1 1c e c te c e c te
2 2

′= + + +  

    t
1 2

1c c t e
2

  = + +    
 

Therefore, the general solution of the system of equations is: 

    ( ) t t
1 2y t c e c te= +  

    ( ) t
1 2

1x t c c t e
2

  = + +    
 

That can be verified by direct substitution into the original system of equations. 
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        2) (reduction of a higher order ODE to a system of 1st order ODEs) 

        Consider a normal thn  order linear ODE 
        ( ) ( ) ( ) ( ) ( ) ( )n n 1

0 1 na x y a x y ... a x y f x−+ + + =   ( )0a x 0≠  for all x      (◊) 
         
        Divide the equation by ( )0a x 0≠ : 

        ( ) ( )
( )

( ) ( )
( )

( )
( )

n n 11 n

0 0 0

a x a x f x
y y ... y

a x a x a x
−= − − − +         (◊◊) 

        Introduce the set of new functions: 
          1x y=  
          2x y′=    ⇒   1 2x x′ =  
          3x y′′=    ⇒   2 3x x′ =  
          …  
          ( )n 1

nx y −=   ⇒   n 1 nx x−′ =  
        Differentiate nx  

          ( )n
nx y′ =  

        With these notations, the equation (◊◊) can be rewritten as 

          
( )
( )

( )
( )

( )
( )

1 n
n n 1

0 0 0

a x a x f x
x x ... x

a x a x a x
′ = − − − +  

        Collect these in the normal linear system of 1st order ODEs: 
 
          1 2x x′ =  
          2 3x x′ =  
          …  
          n 1 nx x−′ =  

          
( )
( )

( )
( )

( )
( )

1 n
n n 1

0 0 0

a x a x f x
x x ... x

a x a x a x
′ = − − − +               (◊◊◊) 

 
 

3) Solve the 2nd order ODE 

y 2 y y 0′′ ′− + =   

by reduction to a system of 1st order ODEs.  Applying  (◊◊◊) for the 2nd order 
equation, we obtain 

          1 2x x′ =  

          
( )
( )

( )
( )

( )
( )

1 2
2 2 1

0 0 0

a x a x f x
x x x

a x a x a x
′ = − − + 2 12x x= −  

        (Surprisingly, this system is not identical to the system of Example 1) 
        In matrix form: 

          1 1

2 2

x x0 1
x x1 2

′    
=    −    

 

        Find the fundamental set for a system with constant coefficients. 
        Characteristic equation (18): 

          21
det 2 1 0

1 2
λ

λ λ
λ

− 
= − + = − − 

 

        There is only one eigenvalue 1λ =  of multiplicity 2. 
        Find eigenvectors by plugging 1λ =  in vector equation (17): 

          1

2

k1 1 0
k1 2 1 0

−     
=    − −    
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          1

2

k1 1 0
k1 1 0

−     
=    −    

 

It is a singular linear system of algebraic equations, it has only one independent 
solution: 

1
1

 
=  

 
k  

Find the vector p by solution of the equation 

( )λ− =A I p k  

1

2

p1 1 1
p1 1 1

−     
=    −    

 

Then 1 2p , p  can be found from the equation 

1 2p p 1− + =  
One of the solutions can be 

0
1

 
=  

 
p  

Then the fundamental matrix is: 
t t te te eλ λ λ = + X k k p  

          [ ]te t= +X k k p  

          t 1 t
e

1 t 1
 

=  + 
X  

        Then the general solution of the system is given by 
          x  = Xc  
        or in the component form 
          ( ) t t

1 1 2x t c e c te= +  

          ( ) ( )t t
2 1 2x t c e c t 1 e= + +  

This is the solution of the system of ODEs to which the ODE was reduced.  
 
 Recall now that ( )1x t  was defined as 1x y= , therefore, the general solution is 

  ( ) ( ) t t
1 1 2y t x t c e c te= = +  

Which coincide with the previously obtained general solution (♂). 
 
The second solution can be treated as 
  ( ) ( )t t

2 1 2y x t c e c t 1 e′ = = + +  
Integration of this equation will duplicate the previous result. 
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4a) (Linear System of 2 equations – General Solution) 
 
Find the general solution of the system of ODEs: 

3t
1 1 2x x 2x 12e′ = + +              

  2t
2 1 2x 4x 3x 18e′ = + +   

        Solution:  

1) Rewrite the given system in the matrix form: 

          
3t

1 1
2t

2 2

x x1 2 12e
x x4 3 18e

′      
= +      

      
 

2) Solve the eigenvalue problem: 

1

2

k1 2 1 0 0
k4 3 0 1 0

λ
        

− =        
       

 

         Characteristic equation: 

          21 2 1 0 1 2
det 4 5 0

4 3 0 1 4 3
λ

λ λ λ
λ

  −   
− = = − − =     −    

 

         Eigenvalues:  1 1λ = − , 2 5λ =   (real distinct) 

         Eigenvectors: 1

2

k1 2 1 0 0
k4 3 0 1 0

λ
        

− =        
       

 

 1 1λ = −    1

2

k1 2 1 0 0
k4 3 0 1 0

        
+ =        

       
  

             1

2

k2 2 0
k4 4 0

    
=    

    
 ⇒   1

1
1

− 
=  

 
k  

         2 5λ =    1

2

k1 2 5 0 0
k4 3 0 5 0

        
− =        

       
 

             1

2

k4 2 0
k4 2 0

−     
=    −    

 ⇒   2

1
2

 
=  

 
k  

        3) Fundamental matrix: 

             ( )
t 5t

t 5t

e e
t

e 2e

−

−

 −
=  

 
X  

             ( )
t 5t

4t 4t 4t
t 5t

e e
t det 2e e 3e

e 2e

−

−

 −
= = − − = − 

 
X  0≠  

        4) Variation of parameter formula (13a): 
 
         Inverse of the Fundamental matrix: 

         ( )
t t

1

5t 5t

2 1e e
3 3t

1 1e e
3 3

−

−

− −

 − 
=  

 
  

X  

         ( ) ( )
t t

3t 4t 3t
1

2t 2t 3t
5t 5t

2 1e e 12e 8e 6e3 3t t
1 1 18e 4e 6ee e
3 3

−

−
− −

− −

 −     − +
= =     

+     
  

X f  
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         ( ) ( )

4t 3t
4t 3t

1
2t 3t

2t 3t

8 e dt 6 e dt
2e 2e

t t dt
2e 2e

4 e dt 6 e dt

−
− −

− −

 
− +   − + = =    − −  +

  

∫ ∫
∫

∫ ∫
X f  

 
         Particular solution: 

         ( ) ( ) ( )
t 5t 4t 3t 2t

1
p t 5t 2t 3t 3t 2t

e e 2e 2e 4e
t t t dt

e 2e 2e 2e 6e 2e

−
−

− − −

     − − + −
= = =     − − − −     

∫x X X f  

 
Complimentary Solution cx :   Complimentary Solution (solution of the homogeneous system): 
 

         ( )
t 5tt 5t

1 1 2
c t 5tt 5t

2 1 2

c c e c ee e
t

c c e 2c ee 2e

−−

−−

   − + −
= = =      − +    

x X c  

 
 
 
 
 
         General solution: 
 

         ( )tx  ( ) ( )c pt t= +x x  
t 5t 2t

1 2
t 3t 3t 2t

1 2

c e c e 4e
c e 2c e 6e 2e

−

− −

 − + −
=  − + − − 

 

 
4b) (Linear System of 2 equations – Initial Value Problem) 
 
Find the solution of the system of ODEs: 

3t
1 1 2x x 2x 12e′ = + +              

  2t
2 1 2x 4x 3x 18e′ = + +  

        subject to the initial condition: ( )
3

0
0

 
=  

 
x  

        Solution: Use the fundamental set of the previous example. 

 
        3) Fundamental matrix: 

         ( )
t 5t

t 5t

e e
t

e 2e

−

−

 −
=  

 
X  

    
        4) Variation of parameter formula (13b): 
 
          

         ( )
t t

1

5t 5t

2 1e e
3 3t

1 1e e
3 3

−

−

− −

 − 
=  

 
  

X  

         ( )1

2 1
3 30

1 1
3 3

−

 − 
=  

 
  

X  

2

1
2

 
=  

 
k

saddle point (eigenvalues of opposite sign)

1

1
1

− 
=  

 
k
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       ( ) ( )1
0 0t t−X X x

t 5t t 5t

t 5t t 5t

2 1
3e e 2e e3 3

1 1 0e 2e 2e 2e
3 3

− −

− −

 −    − + 
= =      − +      

  

 

 
 

       ( ) ( )
t t

3t 4t 3t
1

2t 2t 3t
5t 5t

2 1e e 12e 8e 6e3 3t t
1 1 18e 4e 6ee e
3 3

−

−
− −

− −

 −     − +
= =     

+     
  

X f  

               

       ( ) ( )

t t
4s 3s t t4t 3t 4t 3tt

0 0 0 01
2t 3tt t t2t 3t0 2s 3s

0 0
0

8 e ds 6 e ds 2e 2 e 2e 2e
s s ds

2e 2e 42e 2e4 e ds 6 e ds

−
− −− −− −

 
− +    − +  − +  = = =     − − + − −  +  

  

∫ ∫
∫

∫ ∫
X f  

 

( ) ( ) ( )
t 5t 4t 3t 2t 5tt

1
t 5t 2t 3t 3t 2t 5t

0

e e 2e 2e 4e 4e
t s s ds

e 2e 2e 2e 4 6e 2e 8e

−
−

− − −

     − − + − +
= =     − − + − − +     

∫X X f  

 
 
         Solution of IVP: 
 
 

         ( )
t 5t 2t 5t t 2t 5t

t 5t 3t 2t 5t t 3t 2t 5t

2e e 4e 4e 2e 4e 5e
t

2e 2e 6e 2e 8e 2e 6e 2e 10e

− −

− −

     + − + − +
= + =     − + − − + − − − +     

x  

 
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )tx
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        5) (stability of autonomous system) 
 

Investigate for stability the equilibrium point and sketch the phase portrait of the 
following autonomous system: 

x 2x 3y′ = − +               
  y 3x 2y′ = − −   

        Solution:  

1) Rewrite the given system in matrix form: 

          
x 2 3 x
y 3 2 y

′ −     
=     − −     

 

2) Solve the eigenvalue problem: 

1

2

k2 3 1 0 0
k3 2 0 1 0

λ
 −        

− =        − −       
 

         Characteristic equation: 

          22 3 1 0 2 3
det 4 13 0

3 2 0 1 3 2
λ

λ λ λ
λ

 −  − −   
− = = + + =    − − − − −    

 

 
         Eigenvalues:  1 2 3iλ = − + ,   2 2 3iλ = − −  (complex) 
 

         Eigenvectors: 1

2

k2 3 1 0 0
k3 2 0 1 0

λ
 −        

− =        −       
 

 1 2 3iλ = − +   1

2

k1 2 2 3i 0 0
k4 3 0 2 3i 0

 − +        
− =        − +       

  

             1

2

k3i 3 0
k3 3i 0

−     
=    − −    

 ⇒   1

1
i

 
=  

 
k  

          

             1

1 1 0
i

i 0 1
     

= = +     
     

k   ⇒   1

1
0

 
=  

 
b , 2

0
1

 
=  

 
b  

 
3)  Fundamental matrix (use equation (22)): 

( ) t 2t
1 1 2

1 0
cos t sin t e cos 3t sin3t e

0 1
αβ β −    

= − = −    
    

x b b     

          ( ) t 2t
2 2 1

0 1
cos t sin t e cos 3t sin3t e

1 0
αβ β −    

= + = +    
    

x b b  

 

( ) ( ) ( )
( ) ( )

2t 2t

2t 2t

cos 3t e sin 3t e
t

sin 3t e cos 3t e

− −

− −

 
=  

−  
X  

 
         4) General solution: 

      

( ) ( )t=x t X c  ( ) ( )
( ) ( )

2t 2t
1

2t 2t
2

ccos 3t e sin 3t e
csin 3t e cos 3t e

− −

− −

   
=    −    

 

( ) ( )
( ) ( )

2t 2t
1 2

2t 2t
1 2

c cos 3t e c sin 3t e
c sin 3t e c cos 3t e

− −

− −

 +
=  

− +  
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          In parametric form: 
          

          ( ) ( ) ( )
( ) ( ) ( )

2t 2t
1 2

2t 2t
1 2

x t c cos 3t e c sin 3t e
y t c sin 3t e c cos 3t e

− −

− −

= +
= − +

 

 
According to case III) a) ii) this is the asymptotically stable focus. 
Sketch the phase portrait: 
 
For the particular curve, choose  1 2c 1, c 0= = , then 

( ) ( )
( ) ( )

2t

2t

x t cos 3t e
y t sin 3t e

−

−

=
= −

 

 
A graphing calculator can be used for sketching the graph of this curve, 
but it is important to know how to sketch the graph just from the 
parametric equation – we can perform it qualitatively in the following 
way: 

  For  t 0=  
( )
( )

x t 1
y t 0

=
=

 

The starting point is defined.  Now let us see where the curve 
will go under a small increase of time 

 t ε=  
( )
( )

x t 1
y t

ε
ε

= −
= −

 

 
Then continue the curve as a shrinking spiral in the 
determined direction: 
 
 
 
 
 
 
 
 
 
 

 
All other trajectories will be of the same shape, covering the entire 
plane without intersections.  Here is the graph generated by Maple: 

 
 
           
 
 
 
 
 
 
 
 
 
 

Conclusion:  the equilibrium point is the asymptotically stable 
focus (spiral point). 

 
 
 



Chapter 2   ODEs             2.6  Systems of Ordinary Differential Equations                          
 
6.  REVIEW QUESTIONS AND EXERCISES: 

 
1) What is a system of differential equations? 

2) What type of systems did we study in this section? 

3) How many solutions of a normal system of 1st order ODEs can go through 

an arbitrary point of the plane?  

4) How many solutions of a homogeneous system of 1st order ODEs can go 

through the point ( )0,0 ? 

5) Why is uniqueness not violated for the saddle equilibrium point? 

        6) Why is the system of two 1st order ODEs called a dynamical system? 

        7) What is the stability of an equilibrium point?  What does it mean? 

 

 
EXERCISES: 1) Reduce the following ODEs to a system of 1st order ODEs: 
 
  a)  2ty 5 y 3y 6 y te′′′ ′′ ′+ + − =  
   
  b)  ( )iv2 y 6 y 2 y y 3y t cos t′′′ ′′ ′− + − − =  
 

Reduce the system of 1st order ODEs to a higher order ODE: 
 
c) 1 1 2x 4x x t′ = + +  
 2 1 2x 2x 3x 2t′ = + −  
 

 
 2) Matrix exponential: 

 
a) Using the definition of matrix exponential, verify the differentiation rule:  

t td e e
dt

=A AA  

 

        b) Show that if 

11

22

nn

a 0 0
0 a 0

0 0 a

 
 
 =
 
 
 

A

"

# % #
"

 then 

11

22

nn

a t

a t
t

a t

e 0 0
0 e 0

e

0 0 e

 
 
 =
 
 
  

A

"

# % #
"

 

 
        c) Consider IVP: solve ′ =x Ax  subject to ( ) 00 =x x .  

Show that  ( ) ( )t 1e t 0−=A X X  , where ( )tX  is the fundamental matrix. 
 

 
3) Find the general solution of the following systems and sketch the solution 

curves of the homogeneous part of the systems: 
 
 a) 1 2x x′ =       b) 2t

1 1 2x 5x 3x e−′ = − + +   
  2 1x x sec x′ = − +     2 1 2x 2x 10x 1′ = − +      

      
 c) 1 1 2x 4x x t′ = + +     d) 1 1 2x 2x x sin t′ = − + +   
  2 1 2x 2x 3x 2t′ = + −    2 1x x cos t′ = − +      
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 e) 1 1 2x x x′ = − +    f) 1 1 2 3x 3x x x′ = − −    
  2 2 3x x 4x′ = − +     2 1 2 3x x x x t′ = + − +  

  3 1 3x x 4x′ = −     t
3 1 2 3x x x x 2e′ = − + +  

 
 
4) Find the solution of the following Initial Value Problems and sketch the 

graph of the solution: 
 
 a) 2t

1 1 2x 3x x 4e′ = − +      b) 1 1 2x 3x 2x 2′ = − +   

  4t
2 1 2x x 3x 4e′ = − + +      2 1 2x 5x 3x 3′ = − +   

 
  subject to ( ) ( )1 2x 0 1, x 0 2= =   ( ) ( )1 2x 2 0, x 2 0π π= =  
 
 c) 1 1 2 3x 3x x x′ = − −      c) 1 1 2 3x 3x x x′ = − −   
  2 1 2 3x x x x t′ = + − +      2 1 2 3x x x x t′ = + − +  

  t
3 1 2 3x x x x 2e′ = − + +      t

3 1 2 3x x x x 2e′ = − + +  

( ) ( ) ( )1 2 3x 0 1, x 0 0, x 0 0= = =       ( ) ( ) ( )1 2 3x 0 0, x 0 2, x 0 0= = =  
 
 
5) Investigate for stability the equilibrium point and sketch the phase portrait 

of the following autonomous systems: 
 

a) x 2x 3y′ = +     b) x x 4 y′ = +  

 y 3x 2 y′ = − +     y x y′ = +  

 

c) x 2x 5y′ = +     d) x x 4 y′ = −  

 y x 2 y′ = −      y x 5 y′ = +  

 

e) x 2x 5y′ = +     f) x 2x y′ = +  

 y x 5y′ = − +      y x 2y′ = − +  

 

g) x 4x y′ = −      h) x x yα′ = − −  

 y 9x y′ = − +      y x y′ = −  
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7.  LINEAR SYSTEMS OF ODEs WITH MAPLE 

 
1. a)  Find the general solution of the homogeneous system and sketch the phase portrait: 

    1 2x 2x x′ = −             
   2 1 2x 3x 2x 4t′ = − +  

> with(linalg): 
> k:=matrix(2,1,[[2],[0]]); 

 := k 







2
0

 

> f:=matrix(2,1,[[0],[4*t]]); 

 := f 







0
4 t

 

> C:=matrix(2,1,[[c[1]],[c[2]]]); 

 := C












c1

c2

 

Eigenvalue Problem: 
> A:=matrix(2,2,[[2,-1],[3,-2]]); 

 := A 







2 -1
3 -2

 

> eigenvects(A); 
,[ ], ,1 1 { }[ ],1 1 [ ], ,-1 1 { }[ ],1 3  

Fundamental matrix: 
> X:=matrix(2,2,[[exp(t),exp(-t)],[exp(t),3*exp(-t)]]); 

 := X












e t e
( )−t

e t 3 e
( )−t

 

Complimentary Solution - General Solution of Homogeneous System: 
> Xc:=evalm(X&*C); 

 := Xc












 + e t c1 e
( )−t

c2

 + e t c1 3 e
( )−t

c2

 

-Phase Portrait: 
> x(t):=exp(t)*c[1]+exp(-t)*c[2]; 

 := ( )x t  + e t c1 e
( )−t

c2
 

> y(t):=exp(t)*c[1]+3*exp(-t)*c[2]; 
 := ( )y t  + e t c1 3 e

( )−t
c2

 

> p:={seq(seq(subs({c[1]=i/2*2,c[2]=j/2*2}, 
[x(t),y(t),t=-4..4]),i=-4..4),j=-4..4)}: 

> plot(p,x=-5..5,y=-10..10,color=black); 
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b) Find the general solution of the non-homogeneous system: 
 

Particular Solution - Variation of Parameter: 

> Xinv:=simplify(inverse(X)); 

 := Xinv













3
2 e

( )−t
−

1
2 e

( )−t

−
1
2 e t 1

2 e t

 

> simplify(evalm(Xinv&*f)); 











−2 e

( )−t
t

2 et t
 

> map(int,%,t); 











 + 2 e

( )−t
t 2 e

( )−t

 − 2 et t 2 e t
 

> Xp:=simplify(evalm(X&*%)); 
 := Xp 








4 t
 − 8 t 4

 

General Solution: 
> GS:=evalm(Xc+Xp); 

 := GS












 +  + e t c1 e
( )−t

c2 4 t

 +  +  − e t c1 3 e
( )−t

c2 8 t 4
 

Solution  Curves: 
> xn(t):=exp(t)*c[1]+exp(-t)*c[2]+4*t; 

 := ( )xn t  +  + e t c1 e
( )−t

c2 4 t  

> yn(t):=exp(t)*c[1]+3*exp(-t)*c[2]+8*t-4; 
 := ( )yn t  +  +  − e t c1 3 e

( )−t
c2 8 t 4  

> pn:={seq(seq(subs({c[1]=i/2,c[2]=j/2}, 
[xn(t),yn(t),t=-20..20]),i=-3..3),j=-2..2)}: 
 

> plot(pn,x=-8..6,y=-10..12,color=black, numpoints=500); 
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c) Find the solution of the Initial Value Problem:  
 

Solution of IVP  - Variation of parameter formula (13b): 
> Xinv0:=simplify(subs(t=0,evalm(Xinv))); 

 := Xinv0













3
2

-1
2

-1
2

1
2

 

> X1:=evalm(evalm(X&*Xinv0)&*k); 

 := X1












 − 3 et e
( )−t

 − 3 et 3 e
( )−t

 

> X2:=simplify(evalm(Xinv&*f)); 

 := X2
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> X3:=subs(t=s,evalm(X2)); 

 := X3











−2 e

( )−s
s
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> X4:=simplify(map(int,X3,s=0..t)); 

 := X4
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t 2 e

( )−t
2
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> X5:=simplify(evalm(X&*X4)); 

 := X5
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> XS:=evalm(X1+X5); 

 := XS
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 +  +  − e t 3 e
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Graph of the solution of IVP: 

> u:=exp(t)+exp(-t)+4*t; 

 := u  +  + et e
( )−t

4 t  

> v:=exp(t)+3*exp(-t)+8*t-4; 

 := v  +  +  − et 3 e
( )−t

8 t 4  

> plot([u,v,t=-3..2]); 
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Application of the standard Maple procedure for solution of the system of ODEs. 
 

2. Investigate for stability the equilibrium point and sketch the phase portrait of the following 
autonomous system: 

x 2x 3y′ = +      
         y 3x 2 y′ = − +  
  

> eq1:=diff(x(t),t)=-4*x(t)+3*y(t); 

 := eq1  = d
d
t ( )x t −  + 4 ( )x t 3 ( )y t  

> eq2:=diff(y(t),t)=-2*x(t)+1*y(t); 

 := eq2  = d
d
t ( )y t −  + 2 ( )x t ( )y t  

> Solution:=dsolve({eq1,eq2},{x(t),y(t)}); 

 := Solution { }, = ( )x t  + _C1 e
( )−2 t

_C2 e
( )−t

 = ( )y t  + 
2
3 _C1 e

( )−2 t
_C2 e

( )−t  

> assign(Solution): 

> p:={seq(seq(subs({_C1=i/2,_C2=j/2}, 
[x(t),y(t),t=-2..2]),i=-5..5),j=-5..5)}: 

> plot(p,x=-3..3,y=-3..3,color=black,scaling=constrained); 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    The matrix of coefficients has two real distinct negative eigenvalues 1 22,  1λ λ= − = − . 
    The equilibrium point is a stable node. 
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