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4.1 Fundamental Principles of Engineering 
 

Engineering models are built upon governing equations which usually are forms 
of partial differential equations. Derivation of these governing equations is 
based upon fundamental principles that have been developed through 
observation of natural phenomena. In this chapter we focus on five fundamental 
principles that are true for a Newtonian frame of reference. We present these 
principles to illustrate the process of deriving governing equations. The chapter 
then focuses on the solution techniques for partial differential equations. 
 
We focus on five fundamental principles of engineering, upon which behavior of 
the physical world can be modeled.  An effective engineer must have a 
theoretical and practical understanding of these principles.  Rather than simply 
enumerating the principles, we develop them in some detail.  We acknowledge 
that there are several different approaches to presenting these principles which 
are used in the literature.  We choose our convention only for consistency. 

 
A fundamental concept which is central to all five principles is that of a control 
volume.  Since the universe is too large and complicated to model as a whole, 
subsets of the universe are carefully chosen to examine and model 
independently. These subsets are volumetric pieces of the universe without any 
particular shape. They can contain mass, energy, momentum, and entropy. Mass, 
heat, and work can cross the bounding surfaces, and forces can act on the 
bounding surfaces. These volumetric pieces are called control volumes. There 
are different classes of control volumes depending upon what is allowed to flow 
across the boundaries. A general control volume referred to as an open system 
can have mass, heat, and work cross its boundaries. The mass can carry energy, 
momentum and entropy with it as it crosses the control volume boundaries. A 
second type of control volume referred to as a closed system can have heat and 
work cross its boundaries but not mass. The final type of control volume is an 
isolated system. Mass, heat, and work cannot cross the boundaries, but forces 
can act on these systems.  Freebody diagrams are used to develop balances of 
static forces and time-rate-of-change of momentum (inertial forces). These three 
types of control volumes are used extensively to model and predict the behavior 
of natural phenomena. There are five basic principles common to all natural 
phenomena and control volumes, which are developed in detail in this section. 
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                                                Figure 1. Control Volumes 
 

The basic principles are developed as balances of quantities which are inside or 
are crossing the boundaries of a control volume. The first four basic principles 
may be stated in a common form in terms of the rate of creation: 

 
Rate of  Outflow Inflow Storage rate
Creation rate rate increase

       
= − +       

       
     (1) 

 
The Outflow and Inflow terms refer to the transfer of quantities across the 
control volume boundaries either by mass flow or by direct transfer such as heat 
or work. The storage rate increase refers to changes in the quantity stored within 
the control volume boundaries. For conservation principles, the rate of creation 
of a quantity will be zero. These principles apply to all fields and natural 
systems and can be applied in many different contexts. Please note that lower 
case letters in the equations denote that the respective quantities are per unit 
mass. 
 

4.1.1  Conservation of Mass 
The first basic principle we present is the conservation of mass. Within a control 
volume, mass is neither created nor destroyed. The rate of creation is therefore 
equal to zero: 

 
Rate of  Creation

0
of Mass

 
= 

 
                 (2) 

 
This means that for a control volume, mass can flow through the control volume 
or be stored in it, but cannot be created nor destroyed. We can represent this 
principle mathematically in several different forms. We choose to show only 
two, a discrete summation of mass quantities, and a continuous summation of 
mass quantities. The discrete sum of mass flowing in, out and being stored in a 
control volume is shown in equation (Eq 3): 
 

( )out in cv
dm m m 0
dt

− + =∑ ∑� �            (3) 

 
This equation states that the rate of change in mass flowing out of the control 
volume minus the rate of change of mass flowing into the control volume plus 
the rate of storage of mass must all balance to zero. Where m�  is the mass flow 
rate and cvm  is the amount of mass stored in the control volume.  
 
 The continuous form of this principle is given in an integral equation: 

Heat
Mass
Work

Heat
Mass
Work

Heat
Work

Heat
Work

Open
System

Closed
System

Isolated
System

Free-body
diagram
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( ) ( )
A A Vout in

dv n dA v n dA dV 0
dt

ρ ρ ρ
     

⋅ − ⋅ + =     
     
∫ ∫ ∫

G G G G     (4) 

 
This equation is the continuous analog of equation (3), ρ is density, or mass per 
unit volume,  v n⋅

G G  is the velocity of the mass flow in the outward normal 
direction, A denotes a boundary integral where the boundary is the control 
volume surface and V denotes a domain integral where the domain is the volume 
of the control volume. 

 
For a differential control volume, equation (3) is posed as a summation of 
differential quantities 

 

( ) ( )u v
t x y
ρ ρ ρ∂ ∂ ∂

+ +
∂ ∂ ∂

          (5) 

 
u and v are velocity components in the x and y directions. The important concept 
is that the balance of mass flowing in and out versus the mass storage must 
always be zero for the conservation of mass principle. 
 

 
4.1.2  Conservation of Energy (First Law of Thermodynamics) 
 

This principle is similar to the conservation of mass, only energy is conserved. 
Again the rate of creation is zero: 
 

Rate of  
0

Creation
 

= 
 

          (6) 

 
Stored energy is often classified into three common forms: potential energy (i.e. 
gravity), kinetic energy (i.e. motion), or thermal energy (i.e. temperature). 
Energy can also be transformed into heat and work. Energy can cross the 
boundary of the control volume with mass flow, or through heat or work. A 
quantifiable expression of the conservation of energy is in the form of equation 
(6).  Again we use the discrete and continuous forms of this principle: 
 

 ( )cv
out in

dW Q me me me 0
dt

   − + − + =      
∑ ∑�� � �      (7) 

 
The equation is more complicated because of the different forms that energy can 
assume. The rate of work crossing the boundaries (or power), Ý W , is 
traditionally considered going out of the control volume and the rate of heat 
transfer, Ý Q , is considered going into the control volume. In equation (Eq 7), 
the energy contained in the material entering and leaving the control volume 
takes the forms of: 

 
2ve h gz

2
= + +                   (8) 

 
Where h is enthalpy and is a combination of thermal energy, u, and flow work. 
Thermal energy can come from temperature, chemical energy, etc. The other 
two terms make up the rest of the types of energy that can be carried into or out 
of the control volume, where V is velocity, g is the gravity constant, and z is 
height above a convenient reference plane. These three terms represent the 
forms of energy: h (thermal energy + flow work), 2v 2   (kinetic energy), and gz 
(potential energy). The energy stored in the control volume takes the form of: 
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2

cv
ve u gz
2

= + +              (9) 

 
Where the storage can be in terms of thermal (u), kinetic ( 2v 2 ), and potential 
(gz) forms of energy. The continuous form of equation (7) is: 

 

( ) ( ) cv
A A Vout in

dW Q v n edA v n edA e dV 0
dt

ρ ρ ρ
     

− + ⋅ − ⋅ + =     
     
∫ ∫ ∫

G G G G��          (10) 

 
The differential form is shown in equation (11). 

 

( ) ( ) ( ) yx
x y xy

qqP P P u v u vh uh vh u v 0
t x y t x y x x x y x y

ρ ρ ρ σ σ τ
∂∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + − − − − − + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
  (11) 

 
where q is the heat transfer, P is the pressure, σ is the normal stress, and τ is the 
shear stress. The subscript denotes the direction of the quantity. 

 
 
4.1.3  Momentum Principle 

The rate of creation equation is not zero when dealing with momentum. Instead 
it is equal to the sum of the forces acting on the control volume. 

 
Rate of  Creation sum of  forces acting

of Momentum on the control volume
   

=   
   

    (12) 

 
Once again, there is a discrete form and a continuous form of the equation 
representing the momentum principle. Therefore equation (13) shows the 
discrete sum form of the principle where all the terms are as defined before, and   
F
G

  represents the force vectors acting upon the control volume. 
 

 ( )cv
out in cv

dmv mv mv F
dt

     − + =          
∑ ∑ ∑

GG G G� �     (13) 

 
Momentum is not generally conserved but can be created or destroyed by forces. 
The balance of momentum within the control volume is offset by the forces 
acting upon the control volume. Once again equation (Eq 14) shows the 
continuous form of the momentum principle. 

   

( ) ( )
A A V cvout in cv

dv v n edA v v n edA vdV F
dt

ρ ρ ρ
       ⋅ − ⋅ + =             

∑∫ ∫ ∫
GG G G G G G G         (14) 

 
Again, all the terms are as before defined. It should be recognized by the student 
that this is a vector equation; therefore, it represents one scalar equation in each 
coordinate direction. The differential form for a two-dimensional system is, 
 

        ( ) ( ) ( ) yxx
x

pu uu vu g
t x y x x x

τσ
ρ ρ ρ ρ

∂∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
 

      
(15) 

        ( ) ( ) ( ) y xy
y

pv vu vv g
t x y y y y

σ τ
ρ ρ ρ ρ

∂ ∂∂ ∂ ∂ ∂
+ + = − + + +

∂ ∂ ∂ ∂ ∂ ∂
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where p
x

∂
∂

, p
y

∂
∂

 represent pressure forces, xgρ , xgρ  represent gravity forces, 

x

x
σ∂
∂

, y

y
σ∂

∂
 represent viscous normal forces, and yx

x
τ∂

∂
, xy

y
τ∂

∂
 represent shear 

forces. 
 
 
4.1.4  Entropy Principle (Second Law of Thermodynamics) 
 

Again the rate of creation equation does not equal zero. Entropy is not generally 
conserved but may be created by heat flow in or irreversibilities and may be 
destroyed by heat flow out. The general rate of creation equation is as follows: 
 

             
Rate of Creation Creation or loss The loss of available energy

=  +  
of Entropy due to heat flow due to irreversibilities

     
     
     

(16) 

 
 

The discrete and continuous forms are shown in equations (17) and (18) 
respectively. 

 

( ) gencv
out in

d Qms ms ms S
dt T

    − + = +         
∑ ∑ ∑

� �� �        (17) 

 
where genS�  is entropy generation from irreversible processes. 

   
 

( ) ( ) gen
A A Vout in cv

d Qs v n edA s v n edA sdV S
dt T

ρ ρ ρ
       

⋅ − ⋅ + = +       
      
∑∫ ∫ ∫
�G G G G �   (18) 

 
The differential form is typically not used, since correctly specifying viscosity 
and thermal conductivity to be positive in the other differential equations forces 
the solution to satisfy the entropy principle. 

 
 
4.1.5  Principles of State and Properties  
 

Any given element of nature exists in a number of states. These states of matter 
are important in determining the behavior of natural systems. The principle of 
state and properties is defined as: 
The state of a pure substance is determined by two independent properties 
These relationships are often referred to as thermodynamic properties. These 
properties are articulated in several forms: 
 
1.   Tabulated: (Steam tables, Phase change, etc.) 
 
2.   Algebraic: (Ideal gas, etc.) 
 
3.   Graphical: (Temperature-entropy diagrams, etc.) 
 
These relationships are usually expressed in empirical forms due to the difficulty 
of forming closed-form equations to represent them under all conditions.  There 
are other properties that are of interest to engineering. These properties also 
define states and are used to determine behavior of materials. Yield strength and 
hardness are examples of these other types of properties. The principles of state 
and properties are fundamental to the understanding and modeling of natural 
systems. 
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4.2 Fundamental Phenomena in Engineering 
 

Engineering is the art and science of designing and building mechanisms and prediction 
of the behavior of natural phenomena is key to designing and building effective 
mechanisms and systems. In this section we present nine specific phenomena which 
represent a majority of the phenomena encountered in engineering problems. 
 

4.2.1  Fluid Flow 
Fluid flow is the phenomena associated with the motion of fluids and gases. It involves 
the intermolecular forces and collective body forces that occur when materials in the fluid 
and gas states move. This phenomenon is important in aerodynamics, heating, cooling 
and ventilation, piping, casting, etc. 

 
4.2.2  Heat Flow 

Heat flow is a phenomena related to energy flow in the form of heat from one body to 
another through conduction, convection or radiation. It occurs when there are differences 
in energy states between two nearby bodies. Heat flow is important in chemical 
processes, heating, cooling, refrigeration, thermodynamic cycles, etc. 

 
4.2.3  Friction 

Friction is a phenomenon that occurs when two bodies contact each other while moving 
in relation to each other. It results in the transfer of energy in the forms of heat and noise 
and typically reduces the relative velocities of the two bodies. Friction is important in 
mechanisms, motion, etc. 

 
4.2.4  Motion 

The phenomena of motion can be studied relative to bodies in motion or on an absolute 
reference frame. This phenomenon is observed in planetary systems as well as molecular 
and atomic systems. 

 
 
4.2.5  Elasticity/Plasticity 
 

When material is deformed it can behave in an elastic manner; meaning it will return to 
its original configuration or a plastic manner; meaning it will not return completely to its 
original configuration. Elasticity and plasticity occur in all types of materials. 

 
 
4.2.6  Electrical/Magnetic 
 

Electrical and magnetic phenomena are related and are associated with the influence of 
charges on electrons and protons found in atoms. These forces influence motion and flow 
of heat and energy. 

 
 
4.2.7  Thermal 

Thermal phenomena deal with the exchange of heat, mass and work within systems. The 
rate at which energy is transferred and work is accomplished or mass is moved 
determines thermodynamic cycles. 

 
 
4.2.8  Gravity 

Gravity is the attraction of mass to other mass. It is important in planetary motion as well 
as earth bound systems of motion and forces. 

 
 
4.2.9  Behavior of materials 
        

The behavior of materials is a phenomenon that involves states and properties, and how 
the materials react to energy, deformation, electricity, etc.  
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4.3.1 Domain     Consider the structure and notations of the domains of Euclidian space in which  
        partial differential equations model some physical processes in continuous   
        media.  We need to recall some elementary topological definitions for its   
        rigorous  mathematical description. 

 
Point in Euclidian space 3\ is denoted by a position vector  
    ( ) 3x, y,z .= ∈r \  

Scalar product of two vectors ( )1 1 1 1x , y ,z=r and ( )2 2 2 2x , y ,z=r is defined by  
    ( ) 2121212 zzyyxx, ++=rr1  
Then the norm of a vector ( ).z,y,x=r is defined as 

    ( ) 222 zyx, ++== rrr  

The distance between two vectors ( )1 1 1 1x , y ,z=r and ( )2 2 2 2x , y ,z=r is defined 
with the help of the norm 

    ( ) ( ) ( ) ( )2 2 2
1 1 1 2 1 2 1 2, x x y y z zρ ≡ − = − + − + −2 2r r r r  

These definitions can be reduced to the cases of 2-dimensional 2\  and 1-
dimensional 1\  Euclidian spaces.  
 
Open ball in 3\  with a center at 0r  and radius R  is defined as a set of points 
the distance from which to point 0r  is less than R 

    ( ) { }3B ,R R= ∈ − <0 0r r r r\  

 
Point 0r is an interior point of the set 3D ⊂ \  if it belongs to D with some open 
ball with a center at 0r  

            ( )B ,R D⊂0r     for some radius R 0>  
        The set is called open if all its points are interior.   
        The set 3A ⊂ \ is called bounded if there exists point 0r  and radius R such that   
            ( )B ,R A⊃0r  
        A sequence of points kr converges  to point r (denoted k →r r  or kk

lim
→∞

=r r ) if  

            kk
lim 0

→∞
− =r r       

        or, in other words, for any 0ε >  there exists a number K ∈`  such that   
            ( )k B ,ε∈r r  for all k K> . 
        The point 0r  is called a limiting point of set A  if there exists a sequence  

k A∈r   such that k 0→r r . 

The closure of set A  is a set A  to which consists of all limiting points of set 
A .  If a set coincides with its closure then it is called closed (a closed set 

includes all its limiting points).  A bounded closed set is called  compact. 
 
        A set is called connected if any two points of the set can be connected by a   

piece-wise line belonged to the set. 
     
Domain       A connected open set is called a domain.   
 
        Let D be a domain.  Then its boundary S is defined as a set of all points from its 
        closure D which do not belong to D: 
Boundary          { }S D, D D\ D= ∈ ∉ ∈ =3r r r\  

        Initial boundary value problems for classical PDE’s will be set in the domains of 
        Euclidian space.  Typical examples of such domains: 

dis tance

open
ball

interior point

bounded
set

limiting point

connected set

open set

closed set
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1-dimensional space 1\ :   Intervals ( )1 1 2D x ,x= , ( )2D 0,L= , ( )3D a,= ∞  are domains in 1\ .  Their  

        boundaries are sets which consist of points { }1 1 2S x ,x= , { }2S 0,L= , { }3S a= , 
        consequently.  
  
 

                                                               
 
 
2-dimensional space 2\ :   Open box  ( ) ( )1D 0,L 0,M= × .   
        Boundary of 1D  consists of four segments 

            ( ){ }1S x, y y 0,0 x L= = ≤ ≤  or y 0=  

            ( ){ }2S x, y y M ,0 x L= = ≤ ≤  or y M=  

            ( ){ }3S x, y x 0,0 y M= = ≤ ≤  or x 0=   

            ( ){ }4S x, y x L,0 y M= = ≤ ≤  or x L=   

 
        then the whole boundary is the union 1 2 3 4S S S S S= ∪ ∪ ∪  
 
                      
                                                          
 
        Circular domain (in polar coordinates):  
            { }2

2 0D 0= ∈ ≤ <r r r\  

        with the  boundary     
            { }2

2 0S = ∈ =r r r\  or just  0=r r  

 
 
 
 
        Annular domain: 
            { }2

3 1 2D = ∈ < <r r r r\  

        with the boundary     
            { } { }2 2

3 1 2S = ∈ = ∪ ∈ =r r r r r r\ \  or just  0=r r  

 
                                                                                             
 
 
3-dimensional space 3\ :   Examples of domains in 3-dimensional space 3\  are a parallelogram and an   

hollow parallelogram, a cylinder and an hollow cylinder, a sphere and an hollow 
sphere:  
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4.3.2   Heat Equation 
 
1.  Modeling of Heat Transport In the philosophical treatise “On the Nature of the Universe”, Roman scientist 

Titus Lucretius (100 B.C. – 55 B.C.) poetically presented the teachings of 
ancient Greek philosophers-atomists Democritus, Epicurus, Leucippus, and 
others, who lived in the 4-6 centuries B.C.  They considered an example of heat 
or cold propagation for proof of some statements of their theory.  Assuming that 
heat consists of tiny material particles, they end up with the following 
observations:  any material is porous (includes voids) because heat penetrates to 
it;  heat particles are extremely small because they are able to penetrate to very 
dense materials (like metals or stones);  heat particles are practically weightless 
because a heated body does not change its weight noticeably;  heat consists of 
not-rarified clusters of particles because the heating process is smooth and 
homogeneous. 

 
 We believe that there is no need to convince a modern reader that this theory is 

completely wrong.  It looks very naïve to us.  And we also are not going to 
present here the contemporary physical theory of heat transport.  But, probably, 
some readers may be extremely surprised to discover that modern mathematical 
modeling of heat transport is based precisely on the statements of ancient Greek 
theory, and it is called thermodiffusion.  Moreover, in modeling of heat 
propagation in turbulent fluid flow, temperature is assumed to be an inert scalar 
specie.  So, we still can benefit from the achievements of great Greek thinkers, 
which have not yet lost their value. 

 
2.  Physical Concepts Heat is an internal energy contained in continuous media (which can be solids, 

fluids, or gases). 
 Temperature is a measure of heat (scalar quantity); it is used for the description 

of the heat distribution in the media (temperature field).  Units for measurement 
of temperature are K, C, F, and R. 

 Notations for temperature: in domain D of 3\ , the non-stationary temperature 
field is defined by a function 

 ( )t,z,y,xu   ( ) 3x, y,z D∈ ⊂ \   0t >  
 or vector notation may be used for space variables 
 ( )t,u r     3D∈ ⊂r \     0t >  
 We assume a temperature field to be a smooth continuous function of its 

variables in D. 
                                                                      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gradient is a vector defined by  

( ) u u uu ,t , ,
x y z

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

r ,  3D∈ ⊂r \                  (1) 

 The set of points in R3, which have the same temperature c is defined by the 
level surface  ( ) ct,z,y,xu = .  Here, the gradient vector ( )t,u r∇  is orthogonal to 
the level surface. 

gradient
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 In 2\ , for a fixed value of time t, a temperature field in a plane is represented 
by the surface   

   ( )t,uz r=    2D∈ ⊂r \  

 ( )t,y,xuz =   ( ) 2x, y D∈ ⊂ \  
 Plane temperature fields can be characterized by: 
 Level curves which are obtained as the intersection of the surface ( )t,y,xuz =  

with the planes cz = , c ∈\ .   
Isotherms are the projections of the level curves on the xy-plane.  They  
constitute a set of points ( ) Dy,x ∈ satisfying the equation ( ) ct,y,xu = .  The  
medium in which all points have the same temperature is called the  
isothermal. 
 
The gradient vector on the xy-plane u∇  is orthogonal to the isotherms,  
therefore, u∇  indicates the direction in which u increases most rapidly, and  
- u∇  indicates the direction in which u decreases most rapidly. 
 
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thermal conduction (thermodiffusion) is a process of heat propagation due to  
the presence of the temperature gradient in a medium: heat tends to propagate  
from the regions with the higher temperature to the regions with the lower  
temperature; and there is no heat transfer in the isothermal media.  
 
Fourier Law.  Thermal conduction is characterized by the heat flux vector 

( )t,rq  which represents heat flow per unit time, per unit area of the isothermal 
surface in the direction of the decreasing temperature.  For the qualitative 
description of the thermal diffusion, we will use the following empirical law 
formulated by the French scientist Joseph Fourier 
 

( ) ( )t,ukt, rrq ∇−=                        (2) 
   
which assumes the linear dependence of heat flux on the temperature gradient 
with the constant of proportionality k, termed thermal conductivity.  
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3.  Heat Equation Consider a point 3D∈ ⊂r \ . Let V be an arbitrary small control volume 
containing point r. 
Application of the fundamental principles to a heat transfer system yields the 
following balance of conservation of energy for a control volume V with the 
surface boundary S: 
 

 
rate of heat flow rate of heat rate of heat
through the generation storage 
boundary S in volume V in volume V

     
     + =     
          

 

  
 The first term in this equation is caused by the diffusion of heat through the 

boundary of the control volume due to the presence of a temperature gradient, 
and it is defined by the heat flux through the surface (because n is the outward 
normal vector to the surface, the minus sign is used to insure that positive heat 
flux is into the control volume):  

  
rate of heat flow
through the
boundary S

 
 
 
  

( )∫ ⋅−=
S

dSt, nrq  

 The second term can be caused by a production of heat inside the control 
volume due to some source of energy ( )t,g r : chemical, electrical, radiative etc.: 

 
rate of heat
generation
in volume V

 
 
 
  

= ( )∫
V

dVt,g r  

 The remaining term is evaluated as: 

 
rate of heat
storage 
in volume V

 
 
 
  

= ( )dV
t

t,uc
V

p∫ ∂
∂ rρ  

 Then the energy balance yields the equation 
 

 ( )∫ ⋅−
S

dSt, nrq + ( )∫
V

dVt,g r = ( )dV
t

t,uc
V

p∫ ∂
∂ rρ                  (3) 

 
 Application of the divergence theorem to the first term gives us: 

 ( ) ( )dVt,dSt,
S V

rqnrq∫ ∫ ⋅∇=⋅  

 Then the surface integral in the equation can be replaced by the volume integral, 
and all terms can be combined in one expression 

 ( ) ( ) ( ) 0dV
t

t,uct,gt,
V

p =





∂
∂

−+⋅∇−∫
rrrq ρ  

 Because this equation has to hold for an arbitrary control volume for which r is 
an interior point, according to the theorem from vector calculus, the integrand 
should be identically equal to zero 

 ( ) ( ) ( ) 0
t

t,uct,gt, p =
∂

∂
−+⋅∇−

rrrq ρ  

 Replacing the heat flux vector by the temperature gradient according to the 
Fourier law and moving the last term to the right hand side, one can get the 
differential equation of thermal diffusion 



Chapter 4  Partial Differential Equations                                                                         
 

 ( )[ ] ( ) ( )
t

t,uct,gt,uk p ∂
∂

=+∇⋅∇
rrr ρ                   (4) 

 If thermal conductivity k is a constant, then the equation may be rewritten in the 
form 

 

 ( ) ( ) ( )
t

t,ua
k

t,gt,u 22

∂
∂

=+∇
rrr                      (5) 

 where the coefficient a is defined by 

 
k
c1a p2 ρ

α
==                        (6) 

 If there are no heat sources in the considered domain, then the equation (  ) 
transforms to the homogeneous heat equation 

 

  ( ) ( )
t

t,uat,u 22

∂
∂

=∇
rr                                   (7) 

 
 Since the heat equation was derived on the general assumption of propagation of 

some specie in the continuous media due to the concentration gradient, it is valid 
for any diffusion process where instead of temperature we use the other 
characterization of a specie’s concentration. 

 
  
 Heat Equation in Cartesian Coordinates 
 
 
 

 
( ) ( ) ( ) ( ) ( )2 2 2

2
2 2 2

u x, y,z,t u x, y,z,t u x, y,z,t g x, y,z,t u x, y,z,t
a

k tx y z
∂ ∂ ∂ ∂

+ + + =
∂∂ ∂ ∂

(8) 

  
 
 
 
   
 Heat Equation in Cylindrical Coordinates  
 
 
 

 
2 2

2
2 2 2

1 u 1 u u g ur a
r r r k tr zθ

∂ ∂ ∂ ∂ ∂  + + + = ∂ ∂ ∂∂ ∂ 
                   (9) 

 
 
 
 
 
 Heat Equation in Spherical Coordinates  
 
 
 
 

2
2 2

2 2 2 2 2

1 u 1 u 1 u g ur sin a
r r k tr r sin r sin

φ
φ φθ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂  + + + =  ∂ ∂ ∂ ∂ ∂∂   
                             (10) 

 
 
 
 
 



Chapter 4  Partial Differential Equations                                                                         
 
4.  Thermophysical properties 
 
Physical quantities involved in the Heat Equation have the following dimensions in SI units: 
 
 
Temperature     u     [ ]K  
 

Heat flux     
x
Tkq

∂
∂

−=′′   





2m
W   heat flux increases with increase of k 

 

Thermal conductivity   k    





⋅ Km
W   shows the ability of material to conduct heat 

 

Density      ρ    





3m
kg  

 

Specific heat     cp    







⋅ Kkg
J  specific heat at constant pressure 

 
 

Thermal diffusivity   
pc

k
ρ

α =   







s

m2

  ratio of thermal conductivity to heat capacity; 

              α  compares ability of material to conduct energy 
               relative to its ability to store energy: 
 
              small α   =  slow change of temperature 
              high  α    =  quick change of temperature 
 
 
Coefficient in            small a  =  quick change of temperature 

Heat Equation    
k
c1a p2 ρ

α
==  





2m
s   high  a   =  slow change of temperature 

        
 
 
 

Typical properties of common materials at room temperature (300K) 
 

 a  610⋅α  ρ  cp k 

Aluminum 100 80 2700 900 200 
Copper 90 100 8900 390 400 
Gold 90 130 19300 130 320 
Steel 500 3 8000 500 15 
Brick 1500 0.4 1900 835 0.7 
Glass 1200 0.7 2500 800 1.4 
Wood 2900 0.12 500 2500 0.15 
Rock 900 1.3 2500 800 2.5 
Sand 2000 0.25 1500 800 0.3 
Water 2700 0.14 1000 4200 0.6 
Beef 2774 0.13 1090 3540 0.47 

Turkey 2774 0.13 1050 3540 0.5 
Potato 2774 0.13 1055 3640 0.5 
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5.  Modeling of Boundary Conditions  
 
 Heat transfer through the boundary S  of the domain 3D ⊂ \  is modeled by 

application of the conservation of energy law to the control surface (which can 
be described as a closure of the domain C.S.  which contains the boundary 
( C.S. S⊃ ) and which has negligible volume, such that in a control surface we 
can neglect volumetric storage and generation of the heat energy).  A control 
surface allows us to distinguish heat fluxes crossing the boundary S  and divide 
then into fluxes inside and outside the domain.  Therefore, the rate of heat 
transfer which crosses the control surface inside of the domain is equal to the 
rate of heat transfer which crosses the control surface outside of the domain: 

 
 
                        in outQ Q=                    (1) 
 
 Locally, on a unit surface area basis, equation (1) results from conservation of  

heat flux through the control surface 
 
 

                  in outq q=                    (2) 
 

Consider the function ( )u ,tr  describing a temperature field in the domain 
3D ⊂ \  for t 0>  and let the surface S  be the boundary of the domain D .  

Assume that heat transfer in the domain D  is accomplished only by conduction 
with a coefficient of thermal conductivity k .  Therefore, the heat flux inq  is 
described as a component of the flux vector in the normal direction to the 
surface S  

      ( )n
S

uq q n k u n k
n

∂
= ⋅ = − ∇ ⋅ = −

∂
 

  where n  is the outward unit normal vector to the surface S .  
Let the media outside the domain D  be characterized by the uniform    

        temperature u∞  of the transparent to thermal radiation fluid flow and    
        the temperature  suru  of the large surroundings which is emitting  thermal  

radiation as a black body.  Then heat transfer from the surface S  is  
accomplished by two modes of heat transfer – convection and radiation 
 
 

                           out conv radq q q= +                    (3)    
 

 
  Convective heat flux is described by Newton’s law of cooling 
 
      ( )conv S

q h u u∞= −                                 (4) 

  where h  is a coefficient of convective heat transfer and 
S

u  is the surface   
    temperature. 

 
  Net radiative heat flux at the surface is described by Stefan-Boltzmann Law 
 
      ( )4 4

rad surS
q u uεσ= −                                                               (5) 

  where ε  is the total emissivity of the surface (physical property of the surface,  

    0 1ε≤ ≤ ), 8
2 4

W5.67 10
m K

σ −  = ⋅   
 is a Stefan-Boltzmann constant, and   

    temperature is measured in the absolute temperature scale (Kelvin). 



Chapter 4  Partial Differential Equations                                                                         
 

  Then equations (2-5) yields a boundary condition  
 

               ( ) ( )4 4
surS S

S

uk h u u u u
n

εσ∞
∂

− = − + −
∂

             (5) 

 
 This is the most general boundary condition for the heat transfer equation.  

Because in the right hand side of the equation, surface temperature appears in 
the 4th power, equation (5) is non-linear.  It is more desirable, to have a linear 
boundary condition.  Therefore, the radiation part of equation (5) either is 
neglected (if the contribution of radiation to the energy balance is small) or 
linearized, for example, on a basis of  temperature suru  

 
 ( ) ( ) ( ) ( )4 4 3 4 3

rad sur sur sur sur sur rad surS S S S
q u u u u u u u u h u uεσ εσ εσ= − = − = − = −  

 
 If the fluid and surroundings have the temperature u∞  then the linearized 

boundary condition can be written with some artificial coefficients 
conv radh h h= +   

 

 ( )S
S

uk h u u
n ∞

∂
− = −

∂
                    (6) 

 
 This is the classical boundary condition of convective type for the Heat Equation  

in Heat Transfer Physics.  It can be rewritten in the form used in the settings of a 
BVP for PDE as 

 

  
S

uk hu hu
n ∞

∂ + = ∂ 
 

 
 or, if the right hand side is denoted by a single function f (in general, f is a 

function of location on the boundary and time ( )f f ,t= r , S∈r , t 0> ), then 
 

 
S

uk hu f
n

∂ + = ∂ 
                     (7) 

 
 This is a classical boundary condition of convective type for the Heat Equation 

in the theory of Equations of Mathematical Physics (called a mixed boundary 
condition, boundary condition of the 3rd kind, or Robin boundary condition). 

 
 
 Special cases of boundary conditions: 
 

Homogeneous 1) 
S

uk hu 0
n

∂ + = ∂ 
 The right hand side is equal to zero.  A boundary surface 

is exposed to the environment of zero temperature.  Physically this condition is 
not often realized; but it can be obtained after the change of dependent variable, 
when in the heat equation, the temperature u  is replaced by excess temperature 

u uθ ∞= − , or by su uθ = −  where su  is a steady state temperature satisfying 
the non-homogeneous boundary condition.  

 
 
Thermostated boundary 2)  

S
u const=   A thermostated boundary, for which temperature is 

supported by a very high value of the convective coefficient h  (divide the 
equation by h  and consider the limit when h → ∞ ). 
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Insulated boundary 
  

 3)  
S

u 0
n

∂
=

∂
  There is no heat flux through the boundary (this is 

accomplished by insulation of the boundary outside the domain with a material 
of negligible effective thermal conductivity).  This condition also can be used at 
the surfaces of symmetry of the considered domain.  Then it is sufficient to 
solve the problem in the symmetrical part of the domain where the surface of 
symmetry becomes a part of the boundary. 

 
 
 
 Typical values of physical parameters involved in boundary conditions 
 

 1) Coefficient of convective heat transfer  2

Wh 
m K

 
  

: 

 
           Gases   Liquids 
 
   Free convection     2-20  10-100 
 
   Forced convection    20-200  50-10,000 
 
   Convection with      
   boiling or condensation    1000-50,000 
 
 
 2) Total emissivity ε  of some materials (at room temperature) is a surface 

property which can depend on material, surface temperature and surface 
roughness: 

 
   Polished or foil aluminum   0.04 

   Anodized aluminum    0.8 

   Polished steel     0.15 

   Brick (red)      0.95 

   Paints (from white to black)  0.9-0.98 

   Concrete      0.9   

   Wood       0.8-0.9 

 
 3)  Typical values of conductivity k were presented in the section 4.3.2  4. 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

insulation = line of symmetry



Chapter 4  Partial Differential Equations                                                                         
 
6.  Mathematical dimension in modeling heat transfer  
 
 All physical models for heat transfer are in 3-dimensional Euclidean space. 

  Mathematical dimension of the physical model determines the number of spatial 
    variables in the function u  describing the temperature field in the system; and it  
    depends on the form of the domain and the choice of coordinate system.  It is  
    important to minimize mathematical dimension of the model because it can   
    reduces the difficulty of solution. 

 
  In many cases the “mathematical model” for a reduced dimension of the  

problem is not consistent with the physical sense of the model. For example, for 
adoption of a 2-dimensional model for heat transfer, the following explanation is 
given in a textbook of Engineering mathematics: “the two faces of sheet metal 
are insulated, and the sheet is so thin that heat flow in it can be regarded as two-
dimensional.  The edges of the sheet are maintained at constant temperature…”  
Or for a 1-dimensional model: “A rod has its lateral surface insulated against the 
flow of heat and is so thin that heat flow in the rod can be regarded as one-
dimensional.  Its left end is maintained at a constant temperature, and its right 
end radiates freely into air of constant temperature”. 

     
  This approach to the dimension of problems in engineering mathematics  

textbooks is typical, but completely incorrect.  First, it has the meaning of an 
approximation of  the physical domain – no physical rod is a mathematical line.  
Second, it is inconsistent with the physical process of heat transfer.  The thermal 
resistance of the material is increased with the decrease of cross-sectional area in 
the direction of heat flow – and therefore in the limit, there will be no heat flow 
along the line..  Also emission of radiation from the end of a rod of negligible 
cross-sectional area is also negligible.  For the case of the sheet metal,  thermal 
resistance in a direction of the sides is negligible compared to the direction 
along the infinitely thin layer – and no material can provide in this case a perfect 
insulation (even in a vacuum, there will be losses of energy due to thermal 
radiation from the surface). 

 
 
  At the same time, there is the other approach to determination of the  
  mathematical dimension of the physical domain, which is not an approximation  

and which is consistent with physical processes.  For example, consider steady 
state heat conduction in a plane wall with dimensions L,W ,H  in the directions 
of the axes of the Cartesian coordinate system ( )x, y,z .  Suppose that for a large 
wall, the thickness of the wall L  is much smaller than other sizes W  and H .  
Let the sides of the walls defined by planes x 0=  and x L=  be maintained at 
constant  temperatures 0u  and Lu  respectively , or be exposed to alarge 
convectional environment  at uniform temperatures 1,u ∞  and 2,u ∞  respectively .  
The temperature gradients in the directions y  and z are negligible, heat transfer 
occurs exclusively in the direction x , and, therefore, the Heat Equation includes 
only the derivative with respect to the variable x .  It is sufficient to solve the 
problem as 1-dimensional; and the determined temperature profile will be the 
same along any line across the wall.  Boundary conditions for this problem are 
set from the physically consistent heat transfer on the plane boundary.  

                                                                       
              

Mathematical dimension of the heat transfer problem can also be reduced by the 
appropriate choice of coordinate system.  Thus, for heat conduction between two 
concentric spherical surfaces maintained at constant temperatures, the problem 
becomes 1-dimensional in the spherical coordinate system, because of the 
angular symmetry the derivatives with respect to angular variables disappear.  
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We list some other typical cases where mathematical dimension of the problem  

  can be reduced: 
 

  A long rectangular column or cylinder of non-circular cross-section – to a 2- 
    dimensional problem in the plane. 

 
 

                    
 
 
  A long cylinder of circular cross section – to a 1-dimensional problem in polar  

    coordinates. 
 
                                           
                   
 
 
 
 
 
 
 
 

An appropriate 1-dimensional approximation can be made for elongated 
domains of finite cross-sectional area with characteristic length δ  (diameter for 
circular,  and average width for rectangular cross-section) exposed to a 
convective environment with the coefficient of convective heat transfer h .  If 

the ratio h 0.1
k
δ

< (so called the non-dimensional Biot number), then the typical 

error in the heat transfer predictions is less than 1%. The lateral surface in this 
model is not considered as a boundary and heat transfer through it is included 
into the equation as a heat source. Boundary conditions are set at the ends of the 
domain in correspondence with physical heat transfer through the cross-section 
of the rod.   
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4.4   Classical Initial-Boundary Value Problems (IBVP) 
     
 Classical equations of mathematical physics are modelled by three major 2nd 

order PDE’s with one unknown function ( )tu ,r , 3D∈ ⊂r \ , 0>t : 
 

Laplace’s Equation (LE)   02 =∇ u                      (1) 
 

Heat Equation (HE)    
t
uau

∂
∂

=∇ 22                     (2) 

 

Wave Equation (WE)    
2

2
22

t
uau

∂
∂

=∇                     (3) 

 
defined in the domain of Euclidian space 3D∈ ⊂r \ , and let S  be a boundary 
of the domain D .   
These equations can model the particular physical phenomena.  
The mathematical problem which models a physical phenomena should be set in 
such a way that its solution has a proper physical meaning and it is unique (it 
also has to be continuously dependent on the boundary conditions).  The 
classical equations of mathematical physics are solved subject to initial and 
boundary conditions set in the way to provide a physically reliable unique 
solution describing the model.  In this case, the problem is said to be well-set (or 
correctly formulated.  Otherwise, it is called an ill-set problem (although 
mathematicians still study the ill-set problems, in most cases, they have no 
practical interest).  
 
We will consider only well-set IBVP’s for classical PDE’s which have the 
following formulation: 

 
 
Initial-Boundary Value Problem   Find ( )tu ,r  3D∈ ⊂r \ , 0>t   such that  
 
          1.  ( )tu ,r  satisfies the PDE in D  for 0>t  

2.  ( )tu ,r  satisfies initial conditions in D  for 0=t  

          3.  ( )tu ,r  satisfies boundary conditions at S∈r  for 0>t  
 
 
        Setting of the IBVP for classical PDE’s is summarized in the following table: 
 
        Note:  If D is not a bounded domain and has no boundary (i.e. 3D = \ ), then no 
        boundary condition is set (however, some restrictions on the solution may be  
        applied, such as a requirement of a bounded solution, etc.). 
 
        That is the most general set of IBVP for classical PDE’s.  Next, we will consider 
        the specific details and treatment for individual equations. 
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Laplace’s Equation 

 

 
Heat Equation 

 
Wave Equation 

 
02 =∇ u  

 
D∈r  

 

t
uau

∂
∂

=∇ 22  

 
D∈r , 0t >  

 

2

2
22

t
uau

∂
∂

=∇  

 
D∈r , 0t >  

 
Initial Conditions 

 
 

none 
 

( ) ( )rr 00, uu =  
 
 
D∈r  

 
( ) ( )rr 00, uu =  

( ) ( )rr
1

0, u
t

u
=

∂
∂  

D∈r  
 

    Boundary Conditions                
 

I  Boundary condition of the Ist kind  (Dirichlet )  
                                                                                                                  ( )S

u f t=    value of unknown function u 
            for     0t >                                                                                                          is specified at the boundary      
                                                                                                                                       ( )t,f r     0t,S >∈r  
                                                                                         
 
                                                                                                                 for one-dimensional case [ ]x 0,L∈ : 

                                                                                                                  ( ) ( )0u 0,t f t=  

                                                                                                                  ( ) ( )Lu 0,t f t=  

II  Boundary condition of the IInd kind  (Neumann )  

            for     0t >                                                                                    ( )
S

u f t
n

∂
=

∂
                   ( )t,f r     0t,S >∈r  

 
 
                                                                                                                  for one-dimensional case [ ]x 0,L∈ :                  

                                                                                                                  
( ) ( )0

u 0,t
f t

x
∂

=
∂

 

                                                                                                                  
( ) ( )L

u L,t
f t

x
∂

=
∂

   

III  Boundary condition of the IIIrd kind  (Robin )  

            for     0t >                                                                                  ( )
S

uk hu f t
n

∂ + = ∂ 
       ( )t,f r     0t,S >∈r  

 
 
 
                                                                                                                   for one-dimensional case [ ]x 0,L∈ :  

                                                                                                                  
( ) ( ) ( )0

u 0,t
k hu 0,t f t

x
∂

− + =
∂

 

                                                                                                                    
( ) ( ) ( )L

u L,t
k hu L,t f t

x
∂

+ =
∂
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4.5   Sturm-Liouville Theorem  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.5.1  Banach and Hilbert Spaces The systematic presentation of the Banach spaces is given in the 

Chapter 10 “Banach Spaces”.   Here, only the necessary for our 
purpose material on the normed vector spaces is presented.  

 
 Let V  be a vector space over field of real numbers \ . 
  
1.  Normed Space Norm is a map :V⋅ → \  such that for all u,v V∈  and c ∈\  
 
 1.   u 0≥      

  u 0=  if and only if u 0=  

 2. cu c u=      

 3. u v u v+ ≤ +        (triangle inequality) 
 
 
       Example:  in the space [ ]C a,b  of all continuous functions defined in 

          the closed interval  [ ]a,b , the norm can be defined as 

             
[ ]

( )C x a ,b
f max f x

∈
=       (it is called the maximum norm) 

 
2.  Metric Space Vector space V  is a metric space if there exists a function 

:V Vρ × → \  such that for all u,v,w V∈  
 
 1. ( )u,u 0ρ =     

  ( )u,v 0ρ >         for u v≠  

 2. ( ) ( )u,v v,uρ ρ=        (symmetry) 

 3. for all ( ) ( ) ( )u,v u,w w,vρ ρ ρ≤ +    (triangle inequality) 
  
 ( )u,vρ  is called the distance between u,v V∈ . 
 
 Vector space with introduced metric is called a metric space. 
 
  
          In the normed vector space the metric can be introduced as 
 
             ( )u,v u vρ = −  
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3.  Inner Product Inner product is a map ( ), :V V× → \  such that for all u,v,w V∈  

 1. ( ) ( )u,v v,u=      ( ( ) ( )
_______

for  complex u,v v,u= ) 

 2. ( ) ( ) ( )u v,w u,w v,wα β α β+ = +  ,α β ∈R  

 3. ( )u,u 0≥  

  ( )u,u 0=   if and only if u 0=  
 
          Vector space with introduced inner product is called an inner product  
          space.  In inner product space the norm can be defined as 
 

               ( )u u,u=  for all u V∈  
 
 
4.  Convergence       Let V be a normed (metric) space and let  kf , f V∈  , k 1,2,...=  
          The sequence 1 2f , f ,...  converges to f  if 
 
          kk

lim f f 0
→∞

− =    or ( )kf , f 0ρ →   as k → ∞  for metric space. 

           
          The sequence kf V∈  is called the Cauchy sequence (convergent in  
          itself) if 
 
          k mk

m

lim f f 0
→∞
→∞

− =    or ( )k mf , f 0ρ →   as k → ∞  and m → ∞  

 
          The vector space V is called complete if all its Cauchy sequences are  
          convergent in V . 
 
          A complete normed space is called the Banach space.  
           For example, n\  is a Banach space with 2 2

1 nx x= +x " . 
 
          A complete inner product space is called a Hilbert space. 
 
 
5.  Orthogonality      In the inner product space u,v V∈  are called orthogonal if ( )u,v 0= . 
 
          If set { }ku V∈ consists of mutually orthogonal vectors, ( )k mu ,u 0=   
          when k m≠ , then this set is called an orthogonal set. 
 
          If in addition, ku 1= , then set { }ku V∈ is called orthonormal. 
 
          Orthogonal set is linearly independent set (exercise). 
 
          If set { }ku V∈ is linearly independent then it can be converted to the  

          orthonormal set { }kv V∈ with the help of the so called Gram-Schmidt  
          orthogonalization process: 
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Gram-Schmidt process       1v  1

1

u
u

=  

 

            2v  
( )
( )

2 2 1 1

2 2 1 1

u u ,v v
u u ,v v

−
=

−
 

 
            #  
 

            kv  
( ) ( ) ( )
( ) ( ) ( )

k k 1 1 k 2 2 k k 1 k 1

k k 1 1 k 2 2 k k 1 k 1

u u ,v v u ,v v u ,v v
u u ,v v u ,v v u ,v v

− −

− −

− − − −
=

− − − −

…
…

 

 
 
          This algorithm can be formalized with the help of Gram’s determinant: 
 

          

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 k 1

1 2 2 2 k 2
k

1 k 2 k k k

u ,u u ,u u ,u
u ,u u ,u u ,u

G

u ,u u ,u u ,u

=

"
"

# # % #
"

,   0G 1=  

 
          Orthonormal vectors are determined by the formula 

          

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 k 1

1 2 2 2 k 2

k
k k 1

2 k 11 k 2 k 1

k1 2

u ,u u ,u u ,u
u ,u u ,u u ,u

1v
G G

u ,uu ,u u ,u
uu u

−
−−

=

"
"

# # % #

"

 k 1,2,...=  

          The orthonormal set { }ku V∈  is said to be complete  if there does not  
          exist a vector v ≠ 0 , v V∈  such that it is orthogonal to all vectors   
          from { }ku .  
 
6.  Fourier Series      Let  { }ku V∈  be an orthonormal set.     

          ( )k k
k 1

f ,u u
∞

=
∑   is called the Fourier series  (generalized Fourier series) 

 
          ( )kf ,u   are called the Fourier coefficients, ( )k kc f ,u=    
 

 Theorem The Fourier series ( )k k
k 1

f ,u u
∞

=
∑   is convergent to the   

   function ( )2f L a,b∈  if and only if  

    ( )2 2
k

k 1
f,u f

∞

=

=∑        (Parseval’s equation) 

 

 Proof:  Let ( ) ( )k k
k 1

f x f ,u u
∞

=

= ∑  

 
    2f   ( )f , f=  

       ( ) ( )k k k k
k 1 k 1

f ,u u , f ,u u
∞ ∞

= =

 
=  

 
∑ ∑  
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       k k k k
k 1 k 1

c u , c u
∞ ∞

= =

 
=  

 
∑ ∑  

       ( ) ( )2
k k k k m k m

k 1 k m
c u ,u 2 c c u ,u

∞ ∞

= ≠

= +∑ ∑  

       2
k

k 1
c

∞

=

= ∑  

       ( )2
k

k 1
f ,u

∞

=

= ∑           ■ 

 
 Let  { } ( )2

ku L a,b∈  be an orthonormal set .  

  If for any ( )2f L a,b∈  its Fourier series  

 ( )2
k

k 1
f,u

∞

=
∑  

          converges to f  in ( )2L a,b , then { }ku is said  complete in ( )2L a,b . 
     
 
7.  Vector Space 2L  Consider a particular case of Equation 3.3 from Definition 3.13 (p.205), 

with p 2=  and interval [ ]I a,b= : 

 ( ) ( ) ( )
b

2 2

a

L a,b : a,b x dxϕ ϕ
 

= → < ∞ 
 

∫\  

 
 Inner product in vector space ( )2L a,b :   For ( )2u,v L a,b∈ define: 
 

 ( ) ( ) ( )
b

a

u,v u x v x dx= ∫     inner product in ( )2L a,b  

 

 ( ) ( ) ( ) ( )
b

p
a

u,v u x v x p x dx= ∫   weighted inner product in ( )2L a,b  

         with the weight function  ( )p x 0>  

 Inner product vector space ( )2L a,b  belongs to the class of Hilbert 
spaces. 

 
 Introduced inner product induces the norm in ( )2L a,b : 
 

 ( )
b

2

a

u u x dx= ∫  

 ( ) ( )
b

2
p

a

u u x p x dx= ∫    

 
 Historically, the first complete set was used by Fourier set of 

trigonometric functions  1 1 1, cos kx, sin kx
2π π π

 
 
 

, k 1,2,...=  in 

the interval ( )0,2π . 
 
 The complete orthogonal sets used in the solution of PDE will be 

generated by the solution of the Sturm-Liouville problems. 
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8.  Exercize:        The set { }2 31,x,x ,x ,...  is linearly independent in ( )2L 1,1− . 

 
 a) Using the Gram-Schmidt orthogonalization algorithm with inner 

product 
 

 ( ) ( ) ( )
1

1

u,v u x v x dx
−

= ∫   

 
 construct an orthonormal set in ( )2L 1,1−  
 (the obtained set will be the set of the Legendre polynomials up to the 

scalar multiple). 
 
 b) Using the Gram-Schmidt orthogonalization algorithm with inner 

product 
 

 ( ) ( ) ( )1

2
1

u x v x
u,v dx

1 x−

=
−

∫   

 
 construct an orthonormal set in ( )2L 1,1−  
 (the obtained set will be the set of the Tchebyshev polynomials up the 

the scalar multiple). 
 
 c)  Use the obtained orthonormal sets for generalized Fourier series 

expansion of the function: 
 

 ( ) ( )
( )

1 x 1,0
f x

1 x 0,1
− ∈ −=  ∈

 

 
 Compare the results for truncated series with 2,3,4 terms.  Make some 

observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      
 
 
                                              Lvov University where Stefan Banach worked in 1919-1945 
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9. Generalized Fourier Series 

Recall from Chapter 3, that functions ( ) [ ]2 1 2u x L x ,x∈  can be represented by 

generalized Fourier series in some interval [ ]1 2x ,x        

     ( ) ( )n n
n 1

u x u xφ
∞

=

= ∑           (1)  

        Where coefficients are 

             
( ) ( ) ( )

( ) ( )

2

1

2

1

x

n
x

n x
2
n

x

u x x p x dx
u

x p x dx

φ

φ
=

∫

∫
         

        and the set of functions ( ){ }n xφ  is complete in [ ]2 1 2L x ,x  the set of orthogonal  

        functions over the inner product with a weight function ( )p x : 

             ( ) ( ) ( )
2

1

x

m n
x

x x p x dx 0φ φ =∫  if m n≠        

Completeness of the set ( ){ }n xφ in [ ]2 1 2L x ,x  means that any function 

( ) [ ]2 1 2u x L x ,x∈ can be represented by generalized Fourier series.  Conditions 
for that are established in Chapter 3 by the Dirichlet Theorem.  In these 
equations we used the definition of a weighted inner product in the space 

( )212 x,xL  

     ( ) ( ) ( ) ( )dxxpxvxuv,u
2

1

x

x
p ∫=              (2) 

which can be used to define the norm in space [ ]2 1 2L x ,x as 

     ( ) ( )
2

1

1 2x
2

p
x

u u x p x dx
 

=  
  
∫         (3) 

 
Analytical solution of IBVP’s for PDE’s will require the construction of such 
complete orthogonal sets of basis functions which are used for deriving 
solutions, which satisfies the differential equation and initial and boundary 
conditions.  First, we will see the appearance of already known sets which are 

used in traditional Fourier series n1,cos x
L
π 

 
 

, nsin x
L
π 

 
 

 and sets for quarter-

range expansions.  Then novell sets will appear which happen to posses the 
same property of orthogonality and completeness.  Generation of such 
orthogonal sets is provided by the solution associated with a PDE eigenvalue 
problem for the differential operator L  acting on one of the space variables.  
This eigenvalue problem is formulated in traditional form (which we have 
already seen in linear algebra for eigenvalue problems for linear transformations 
defined by matrices): 
 
 
Find the values of parameter λ  for which the operator equation 
 

Eigenvalue Problem         uLu λ=             (4) 
 

subject to boundary conditions has a non-trivial solution.   
 
 
Under some conditions, this eigenvalue problem will generate the required set of 
orthogonal functions.  These conditions are formulated in the fundamental form 
for analytical theory of PDE’s as the regular Sturm-Liouville Theorem. 
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4.5.2  Regular Sturm-Liouville Problem 
   

Consider the homogeneous differential equation 
 

             ( )[ ] ( ) ( )[ ] 0uxpxquxr =++′′ λ         (5) 
 
        subject to boundary conditions 
 
             ( ) ( ) 0xubxua 1111 =′−          (6) 
             ( ) ( )2 2 2 2a u x b u x 0′+ =          (7) 
 
        where coefficients 0b,b,a,a 2121 ≥ , and 0ba 11 >+ , 0ba 22 >+           (8) 
        and functions  ( ) 0xp > , ( ) [ ]21 x,xCxp ∈         (9) 

             ( ) 0xr > , ( ) [ ]21
1 x,xCxr ∈       (10) 

             ( ) ( )21 x,xCxq ∈          (11) 
 

Find values of the parameter λ  for which differential equation (5) subject to 
boundary conditions (6,7) has a non-trivial solution 
 
     ( ) ( ) [ ]21

1
21

2 x,xCx,xCxu ∪∈ , ( ) ( )212 x,xLxu ∈′′  
 
(Remark: coefficients in boundary conditions (6-7) are assumed to be non-
negative 0b,b,a,a 2121 ≥ , because we want them to represent physical 
properties of the medium). 
 
 

Sturm-Liouville Operator  Consider the differential operator  ( ) [ ]21
1

21
2 x,xCx,xC:L ∪ ( )212 x,xL→  

 

             ( ) 



 +′′−≡ quur

p
1Lu        (12) 

 
        which rewrites the Sturm-Liouville problem in the form 
 
             uLu λ=           (13) 
 

This is an eigenvalue problem for the differential operator L consisting in 
finding the values of parameter λ (eigenvalues) for which the operator equation 
(13) subject to boundary conditions (6-7) has non-trivial solutions 
(eigenfunctions).       

 
 

4.5.3  Sturm-Liouville Theorem The following statements hold for a Sturm-Liouville Problem: 
 

1) The differential operator L:         
 

 if 1u  and 2u  are solutions of SLP (5-11), then  

a) operator L is Hermitian (also called self-adjoint or self-conjugate) 

             ( ) ( ) p21p21 Lu,uu,Lu =             (14) 

         b)  operator L is positive 

             ( ) 0u,Lu p ≥           (15) 
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        2) Eigenvalues have the following properties: 
 

a) there are infinitely many values nλ , ,...2,1,0n =  for which the Sturm-
Liouville Problem has non-trivial solutions ( )xun  (eigenfunctions); 

b) all eigenvalues are real, Rn ∈λ ; 
c) all eigenvalues are non-negative, 0n ≥λ ; 
d) 00 =λ  only if 0q =  and 0aa 21 ==  (Neumann boundary conditions) 
e) eigenvalues can be organized in increasing order ...0 210 <<<≤ λλλ  

 
        3) Eigenfunctions have the following properties: 
 
         a)  all eigenfunctions can be chosen real ( ) RR:xun →  

b)  if ( )xun  is an eigenfunction then ( )xcun  for any Rc ∈  is also an 
eigenfunction  (eigenvalue nλ  generates a linear eigenspace); 

c) dimension of each eigenspace is one (all nλ  are simple – there is only 
one linearly independent eigenfunction corresponding to nλ ); 

d) the set of all eigenfunctions ( ){ }xun  is orthogonal with respect to the 
weight function ( )xp  

     ( ) 0u,u pnm =  if nm ≠  

e)  the set ( ){ }xun  is complete in ( )212 x,xL  i.e. 

 for any ( )212 x,xLf ∈  Fourier series   ( ) ( )xfxuc
0k

kk →∑
∞

=

 

where coefficients     
( )
( ) pkk

pk
k u,u

u,f
c =   

 
f) if ( )xun is an eigenfunction corresponding to the eigenvalue nλ , then 

( )xun  has exactly n zeroes in the open interval ( )21 x,x ; 
 between two successive zeroes of ( )xun  and also between 1x  and the 

first zero and between 2x  and the last zero there is exactly one zero of 
( )xu 1n+ . 

 
 
         
Proof:       1 a) Let 1u  and 2u  be two eigenfunctions.  Therefore, they satisfy equation (13) 
        with boundary conditions (6-7) in which assume that 0a,a 21 >  (a similar   
        derivation is valid also in the assumption 0b,b 21 >  or their combination), then 

11 uLu λ=  ( ) ( ) 0xubxua 12,1112,11 =′−   ⇒  ( ) ( )12,1
1

1
12,1 xu

a
b

xu ′=   (17) 

22 uLu λ=  ( ) ( ) 0xubxua 22,1222,12 =′−  ⇒  ( ) ( )22,1
2

2
22,1 xu

a
b

xu ′=  (18) 

 
 
Consider  ( ) ( ) p21p21 Lu,uu,Lu −        (use equation (12)) 
    

( ) ( )
2 2

1 1

x x

1 1 2 2 2 1
x x

1 1ru qu u pdx ru qu u pdx
p p

   ′ ′   ′ ′= − + − − +            
∫ ∫    (expand integrands) 
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[ ]∫ +′′+′′+−′′−′′−=
2

1

x

x
121212212121 dxuquuuruuruquuuruur     (organize terms) 

( ) ( )[ ]∫ ′′−′′+′′−′′+′−′′=
2

1

x

x
122121122112 dxuuuuuuuuruuuur     (add  1 2 1 2u u u u′ ′ ′ ′− )  

( )
2

1

x

2 1 1 2
x

r u u u u dx
′

′ ′ = − ∫            (integrate expression) 

( ) ( )
2 1

2 1 1 2 2 1 1 2x x
r u u u u r u u u u′ ′ ′ ′   = − − −           (use equations (17,18)) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12
1

1
11111

1

1
12122

2

2
21221

2

2
222 xu

a
b

xuxrxu
a
b

xuxrxu
a
b

xuxrxu
a
b

xuxr ′′+′′−′′+′′−=   

 
0=    

        Therefore, ( ) ( ) p21p21 Lu,uu,Lu =  and the operator L is Hermitian.       ■ 
 

        1 b) operator L is positive 
 

     ( ) ( ) ( ) 0dxxpxuu,Lu
2

1

x

x

2
npnn ≥= ∫     (because from condition (9), ( ) 0xp > ) ■ 

 
2 b) Let nλ be an eigenvalue and nu be the corresponding eigenfunction, then 

nn uLu λ= .  Because the operator L is Hermitian, ( ) ( ) pnnpnn Lu,uu,Lu = .  
Then 

( ) ( ) ( ) ( ) ( ) ( ) pnnnpnnnpnnpnnpnnnpnnn u,uu,uLu,uu,Luu,uu,u λλλλλ =====

 
⇒  nn λλ = .  Therefore, eigenvalue nλ  is real, Rn ∈λ .                     ■ 

 
2 c) Let nλ be an eigenvalue and nu be the corresponding eigenfunction, then 

nn uLu λ= .  Consider 

( ) ( ) ( ) 2
n n n n n n n n n np p p

Lu ,u u ,u u ,u uλ λ λ= = = .  Then 

 
( )

0
u

u,Lu
2

n

pnn
n ≥=λ             (because the operator L is positive (2b))     ■ 

 
3 d) Let mu  and nu  be two eigenfunctions:  mm uLu λ= and nn uLu λ= . 
  
Consider ( )pnmm u,uλ  ( )pnmm u,uλ=  

      ( )pnm u,Lu=  

      ( )pnm Lu,u=           (operator is Hermitian) 

      ( )pnnm u,u λ=  

      ( )pnmn u,uλ=          (eigenvalues are real) 

Therefore, ( )( ) 0u,u pnmnm =− λλ  

If nm ≠ , then 0nm ≠− λλ  and 
 
   ( ) 0u,u pnm =   

Therefore, eigenfunctions mu  and nu  are orthogonal if nm ≠ .                    
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3 f) Illustration of this property with the eigenfunctions ( )3u x  and  ( )4u x  
obtained from the solution of equation (20) with Robin-Robin boundary 
conditions in the interval [ ]0,2  

                                                                
                
4.5.4  Reduction to self-adjoint form 
 
        If the linear differential equation with parameter λ  is given in standard form 
           ( ) ( ) ( )0 1 2a x u a x u a x u 0λ′′ ′  + + + =   
        then with the help of the multiplication factor 

           ( )

( )
( )

( )

1

0

a x
dx

a x

0

ex
a x

µ =
∫

                       (19) 

        it can be reduced to the self-adjoint form 

           ( ) ( ) ( ) ( ) ( )0 2a x x u a x x x 0µ µ λµ′′   + + =     
        The corresponding coefficients of equation (5) can be identified as 

           ( ) ( ) ( )
( )
( )

1

0

a x
dx

a x
0r x a x x e 0µ= = >

∫  

           ( ) ( )

( )
( )

( )

1

0

a x
dx

a x

0

ep x x 0
a x

µ= = >
∫

  if ( )0a x 0>  

 
 
4.5.5  Sturm-Liouville problem for equation      X X 0µ′′ − =  
 
        Consider a boundary value problem which is important for solution of classical  
        PDE’s in the Cartesian coordinate system:         
  
                   X X 0µ′′ − =          [ ]x 0,L∈      (20) 
                 
           ( ) ( )1 1k X 0 h X 0 0′− + =          (21) 

           ( ) ( )2 2k X L h X L 0′ + =          (22) 
 
        Depending on coefficients, boundary conditions can be in one of the three   
        classical types.  There are nine possible different combinations of boundary   
        conditions which yield different solutions. 
        We can see that equation (20) can be written in the Sturm-Liouville form (5)  
        which produces non-negative eigenvalues only if the separation constant µ  is  

        assumed to be non-positive 2
nµ λ= − : 

           [ ] 2X Xλ′′− =            (23) 

    In this equation, we identify: r 1 0= > , q 0= , p 1 0= > .  The general solution  
of  this 2nd order homogeneous linear ODE with constant coefficients is given by 

           ( ) 1 2X x c cos x c sin xλ λ= +         (24) 
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        The solution of Sturm-Liouville will consist in finding non-trivial solutions  

which satisfy boundary conditions (21-22).  Consider some particular cases of  
 boundary conditions: 

        1) The case of Dirichlet-Dirichlet boundary conditions: 
 
         ( )X 0 0=  Dirichlet            (25) 

         ( )X L 0=  Dirichlet            (26) 
 
        (Remark: mathematically, Dirichlet boundary conditions are obtained from  the 
        general case, when in equations (21-22) coefficients 1 2k k 0= = ; but,    
        physically, it corresponds, for example, to zero thermal conductivity in the   
        domain for heat transfer which is not acceptable for modeling.  For physical  
        consistency, we rewrite equations (21-22) in the form 

        ( ) ( )1

1

k
X 0 X 0 0

h
′− + =           

        ( ) ( )2

2

k
X L X L 0

h
′ + =  

        and assume that coefficients of convective heat transfer are very high,    
        1 2h ,h → ∞ , which corresponds to a physically acceptable assumption of   
        negligible convective thermal resistance at the boundary of the domain. This  
        case is treated as thermostating of the boundaries). 
        Substitution of solution (24) into the first boundary condition (25) yields 
        ( )X 0 =   1 2c cos 0 c sin 0 0λ λ+ =  
           1 2c 1 c 0 0⋅ + ⋅ =  
        And from this the first coefficient 1c 0= . 
        Then general solution (24) reduces to 
        ( ) 2X x c sin xλ=               (27) 
        Substitute it into the second boundary condition (26) 
        ( )X L =  2c sin L 0λ =  
        Because one coefficient in the solution (24), 1c  is already assumed to be zero,  
        for a non-trivial solution ( )X x , the second coefficient should not be equal to  
        zero.  Therefore, the following equation should be satisfied 
        sin L 0λ =                (28) 
        This equation has infinitely many solutions 
          L nλ π=   
        where n  is any integer.  But we have to restrict ourself only to positive values  
        of n  (because negative values with odd function (27) do not satisfy equation  
        (23), and zero yields the trivial solution).  Therefore, the values of parameter λ   
        for which we have non-trivial solutions of BVP (23,25,26) are eigenvalues 

          n
L
πλ =           n 1,2,3,...=      (29) 

        Then corresponding to these values of parameter solutions are eigenfunctions 

           ( )n n
nX x sin x sin x
L
πλ= =   n 1,2,3,...=      (30) 

        According to the Sturm-Liouville Theorem, this set of functions should be   
        a complete set of functions orthogonal on the interval [ ]0,L with the weight   
        function  p 1= , which yields already known Fourier sine series expansion  
  

        ( ) k
k 1

nu x a sin x
L
π∞

=

= ∑           where 
( )

( )

L

L
0

k 2L
0

0

nu x sin xdx
L 2 na u x sin xdx

L Lnsin x dx
L

π
π

π
= =

 
 
 

∫
∫

∫
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        The Sturm-Liouville Problem (20-22) with Neumann-Neumann boundary  

Conditions generates a set of eigenfunctions n1,cos x
L
π 

 
 

 which is known as a 

Fourier cosine series.  The combinations of Neumann-Dirichlet and Dirichlet-
Neumann boundary conditions generate sets of eigenfunctions familiar from 
quarter-range Fourier expansions.  Other combinations of boundary conditions 
do not produce traditional sets.  Consider, for example, Robin-Dirichlet 
boundary conditions: 

 
        2) The case of Robin-Dirichlet boundary conditions (m10.mws): 
 

         ( ) ( )1 1k X 0 h X 0 0′− + =  Robin  (denote 1
1

1

h
H

k
=  )   (31) 

         ( )X L 0=     Dirichlet         (32) 
 
        Application of the second boundary condition (32) first, eliminates one of the  
        constants immediately, if the general solution (24) is rewritten in equivalent  
        shifted form:  
           ( ) ( ) ( )1 2X x c cos x L c sin x Lλ λ= − + −                 (24’) 
        Substitution of solution (24) into the second boundary condition (32) yields 
           ( )X L =   1 2c cos 0 c sin 0 0λ λ+ =  
              1 2c 1 c 0 0⋅ + ⋅ =  
        from which yields that the first coefficient 1c 0= .  Then the solution reduces to 
           ( ) ( )2X x c sin x Lλ= −  
        Application of the Robin boundary condition requires also its derivative 
           ( ) ( )2X x c cos x Lλ λ′ = −  
        Then at x 0=  
        ( ) ( )1X 0 H X 0′− +  ( ) ( )2 1c cos 0 L H sin 0 Lλ λ λ= − − + −  

             ( )2 1c cos L H sin L 0λ λ λ= − − =  
        For the non-trivial solution 2c 0≠ , and, therefore 
           1cos L H sin L 0λ λ λ+ =                (33) 
        is a characteristic equation for eigenvalues nλ .  There are infinitely many   
        positive roots of this equation (see example for 1L 2,H 3= = ) 

                                                              
 
        Though 0 0λ =  is a root of the characteristic equation, it is not an eigenvalue,  
         because it produces a trivial solution. 
        The set of eigenfunctions for this Sturm-Liouville Problem is 
           ( ) ( ){ }n nX x sin x Lλ= −   n 1,2,3,...=       (34) 

        where eigenvalues nλ are positive roots of the characteristic equation (33). 
        The norm (3) of eigenfunctions can be evaluated as 

             ( ) ( )2

1

1 2 1 2x
n2

n np 1
nx

sin 2 LLX X x dx
2 4

λ
λ=

   
= = −   

     
∫     (35) 

        According to the Sturm-Liouville problem set (34) is complete and can be used  
for expansion of functions in a generalized Fourier series (1): 

           ( ) ( ) ( )n n n n
n 1 n 1

u x u X x u sin x Lλ
∞ ∞

= =

= = −∑ ∑      (36) 
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        where 

           
( ) ( )

( )

L

n
0

n
n

n

u x sin x L dx
u

sin 2 LL
2 4

λ

λ
λ

−
=

−

∫
 

 
Example    Consider expansion of the function ( ) ( )u x exp x 2=  on the 

interval  [ ]0,2 .  The graph shows the function ( )u x  and its 
expansion in a Fourier series with 19 terms in summation: 

 
 

                                
 
        With an increase of the number of terms (the next graph shows an  

approximation with 64 terms in the summation (36)), approximation by 
truncated Fourier series improves, there still is a presence of Gibb’s phenomena 
at the right boundary because eigenfunctions satisfying homogeneous Dirichlet 
boundary conditions are zero at x L=  and there is a discontinuity with the non-
zero value of the function ( )u x at this point.   

 

                                
 
        Results for all combinations of types of boundary conditions for Sturm-Liouville 
        problems (20-22) are collected in the table Sturm-Liouville Problems.  The table 
        includes the kernel of integral transforms based on the corresponding    
        boundary value problem, which in Chapter 6 will be used for solution of IBVP  
        for PDE in the finite domains.  Notice, that 0 0λ =  is an eigenvalue only for the  
        case of Neumann-Neumann boundary conditions when both coefficients   
        1 2h h 0= =  (see 2d) of the Sturm-Liouville Theorem). 

( )
x
2u x e=

( )
x
2u x e=

n 19=

n 64=
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4.5.6  Sturm-Liouville problem for Bessel equation in the circular domain 
 

Solution of these Sturm-Liouville Problems will be shown in detail in the 
Chapter 5 on Special Functions (Section 12).  Analysis of corresponding 
problems will also be performed later in this chapter during the solution of 
PDE’s in cylindrical coordinates.  Here we indicate some general results. 

 
        Consider a Bessel equation of order ν  with parameter λ  
        ( )2 2 2 2x y xy x y 0λ ν′′ ′+ + − =  

        With the help of the multiplying factor ( ) 1x
x

µ =  

        It can be reduced to a self-adjoint form 

        [ ] 0yx
x

yx 2
2

=







+−+′′ λν               (identify ( ) xxp = ) 

 
Then, the Sturm-Liouville Problem in the circular domain, interval [ ]x 0,L∈ ,  

  produces infinitely many values of the parameter nλ  (eigenvalues) for which  
there exist non-trivial solutions ( )xyn  (eigenfunctions): 

        ( ) ( ){ }n ny x J xν λ=    
which are Bessel functions of the 1st kind of order ν  (the Bessel functions of the 
2nd kind Yν  are not included in the solution because they are unbounded at 
x 0= ).  The characteristic equation for eigenvalues is determined by the 
boundary condition. 
 

        According to the Sturm-Liouville theorem, eigenfunctions are orthogonal with  
the weight function ( ) xxp = : 

        ( ) ( )
L

n m
0

xy x y x dx 0=∫  for mn ≠  

 
        Bessel-Fourier Series   Obtained orthogonal systems can be used for    
        expansion of functions in generalized Fourier series  

        ( ) ( )n n
n 1

f x a J xν λ
∞

=

= ∑  

        where coefficients nc  are determined from the equation 

         
( ) ( )

( )

L

n
0

n L
2

n
0

xJ x f x dx
a

xJ x dx

ν

ν

λ

λ
=

∫

∫
        

( ) ( )
L

n
0

2
,n

xJ x f x dx

N

ν

ν

λ
=

∫
 

 
         
        The Chapter 5 on Special Functions includes also an analysis of the Sturm- 

 Liouville problem for  a Bessel Equation in an annular domain, and the Sturm-
 Liouville problem for the Legendre equation which yield complete orthogonal 
 sets used for the solution of IBVP for PDE. 
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4.6 Method of Separation of Variables 
 
4.6.1  Separation of variables    The classical analytical approach to the solution of initial-boundary  
          value problems of equations of mathematical physics is based on the  
          method of separation of variables.  This method consists in building  
          the set of basic functions which is used in developing solutions in the  
          form of an infinite series expansion over the basic functions.   
 
          Thus for a 2-dimensional problem, the unknown function ( )y,xu  is  
          assumed to be represented as a product of two functions each of a   
          single variable: 

( ) ( ) ( )yYxXy,xu =  

          where both ( )X x  and ( )Y y  are non-zero functions.  Substitution of  
          the assumed form of the solution into a differential equation (consider  

the Laplace Equation) yeilds a separated equation 

              
Y
Y

X
X ′′

−=
′′

 

          where the left hand side and right hand side depend on different  
variables, and therefore, do not depend on either of them.  Indeed, 
differentiate the equation with respect to x: 

      X 0
x X

′′∂   = ∂  
 

  then by integration we obtain 

      X
X

µ
′′

=   

  with µ  as a constant of integration. 
   Therefore, 
 

              X Y
X Y

µ
′′ ′′

= − =    

 
 
          where µ  is called a separation constant. It yields two ordinary   
          differential equations:  
 

X X 0µ′′ − =   
          and  

Y Y 0µ′′ + =  
 

          with corresponding boundary conditions.  At this point the Sturm-  
          Liouville Theorem will provide the existence of the set of eigenvalues  
          nµ  and eigenfunctions  ( )nX x  and ( )nY y which will be a basis for  
          construction of the solution in the form of infinite series:  

              ( ) ( ) ( )n n n
n

u x, y c X x Y y= ∑  

          where coefficients nc  should be determined in the process of solution. 
 

But, first we will follow the traditional approach to investigate the   
      solution set of appropriate boundary value problems.  It will be shown  
      why only the solution of the Sturm-Liouville problem yields the correct 
      solution of the PDE which satisfies the corresponding initial and  

boundary conditions.  
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4.6.2  Laplace’s Equation (LE)  Dirichlet Problem     Basic Case:  3 homogeneous boundary conditions  
 
   

           0
y
u

x
u

2

2

2

2

=
∂
∂

+
∂
∂                      ( )y,xu :     ( ) ( ) ( )x, y D 0,L 0,M∈ = ×  

                                                        

x=0

x=L

y=0

y=M

u(0,y) =  f(y)

u(L,y) = 0

u(x,0) = 0

u(x,M) = 0

x=0 x=L
y=0

y= M

y

x

u(0,y )=f(y )

u(x ,M)=0

u(x,0)=0

u(L,y )=0

boundary conditions :

 
        Hence LE is homogeneous, it obviously possesses a trivial solution ( )u x, y 0≡ .   
        It has no interest for us, therefore, we will look for a non-trivial solution. 
 
1.  Separation of variables We assume that the function ( )y,xu  can be represented as a product of two 

functions each of a single variable: 
( ) ( ) ( )yYxXy,xu =  

        where both ( )X x  and ( )Y y  are non-zero functions. 
        Differentiate the function ( )y,xu  consequently with respect to x and y:  

YX
x
u ′=

∂
∂  YX

x
u
2

2

′′=
∂
∂  

              YX
y
u ′=

∂
∂  YX

y
u
2

2

′′=
∂
∂  

        and substitute the second order derivatives into LE:       
              0YXYX =′′+′′  
        Divide this equation by the product XY and separate the terms    

Y
Y

X
X ′′

−=
′′

  

It yields an equation with separated variables: the left hand side of this equation 
is a function of independent variable x only, and the right hand side is a function 
of the independent variable y only.  The equality for all values of x and y is 
possible only if both sides are equal to the same constant (call it µ ).   Indeed, 
differentiate the equation with respect to x: 

      X 0
x X

′′∂   = ∂  
 

then by integration we obtain 

      X
X

µ
′′

=   

 Therefore, 

              X Y
X Y

µ
′′ ′′

= − =    

 
        where µ  is called a separation constant. It yields two ordinary differential   
        equations:  

X X 0µ′′ − =  and Y Y 0µ′′ + =  
 



Chapter 4  Partial Differential Equations                                                                         
 
2.  Boundary conditions    Boundary conditions are given for the function ( )y,xu .  Determine, what  

conditions should be satisfied by functions X  and  Y  (assuming that both are  
non-trivial) 

                   

x=0

x=L

y=0

y=M

X(0)Y(y) =  f(y)

X(L)Y(y) = 0

X(x)Y(0) = 0

X(x)Y(M) = 0

x=0 x=L
y= 0

y=M

y

x

X(0)Y(y)=f(y)

Y(M)=0

Y(0)=0

X(L)=0

boundary condi tions:

X(L) = 0

Y(0) = 0

Y(M) = 0

 
 3.  Solution of o.d.e.    Start with the equation for which both boundary conditions are homogeneous:  

  Y Y 0µ′′ + =           ( )
1 2

1 2

1 2

d cos y d sin y
Y y d d y

d cosh y d sinh y

µ µ

µ µ

 +


= +
 − + −

      
0
0
0

<
=
>

λ
λ
λ

 

                   Consider the first boundary condition at 0y = :      

( )
( ) ( )

( )
( ) ( )

1 2 1

1 2 1

1 2 1

d cos 0 d sin 0 d
Y 0 0 d d 0 d

d cosh 0 d sinh 0 d

µ µ

µ µ

 + =
= = + =
 − + − =

  
⇒
⇒
⇒

 
0d
0d
0d

1

1

1

=
=
=

 

      Therefore, the solution becomes  

( )
2

2

2

d sin y
Y y d y

d sinh y

µ

µ




= 
 −

 

        Because we are looking for a non-trivial solution, the constant 2d  should not be  
equal to zero, 2d 0≠ .  Consider the second boundary condition at My = : 

        ( )
2

2

2

d sin M 0
Y M 0 d M 0

d sinh M 0

µ

µ

 =


= = =
 − =

 
0d
0d

2

2

=⇒
=⇒ 1 2

1 2

d & d 0 trivial solution
d & d 0 trivial solution

⇒ =
⇒ =

 

        2d sin M 0µ⇒ = , where 0d2 ≠  if we want only non-trivial solutions 
 
        sin M 0µ⇒ =  M nµ π⇒ = ,    where ,...3,2,1n =  
 

        ⇒           
2 2

n 2

n
M

πµ =         ,...3,2,1n =   

  
are values of the parameter µ  for which the differential equation with boundary 
conditions has non-trivial solutions.  They are said to be eigenvalues.  
Corresponding solutions are said to be eigenfunctions: 

1Y ( y ) sin y
M
π

=  

#  

( )n
nY y sin y
M
π

=  

#  
(for simplicity, we choose 1d2 = , using the fact that any multiple of an 
eigenfunction is also an eigenfunction).     
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 solution for X      We already know that the separation constant which produces non-trivial  

solutions is positive, 0µ > , therefore, the only solution for X is (choose the  
shifted form of solution with hyperbolic functions from the table special 
equation, because at the boundary x=L, we have a homogeneous boundary 
condition) 

 
        X X 0µ′′ − =  ( ) ( ) ( )1 0 2 0X x c cosh x x c sinh x xµ µ= − + −  

Consider the first homogeneous boundary condition at Lx =  (and  
choose Lx0 = ):  

( ) ( ) ( )1 2 1X L 0 c cosh 0 c sinh 0 cµ µ= = + = ⇒  0c1 =   

        ⇒   ( ) ( )2X x c sinh x Lµ= −   
We already know values of µ  from solution for Y  (choose also 02 =c ) 

        ⇒   ( ) ( )n nX x sinh x Lµ= −  
 

        ⇒   ( ) ( )



 −= Lx

M
nxX n
πsinh  where ,...3,2,1n =   

basic solutions  According to the assumed form of solution, we may construct a set of basic 
solutions:      

( )y,xu1  =  ( ) ( )yYxX 11  =  ( ) y
M

sinLx
M

sinh ππ




 −  

( )y,xu2  =  ( ) ( )yYxX 22  =  ( ) y
M
2sinLx

M
2sinh ππ





 −  

        #  

( )y,xun  =  ( ) ( )yYxX nn  =  ( ) y
M
nsinLx

M
nsinh ππ





 −  

        All these solutions satisfy the LE and 3 homogeneous boundary conditions. 
Any linear combination of the basic solutions is also a solution. 
Construct a solution of LE in the form of a linear combination with  
coefficients na : 

( ) ( ) ( ) y
M
nsinLx

M
nsinhauayYxX)y,x(u

1n 1n
nnn

ππ




 −=== ∑ ∑

∞

=

∞

=

    

This solution also satisfies LE and 3 homogeneous boundary conditions.  
Determine coefficients na  in such a way that the last boundary condition (non-
homogeneous) is also satisfied (it will yield a solution of the problem).  
Boundary condition at    0x = : 

( ) ( ) )y(fy
M
nsin)L

M
nsinh(ayY0X)y,0(u

1n
n =−== ∑

∞

=

ππ  

Rewrite it as: 

        )y(fy
M
nsinb

1n
n =∑

∞

=

π , where  )L
M
nsinh(ab nn

π
−=  

If we treat this sum as a Fourier sine expansion of the function ( )yf  on the 
interval [ ]My ,0∈  with coefficients 

        ( )
M

n
0

2 nb f y sin y dy
M M

π =  
 ∫   

        then coefficients na  are determined as: 

        
( )

M

n 0
n

2 nf y sin y dy
M Mb

a
n nsinh( L ) sinh( L )
M M

π

π π

 
 
 = − = −

∫
 

        and the solution now is completely determined. 
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4.  Solution of BVP: 
 

          
( )

( )

M

0

n 1

nf t sin t dt
M2 n nu( x, y ) sinh L x sin y

nM M Msinh L
M

π
π π

π

∞

=

  
      = − −     
  

  

∫
∑  

 
5.  Example 1  (010 heat1-1.mws)   Let ( ) 1yf = , then  
 

( )
πππ

πππ
n

11M
n
M

n
ncosMt

M
ncostdt

M
nsin

nM

0

M

0

−−
−=+−=−=∫  

 
    

( ) ( )
y

M
nsin

M
nsinh

xL
M
nsinh

n
11

M
2)y,x(u

1n

n π
π

π

π












 −

−−
= ∑

∞

=

  

 
6.  Observations:  
          1.  The solution is in the form of an infinite series.  It represents the  

function from the functional vector space spanned by the obtained 
eigenfunctions ( )y,xun  (basis for vector space). 
 
2.  We determined that the ODE   Y Y 0µ′′ + =  
with two homogeneous Dirichlet boundary conditions: 
  ( ) 00 =Y  
  ( ) 0=MY  
for values of the parameter µ : 

  
2 2

n 2

n
M

πµ = , ,...3,2,1n =  (eigenvalues) 

has non-trivial solutions: 

  ( ) y
M
nyYn
πsin=   (eigenfunctions) 

Compare this result to the Sturm-Liouville Problem (20-22).  the self-
adjoint form of the equation for this case is 

  [ ]1 Y Y
1

µ′′− =  

Positive values of the separation constant µ  are consistent with (2 c) 
of the Sturm-Liouville Theorem. 
 
3.  Assumption of separation of variables was used to obtain the basic 
functions (eigenfunctions).  But the obtained solution is not an 
approximation – it is an exact solution  (this fact follows from the 
uniqness of the solution of the Dirichlet problem for Laplace’s 
Equation).  The same result may be obtained by the other methods 
without separation of variables (for example, using the finite integral 
transform). 
 
4.  Solution of the example problem may be treated:  
- as a stationary temperature field in the rectangular domain with a 
fixed temperature at the boundaries; 
- as equilibrium shape of a membrane stretched on the fixed frame; 
- solution of the problem from differential geometry on optimization: 
find the surface with fixed boundaries, which has the minimal area etc. 
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( )u x, y
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7.  Non-homogeneous boundary conditions (superposition principle) 
 
          ( )xf2  
                           M 
                                             
 

  ( )yf3       0u2 =∇            ( )yf4  
 
 
                                 0                           L 

( )xf1    
 
Supplemental problems:                    ↓  
 
                  
            0                         ( )xf2                                0                                0           
                                             
 
0         0u1

2 =∇        0            0           0u2
2 =∇       0         ( )yf3        0u3

2 =∇        0        0         0u4
2 =∇       ( )yf4   

 
    
            

( )xf1                          0                             0                              0  
 
 

Solution of supplemental problems: 
 

( ) ( )∑
∞

=

−=
1n

n1 My
L

nsinhx
L

nsinay,xu ππ   
( )

M
L

nsinh

xdx
L

nsinxf
L
2

a

L

0
1

n π

π
∫−

=  

 

( ) ∑
∞

=

=
1n

n2 y
L

nsinhx
L

nsinby,xu ππ      
( )

M
L

nsinh

xdx
L

nsinxf
L
2

b

L

0
2

n π

π
∫

=  

 

( ) ( )∑
∞

=

−=
1n

n3 y
M
nsinLx

M
nsinhcy,xu ππ    

( )

L
M
nsinh

ydy
M
nsinyf

M
2

c

M

0
3

n π

π
∫−

=  

 

( ) ∑
∞

=

=
1n

n4 y
M
nsinx

M
nsinhdy,xu ππ     

( )

L
M
nsinh

ydy
M
nsinyf

M
2

d

M

0
4

n π

π
∫

=  

 
Solution of Dirichlet problem: 
 

 
( ) ( ) ( ) ( ) ( )y,xuy,xuy,xuy,xuy,xu 4321 +++=  

 
 

Examples:  (heat1-5.mws, heat1-5b.mws) 
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8.  Non-homogeneous equation (Poisson’s Equation) 
 
          ( )xf2  
                      M 
                                             
 

  ( )yf3           ( )y,xFu2 =∇           ( )yf4  
 
 
                                 0                           L 

( )xf1    
 
 
Supplemental problems:                   ↓  
 
                  
                              ( )xf2                   0                      
                                             
 
 
                  ( )yf3         0u5

2 =∇        ( )yf4     0          Fu6
2 =∇        0 

 
 
               

( )xf1                      0         
 
 

Solution of supplemental problems: 
 
 

Solution of Dirichlet problem (Laplace’s homogeneous equation): 
 
 

( ) ( ) ( ) ( ) ( )y,xuy,xuy,xuy,xuy,xu 43215 +++=  
 
 

Solution of Poisson’s equation with homogeneous boundary conditions  
 
 

( )6 nm
n 1 m 1

n mu x, y A sin x sin y
L M
π π∞ ∞

= =

   =    
   

∑ ∑  

 

( )
M L

nm 2 2
0 02

2 2

4 n mA F x, y sin x sin y dxdy
L Mn mLM

L M

π π

π

−    =         + 
 

∫ ∫  

 
        

Solution of Poisson’s Equation (superposition principle): 
 
 
               ( ) ( ) ( )y,xuy,xuy,xu 65 +=  
 
 
 

Example 2:  (012  heat1-6.mws) 
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( )u x, y

( )F x, y
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9.  The Maximum Principle for Laplace Equation 
 

In this section, we will consider some important properties of solutions of the 
Laplace Equation, which have a special term.  Let D be an open connected 
domain in 3\    

harmonic function    Definition  The function ( )ru ( )DC 2∈  is called a harmonic function if it  
satisfies the Laplace Equation in this open domain D . 

         
The Maximum Principle is formulated in the following way: 

 
Maximum Principle    Theorem If a harmonic function ( )ru is continuous in D , then it cannot  

attain  its minimum and maximum values in the domain D  
 

     ( ) ( ) ( )rrr
rr

umaxuumin
SS ∈∈

<<           (1) 

 
 This theorem is a direct corollary of the other property of harmonic functions 

(theorem of arithmetic mean): if the function ( )ru is harmonic in some open ball 
( )R,B 0r  and continuous in the closed ball ( )R,B 0r  then its value at the center 

of the ball ( )0u r  is equal to its mean value over the sphere { }RS =−= 0rrr  

(boundary of the ball ( )R,B 0r ).  For the whole closed domain D , the Maximum 
Principle yields that  

( ) ( )rr
r

umaxu
S∈

<             (2) 

Dirichlet Problem  If, in particular, for the Dirichlet problem, ( ) 0u
S

=
∈r

r  at all points of the 

boundary S of the domain D, then ( ) 0u ≡r  everywhere in the domain D.   (3) 
 
 For the Dirichlet problem for the Laplace Equation 02 =∇ u  in the rectangular 

domain ( ) ( )2121 y,yx,xD ×=  with boundary conditions: 
( ) ( )xfy,xu 11 =    ( )21 x,xx ∈  
( ) ( )xfy,xu 22 =    ( )21 x,xx ∈  
( ) ( )xfy,xu 31 =    ( )21 y,yy ∈  
( ) ( )xfy,xu 32 =    ( )21 y,yy ∈  

the Maximum Principle can be formulated in the following way 
( ) My,xum <<  

where    
( )

( ) ( ){ }
( )

( ) ( ){ }




=

∈∈
yf,yfmin,xf,xfminminm 43y,yy21x,xx 2121

 

    
( )

( ) ( ){ }
( )

( ) ( ){ }




=

∈∈
yf,yfmax,xf,xfmaxmaxM 43y,yy21x,xx 2121

 

It means that if the extremum of the solution of the Dirichlet problem occurs at 
the interior point of the domain, then the solution is constant everywhere in the 
domain. From the Maximum Principle, the uniqueness of the solution of the 
Dirichlet problem follows:  

 
Uniqueness       Theorem Solution of the Dirichlet problem for the Laplace Equation is  

unique. 
 

Proof:   Suppose that 21 u,u  are two solutions of the Dirichlet problem for the 

Laplace Equation: 02 =∇ u , ( ) fu
S

=
∈r

r .  Then, because the Laplacian is 

linear, the function 21 uuU −= is a solution of the Dirichlet problem 0U2 =∇ , 
( ) 0U

S
=

∈r
r , then, according to the Maximum Principle (2) , the function U is 

identically equal to zero, 0U ≡ , and, therefore, 21 uu = .                        ■ 
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10.  Elimination of the Gibbs Effect 
 

Eigenfunctions of the Dirichlet problem for the Laplace Equation ( ) were 
obtained with homogeneous boundary conditions.  Therefore, unless in the 
considered Dirichlet problem for the Laplace Equation 
   2u 0∇ =   

S
u f=             (1) 

the function f is equal to zero at the corners of the domain, there will be the 
presence of the Gibbs phenomenon (or the Gibbs effect). Thus, to obtain an 
accurate approximation to the solution one needs a large number of terms in the 
Fourier series solution.  But even significant increase of number of terms does 
not eliminate the Gibbs effect – the amplitude of oscillation is not reduced.  A 
simple trick can avoid this and greatly increase the speed of convergence. 
 
For example, consider the Dirichlet problem in the rectangular domain 

( ) ( )D 0,L 0,M= ×  with the boundary S D\ D= : 
 

   
2 2

2 2

u u 0
x y

∂ ∂
+ =

∂ ∂
  ( ) ( ) ( )S

u x L x y M y f x= − + − ≡     (2) 

 
at the corners of the rectangular S, the function f is zero,  

                   
 
and there are no oscillations in the solution ( )u x, y due to the Gibbs effect: 
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In contrast, in the  Dirichlet problem in the same domain: 
 

   
2 2

2 2

u u 0
x y

∂ ∂
+ =

∂ ∂
  ( )2 2

S
u x y f x, y= + ≡                             (3) 

 
at the corners of the rectangular S, the function f is not equal to zero (except at 
the point ( )0,0 ) , and there are oscillations in the solution ( )u x, y due to the 
Gibbs effect: 

 
 
This effect can be eliminated by the following trick:   consider a bilinear 
interpolation of the function  f  over D  
 

      ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )f 0,0 f L,0 f 0,M f L,M
g x, y L x M x x M y L x y xy

LM LM LM LM
= − − + − + − +  

 
 
        Graphs of  f and g are shown in this graph: 

                
 
        At the corners of the rectangular S , their values are the same.  Therefore,   
        function f g−  has the zero values at the corners:  

g

f
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        Consider  the function ( ) ( ) ( )v x, y u x, y g x, y= − , where ( )u x, y  is a solution  
        of BVP (3).  The Laplacian of this function is equal to zero, because u  is a   
        solution of the LE and any bilinear function g  satisfies LE.  Therefore, the  

function  v is a solution of the following Dirichlet problem: 

           
2 2

2 2

v v 0
x y

∂ ∂
+ =

∂ ∂
 

S
v f g= −           (4) 

        Separation of variables solution for this problem does not have the Gibbs effect,  
        and so then a solution for the original problem:  
           ( ) ( ) ( )u x, y v x, y g x, y= +  
        On these graphs, solutions of BVP (3) are shown with an 8 term representation  

in the Fourier series solution with and without the Gibbs effect:  

                         
 
 
        Elimination of the Gibbs effect due to discontinuity of the boundary condition  
        in the interior point of the boundary interval ( )0 0x , y S∈ , can be performed in  

        the similar manner using the terms of the form 1 0

0

y y
tan

x x
−  −

 
− 

. 

 
        For more about the Gibbs phenomena see elsewhere: 
        T.E.Peterson  Eliminating Gibb’s effect from separation of variables solutions.  
        SIAM (Society for Industrial and Applied Mathematics) Review, 1998,  Vol.40,  
        No.2, pp.324-326. 
        E.Hewitt, R.E.Hewitt  The Gibbs-Wilbraham Phenomenon: An Episode in   
        Fourier Analysis.  Archive for History of Exact Sciences, 1979, Vol.21, No.2,  
        pp.129-160. 

f g−

( ) ( ) ( )u x, y v x, y g x, y= +
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4.6.3   Heat Equation 
                                              
1)   1-D homogeneous equation and boundary conditions (Neumann-Neumann) 

   

            
t
ua

x
u 2
2

2

∂
∂

=
∂
∂                ( )t,xu :    [ ]L,0x ∈ , 0t >    

 
                                                Initial condition:  ( ) ( )xuxu 00, =  
   

            Boundary conditions: ( ) 0,0
=

∂
∂

x
tu , 0t >         (Neumann) 

                 ( ) ,0,
=

∂
∂

x
tLu  0t >         (Neumann) 

                 (both boundaries are insulated)  
 
1.  Separation of variables We assume that the function ( )t,xu  can be represented as a  

product of two functions each of a single variable: 
( ) ( ) ( )tTxXy,xu =  

Calculate the derivatives and substitute into the heat equation 

TX
x
u ′=

∂
∂  TX

x
u
2

2

′′=
∂
∂  TX

t
u ′=

∂
∂   

              TXaTX 2 ′=′′    
Then separate the variables    

T
Ta

X
X 2 ′

=
′′

  

The left hand side of this equation is a function of the 
independent variable x only, and the right hand side is a 
function of the independent variable t only.  The equality is 
possible only if both of them are equal to the same constant 
(call it µ ); µ  is called a separation constant: 
 

µ=
′

=
′′

T
Ta

X
X 2     

Therefore, it yields two ordinary differential equations:  

0XX =−′′ µ   

0T
a

T 2 =−′ µ  

 
2.  Boundary conditions        To avoid trivial solutions, we require 
   

            0x =  ( ) ( ) ( ) 0tT0X
x

t,0u
=′=

∂
∂  ⇒  ( ) 00X =′  

 

            Lx =  ( ) ( ) ( ) 0tTLX
x

t,Lu
=′=

∂
∂  ⇒  ( ) 0LX =′  

 
3.  Solution of o.d.e.        Start with the equation for a space variable 
              0XX =−′′ µ   
             Solution of o.d.e. depends on the sign of constant µ : 

    ( )








−+−
+
+

=
xsincxcosc

xcc
xsinhcxcoshc

xX

21

21

21

µµ

µµ
  

0
0
0

<
=
>

µ
µ
µ

  
2

2

0
λµ

µ
λµ

−=
=

=
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    Consider the first boundary condition at 0x = : 

    ( )








−−+−−−

+
=′

xcxc
c

xcxc
xX

µµµµ

µµµµ

cossin

coshsinh

21

2

21

 
0
0
0

<
=
>

µ
µ
µ

 

          

( )








−+−−

+
==′

0cos0sin

0cosh0sinh
00

21

2

21

µµ

µµ

cc
c

cc
X ⇒ 02 =c  

 
            Then the solution becomes: 

            ( )








−
=

xc
c

xc
xX

µ

µ

cos

cosh

1

1

1

          
0
0
0

<
=
>

µ
µ
µ

 

            Consider the second boundary condition at Lx = :   

            ( )








−−
==′

Lsinc
0

Lsinhc
0LX

1

1

µ

µµ
   

0
0
0

<
=
>

µ
µ
µ

 

For the solution to be non-trivial, a constant 01 ≠c .  
 It can be achieved for the case 0=µ  in which any constant is 

  a solution of the equation; 
and in the case of 0<µ  by requiring 

0Lsin =− µ  
that yields 

πλµ nLL ==−   ,...2,1n =   
(again, 0 is excluded to avoid a trivial solution).  Then the 
values of the separation constant for which there exist non-
trivial solutions are defined by 

L
n

n
πλ =  2

22
2

L
n

nn
πλµ −=−=  

These values are called eigenvalues.  The corresponding 
solutions which are called eigenfunctions are 
  10 =X    0n =  

x
L

nX n
πcos=   ,...2,1=n  

            They can be combined now in a single expression   

              x
L

nX n
πcos=   ,...2,1,0=n  

            The values of  the separation constant for which there exist  
non-trivial solutions satisfying the boundary conditions are  

2

22
2

L
n

nn
πλµ −=−=  ,...2,1,0=n   

  
4.  Solution for T         With determined eigenvalues, solutions of the equation for T  

      0
2

=−′ T
a

T nµ
   

become 

( )
t

La

n
t

a
n eetT

n
22

22

2
πµ

−

==   ,...2,1,0=n       



Chapter 4  Partial Differential Equations                                                                         
 
5.  Basic solutions         Recalling the assumed form of the solution, one gets 
 
              ( )txu ,0 = ( ) ( )tTxX 00  =  1  

( )t,xu1 = ( ) ( )tTxX 11  =  
t

Laxe
L

22

2

cos
π

π −

 

              ( )t,xu2 = ( ) ( )tTxX 22  =  
t

Laxe
L

22

24
2cos

π
π −

   

              #  

              ( )txun , = ( ) ( )tTxX nn  =  
t

La

n

xe
L

n 22

22

cos
π

π −

 

              #  
 

All these solutions satisfy the Heat Equation and both 
boundary conditions. 
Any linear combination of the basic solutions is also a 
solution. The idea is to find such a combination that the initial 
condition is also satisfied.  So, we are looking for the function 

( ) ( )
t

La

n

n
n

n
nnn xe

L
nbb  = tTxXbtxu 22

22

cos),(
1

0
0

π
π −∞

=

∞

=
∑∑ +=     

such that at    0t =   )(cos)0,( 0
1

0 xux
L

nbbxu
n

n =+= ∑
∞

=

π  

If the infinite series converges, then under the known    
  conditions, the function ( )txu ,  is a solution of the Heat  

Equation. The last equation is an expansion of the function  
( )xu0  in the Fourier cosine series in the interval ( )L,0  with  

coefficients nb  defined by the equation 

  ( )
L

0 0
0

1b u x dx
L

= ∫  

( ) xdx
L

nxu
L

b
L

n
πcos2

0
0∫=  

Then solution of the given IBVP for the heat equation is: 
      
6.  Solution of IBVP   
         

( ) ( )
t

La

n

n

LL

xe
L

nxdx
L

nxu
L

dxxu
L

txu 22

22

coscos21),(
1 0

0
0

0

π
ππ −∞

=
∑ ∫∫ 








+=  

 
 
 

7.  Examples:          (heat2-2.mws) ( )
2

0
Lu x 10000 x 100
3

 = − + 
 

,  o C  

 

            Material:  stainless steel, 2 2
2

sa 500  
m

 =   
, L=0.1 m 
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8.  Comments:      1)  the solution is in the form of an infinite series.  The obtained solution is   
        formal, because the convergence of the infinite series was not investigated.  But  
        if the initial temperature distribution given by the function ( )xu0  satisfies the  
        Dirichlet conditions, then the Fourier series is convergent and the function   
        ( )txu ,  satisfies the Heat Equation and initial and boundary conditions.   

Therefore, it is a solution of the given IBVP. 
 

2)  We determined that the ODE 
0=−′′ XX µ  or          ( )X Xµ′′− = −    (self-adjoint form) 

with two homogeneous Neumann boundary conditions: 
( )X 0 0′ =       1a 0=  (in SLP)  

( )X L 0′ =       2a 0=  
for values of the parameter µ : 

2 2
2

n n 2

n
L
πµ λ− = = , ,...3,2,1,0=n  (eigenvalues) 

has non-trivial solutions: 

( ) x
L

nxX n
πcos=     (eigenfunctions) 

        According to 2 d) of the Sturm-Liouville Theorem, for this problem, 0 0λ =  is  
an eigenvalue with the corresponding eigenfunction 0X 1= .  

 
3)   With the increase of time, the solution approaches the steady state (the 
averaged temperature in the slab).  Boundaries are insulated, and there are no 
heat sources.  As a result, no heat escapes into the surroundings.  The driving 
force – temperature gradient – is directed toward the areas with lower 
temperature.  There exists a process of redistribution of heat energy that 
produces the uniform temperature in the slab.  

 
4)  Basic functions consist of the product 

( )
2 2

2 2
n t
a L

n
nu x,t cos x e
L

ππ − =  
 

 

where the cosine function provides the spatial shape of the temperature profile; 
and the exponential function is responsible for decay of the temperature profile 
in time. 
       
5)  The rate of change of temperature depends on the thermophysical property a.  

 
6)  Very often, a 1-D Heat equation is treated as a model for heat transfer in a 
long very thin rod of constant cross-section whose surface, except for the ends, 
is insulated against the flow of heat  Although, it is a correct model, the practical 
application of it is very limited.  But there is another interpretation of a 1-D 
model, which is more reliable. 
Consider a 3-D wall with finite dimension in the x-direction (within 0=x  and 

Lx = ) and elongated dimensions (may be infinite) in y- and z-directions.  If the 
conditions at the walls 0=x  and Lx =  are uniform, and the initial condition is 
independent of variables y and z, then the variation of temperature in the y- and 
z-directions is negligible (no heat flux in these directions) 

  0=
∂
∂

=
∂
∂

z
u

y
u   

and the heat equation becomes 1-D 

  
t
ua

x
u 2
2

2

∂
∂

=
∂
∂    

It describes the variation of temperature along any line perpendicular to the wall.   
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( )u x,t

( )0u x
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( )0u x

( )
L

a 0
0

1u u x dx
L

= ∫

( )
L

a 0
0

1u u x dx
L

= ∫

( )0u x

t 60=

t 300=

t 0=

t 600=
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4.6.3    2)   non-homogeneous equation and non-homogeneous boundary conditions, reduction to homogeneous 

 
   

          b
t
ua

x
u 2
2

2

+
∂
∂

=
∂
∂     ( )t,xu ,  ( )x 0,L∈ , 0t >    ( ) ( )g x,t

b x,t
k

=
�

 

 
                                              initial condition:   ( ) ( )0u x,0 u x=  
   
          boundary conditions:  ( ) 1gt,0u =  0t >   (Dirichlet) 
                ( ) 2u L,t g=  0t >   (Dirichlet)  
 
 
1.  Steady State Solution   Definition  A time-independent function which satisfies the heat  

equation and boundary conditions  obtained as 

                ( ) ( )t,xulimxu
ts ∞→

=  

              is called a steady state solution 
 

Substitution of a time-independent function into the heat equation leads 
to the following ordinary differential equation: 
  

b
x
u
2
s

2

=
∂
∂   subject to boundary conditions:   ( ) 1s g0u =      

            ( ) 2s gLu =    
          Let b const= , then integrating the equation twice, we come up with  
          the following solution:   

1
s cbx

x
u

+=
∂
∂  

          21
2

s cxcx
2
bu ++=  

          Apply boundary conditions to determine the constants of integration: 
              0x =  ⇒  12 gc =  

           Lx =  ⇒  211
2 ggLcL

2
b

=++      

⇒   
2

bL
L

ggc 12
1 −

−
=   

 

              ( ) 1
122

s gx
2

bL
L

ggx
2
bxu +






 −

−
+=  

 
 
          Example  2b −= , 1g1 = , 2g2 = , 2L =  

                           0 0.5 1 1.5 2
0

1

2

3

 

( ) 2
s

5u x x x 1
2

= − + +
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2.  Change of variable     ( ) ( ) ( )xut,xut,xU s−=  or ( ) ( ) ( )xut,xUt,xu s+=  
 

          
t

U
t
u

∂
∂

=
∂
∂  2

s
2

2

2

2

2

x
u

x
U

x
u

∂
∂

+
∂
∂

=
∂
∂         substitute into equation 

          b
t

Ua
x
u

x
U 2

2
s

2

2

2

+
∂

∂
=

∂
∂

+
∂
∂    

Since  b
x
u
2
s

2

=
∂
∂ ,              

t
Ua

x
U 2
2

2

∂
∂

=
∂
∂   

We obtained the equation for the new unknown function ( )t,xU  which  
has homogeneous boundary conditions:  

0x =  ( ) ( ) ( ) 0gg0ut,0ut,0U 11s =−=−=  
          Lx =  ( ) ( ) ( ) 0ggLut,Lut,LU 22s =−=−=  

As a result, we reduced the non-homogeneous problem to a 
homogeneous equation for ( )t,xU  with homogeneous Dirichlet 
boundary conditions. 

          Initial condition for function ( )t,xU : 
          ( ) ( ) ( ) ( ) ( )s 0 sU x,0 u x,0 u x u x u x= − = −   
 
3.  Solution of heat equation for U(x,t)  We consider the following initial boundary value problem: 
 

t
Ua

x
U 2
2

2

∂
∂

=
∂
∂     ( )t,xU ,  [ ]L,0x ∈ , 0t >  

 
                                              initial condition:  ( ) ( ) ( )0 sU x,0 u x u x= −  
   
          boundary conditions: ( ) 0t,0U = , 0t >   (Dirichlet) 
               ( ) ,0t,LU =  0t >   (Dirichlet)  

    
We already know a solution of this homogeneous Dirichlet problem 
obtained by separation of variables (exercise): 

          ( ) ( )
2 2

2 2
n t
a L

n
n 1

nU( x,t ) X x T t d sin xe
L

π
π

−∞

=

= = ∑     

          where coefficients nd  are the Fourier coefficients determined by  
the corresponding initial condition for the function ( )t,xU : 

          ( ) ( )
L

n 0 s
0

2 nd u x u x sin xdx
L L

π = − ∫  

 
4.  Solution of Non-homogeneous Heat Equation: 

 
Return to the original function ( )u x,t :        

  ( ) ( ) ( ) ( ) t
La

n

1n
nss

22

22

xe
L

nsindxuxut,xUt,xu
ππ −∞

=
∑+=+=   

Then the solution of the non-homogeneous heat equation with non-
homogeneous Dirichlet boundary conditions becomes: 

            
                          

( ) ( )
2 2

2 2
nL t

2 2 1 a L
1 0 s

n 1 0

g gb bL 2 n nu( x,t ) x x g u x u x sin xdx sin xe
2 L 2 L L L

ππ π∞ −

=

  −    = + − + + −          
∑ ∫  

 

5.  Example Maple solution:  (017 heat3-1.mws) 



Chapter 4  Partial Differential Equations                                                                         
 
         Remark:    In practice, instead of the exact solution defined by the infinite  
         series given in section 4, the truncated series is used for calculation of the  
         approximate solution.  How many terms are needed in the truncated series  
         for the accurate approximation?  Comparison of the exact solution (which  

is also a truncated series but with a very large number of terms, which we 
 assume, provides an accurate result) with the calculation with a small  
 number of terms in a truncated series shows that the accuracy depends on 
 time: the further we proceed in time, the more accurate becomes an  
 approximate solution (why?).  For uniform characterization of physical  
 processes, the non-dimensional parameters are used in engineering. In  
 heat transfer, non-dimensional time is defined by the Fourier number:  

 

               2

tFo
L
α

=  

         where 2

1
a

α =  is a thermal diffusivity (see section 4.3.2 4).  

 
In engineering heat transfer analysis, a 4 term approximation is considered 
as an accurate approximation for all values of the Fourier number.  For 
simplicity, very often even a 1 term approximation is used, which is 
considered to be accurate for Fo 0.2>  (error in most cases does not exceed 
1%, and this is a convention in engineering heat transfer).    
 
Consider comparison of the exact solution (100 terms) with 1 and 4 terms 
approximations.  Results are calculated for Fo 0.0= , Fo 0.05= , Fo 0.2= , 
Fo 0.4= .  The lowest curve is a steady state solution.  As can be seen from 
the figure, for Fo 0.2> , all results coincide.  
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( )0u x

( )su x
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( )0u x

( )0u x

( )su x

( )u x,t

( )0u x

( )su x

( )u x,t

t 0=

t 0.01=

t 0.05=

t 0.2=

t

2g

1g

2g

1g

2g

1g
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4.6.3  3)  Heat Equation with Dirichlet and Robin boundary conditions – application of Sturm-Liouville Theorem 

   

          
t
ua

x
u 2
2

2

∂
∂

=
∂
∂                ( )t,xu ,  ( )x 0,L∈ , 0t >  

 
                                              Initial condition:   ( ) ( )0u x,0 u x=  
   
          Boundary conditions:  ( ) 0t,0u = ,                 0t >    (Dirichlet) 

                ( ) ( ) ,0t,Lhu
dx

t,Luk =+
∂  0t >    (Robin)  

 
          Rewrite second condition as 
 

          ( ) ( ) ,0t,LHu
dx

t,Lu
=+

∂  where  
k
hH = ,  0H >  

 
     
1.  Separation of variables We assume that the function ( )t,xu  can be represented as a product of 

two functions each of a single variable 
( ) ( ) ( )tTxXy,xu =  

From the analysis of the heat transfer equation, we know that it leads to 
a separated equation 

          µ=
′

=
′′

T
Ta

X
X 2   where µ  is a separation constant.   

          That yields two ordinary differential equations:  
 

0XX =−′′ µ     and     0T
a

T 2 =−′ µ  

 
2.  Boundary conditions      0x =  ( ) ( ) 0tT0X =    ⇒    ( ) 00X =  
 
          Lx =  ( ) ( ) ( ) ( ) 0tTLHXtTLX =+′  ⇒  ( ) ( ) 0LHXLX =+′  
 
 
3.  Solution of Sturm-Liouville problem  Solutions of the first o.d.e. is determined by (depending on the form of  

separation constant µ ): 

( )








−+−
+
+

=
xsincxcosc

xcc
xsinhcxcoshc

xX

21

21

21

µµ

µµ
      

0
0
0

<
=
>

µ
µ
µ

 

 
          Apply first boundary condition: 
 

          ( )








+−
+
+

==
0sinc0cosc

0cc
0sinhc0coshc

00X

21

21

21

µ
   ⇒   0c1 =  

 
          So, the solution and its derivative are written as: 
 

          ( )








−
=

xsinc
xc

xsinhc
xX

2

2

2

µ

µ
 ( )









−−
=′

xcosc
c

xcoshc
xX

2

2

2

µµ

µµ
 

0
0
0

<
=
>

µ
µ
µ

 

Consider the second boundary condition 
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







=−+−−
=+

=+

0LcosHcLsinc
0HLcc

0LsinhHcLcoshc

22

22

22

µµµ

µµµ
 

 
   Since we are looking for a non-trivial solution, we require 0c2 ≠ . 

         Consider the first equation (for )0>µ  

         0LsinhHcLcoshc 22 =+ µµµ  
         division by 2c  yields 

         0LsinhHLcosh =+ µµµ  
         This equation does not have a solution for positive µ .  
 

The second equation (for 0=µ )  
0HLcc 22 =+  

leads immediately to 0c2 = . 
  

The third equation ( 0<µ , denote for convenience 2λµ −= ) is 

Characteristic equation    0xsinHLcos =+ λλλ  

         There are infinitely many positive roots of this equation nλ , ,...2,1n =  .  
 

Graphically, they can be shown as intersections of the graph of function  

( ) LsinHLcosw λλλλ +=  

         with the λ -axis: 
 

           
 

or, if we rewrite the equation in the form which is traditionally used in the  

textbooks, 
H

Ltan λλ −= , they are shown as the abscises of intersection of 

the graph   Ltan λ  with the graph of 
H
λ

− : 

                                                              
      

Positive roots nλ   are called to be eigenvalues. 
         The corresponding solution functions 
         xsinX nn λ=   

are called to be eigenfunctions. 

nλ

nλ

λ

λ

H
λ

−

tan Lλ
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4.  Solution for T(t)      With determined eigenvalues, the solution for T  becomes: 

          ( )
2
n

2 t
a

nT t e
λ−

=  
 
5.  Basic solutions      Recalling the assumed form of solution, we construct the basic solution 

          ( )
t

a
nnnn

2

2
n

xesinTXt,xu
λ

λ
−

==   
 
Then the solution of the given IBVP is in the vector space spanned by 
the defined above basic functions:       

          ( )
2
n

2
t

a
n n

n 1
u x,t a sin xe

λ

λ
−∞

=

= ∑  

 
This solution satisfies the heat equation and boundary conditions.  We 
want to define coefficients na  in a such a way that the obtained 
solution satisfies also the initial condition at 0t = : 
 

( ) ( )n n 0
n 1

u x,0 a sin x u xλ
∞

=

= =∑  

 
In our problem, functions xsin nλ  are obtained as eigenfunctions of the 

Sturm-Liouville problem for the equation 2X Xλ′′− = ; therefore, the 
set of all eigenfunctions is a complete system of functions orthogonal 
with respect to the weight function 1p = .  Then, the last equation is an 
expansion of the function ( )0u x  in a generalized Fourier series over 
the interval ( )L,0  with coefficients defined by 

( )
L

0 n
0

n L
2

n
0

u x sin xdx
a

sin xdx

λ

λ
=

∫

∫
 

 
6.  Solution        Then, the solution of the initial-boundary value problem is given by 

 

          ( )
( ) 2

n
2

L

0 n t
0 a

nL
n 1 2

n
0

u x sin xdx
u x,t sin xe

sin xdx

λλ
λ

λ

−∞

=

 
 
 =
 
 
 

∫
∑

∫
 

 
          where the squared norm of eigenfunctions may be evaluated after  

integration as   

n

n
L

0
n

22
n 4

L2sin
2
LxdxsinX

λ
λλ −== ∫  

          Finally, the solution is: 
 
 

            ( )
( ) 2

n
2

L

0 n t
0 a

n
nn 1

n

u x sin xdx
u x,t sin xe

sin 2 LL
2 4

λλ
λ

λ
λ

−∞

=

 
 
 =
 

− 
 

∫
∑   

    
7.  Example                (018 Heat 4-1a.mws)     Let 2L = , ( ) ( )x2xxf −= , 5.0a =   
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( )0u x

( )su x

( )u x,t

t 0=
t 1=

t 5=

t 10=

t

1g

1g

t 20=
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4.6.3   4)  Heat Equation in 2-D rectangular domain 

                  

        
t
ua

y
u

x
u 2

2

2

2

2

∂
∂

=
∂
∂

+
∂
∂    ( )t,y,xu ,   ( ) ( ) ( )M,0L,0y,x ×∈ ,    0t >     

 
                                            initial condition:  ( ) ( )y,xu0,y,xu 0=  
   
        boundary conditions: 0x =  ( ) 0t,y,0u =   ( )M,0y ∈ , 0t >  (Dirichlet) 
 
             Lx =  ( ) ( )yft,y,Lu =  ( )M,0y ∈ , 0t >  (Dirichlet) 
 

             0y =  ( ) 0t,0,x
y
u

=
∂
∂  ( )L,0x ∈ ,  0t >  (Neumann) 

             My =  ( ) 0t,M,x
y
u

=
∂
∂  ( )L,0x ∈ ,  0t >  (Neumann) 

 
1.  Steady State Solution Although all boundary conditions except for one and the differential 

equation are homogeneous, for the case of an equation with three 
independent variables, it is useful to find the first time-independent 
steady state solution ( )y,xus  and then to use it for a change of 
dependent variable.  Thus, we are looking for a steady state solution 
which satisfies the differential equation  

    0
y
u

x
u

2
s

2

2
s

2

=
∂
∂

+
∂
∂     

and boundary conditions: 
              0x =  ( ) 0y,0us =   ( )M,0y ∈  (Dirichlet) 
              Lx =  ( ) ( )yfy,Lus =  ( )M,0y ∈  (Dirichlet) 

              0y =  ( ) 00,x
y
us =

∂
∂  ( )L,0x ∈   (Neumann) 

    My =  ( ) 0M,x
y
us =

∂
∂  ( )L,0x ∈    (Neumann) 

This is the basic case of BVP for Laplace’s Equation when all but one 
boundary conditions are homogeneous (if the equation is a non-
homogeneous Poisson’s Equation or more boundary conditions are 
non-homogeneous, the superposition principle should be used to reduce 
the problem to the set of supplemental basic problems). 

 
Separation of variables  Assume that the steady state solution can be 
written as a product of two functions ( ) ( ) ( )yYxXy,xus = , substitute it 
into the differential equation, and separate the variables: 

     µ=
′′

=
′′

−
Y
Y

X
X  

Choose the first equation for Y , because both conditions for Y are 
homogeneous.  Then we have the following Sturm-Liouville problem: 

    0YY =−′′ µ   ( ) 00Y =′  ( ) 0MY =′  
According to the table with the results for the Sturm-Liouville problem, 
it has the following eigenvalues and eigenfunctions: 

    2
mm λµ −=  2

22

M
m π

−=   ,...2,1,0m =  

    1Y0 =      0m =   MY 2
0 =  

    y
M
mcosYm

π
=    ,...2,1m =  

2
MY 2

m =  
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Then the second ODE in the separated equation is determined according 
to the form of the separation constant 

    0X
M

mX 2

22

=−′′ π  ( ) 00X =  ,...2,1,0m =  

But it has only one boundary condition because only one boundary 
condition at 0x =  is homogeneous.  The general solution can be written 
with the hyperbolic functions: 

    xddX 210 +=  

    x
M
msinhdx

M
mcoshdX 21m

ππ
+=  ,...2,1m =  

Apply the boundary condition at 0x =  and require a non-zero solution: 
( ) 00dd0X 210 =⋅+=      ⇒   0d1 =  

( ) 00
M
msinhd0

M
mcoshd0X 21m =+=

ππ  ⇒   0d1 =  

Then solutions for X can be chosen as 
    xX0 =  

    x
M
msinhX m

π
=   ,...2,1m =  

Therefore, the basic functions for steady state solution are 
    ( ) xYXy,xu 000,s ==  

    ( ) y
M
mcosx

M
msinhYXy,xu mmm,s

ππ
==    ,...2,1m =  

Then the steady state solution can be written in the form of infinite series 
 

steady state solution     ( ) ∑
∞

=

+=
1m

m0s y
M
mcosx

M
msinhaxay,xu ππ  

 
where coefficients ma  have to be determined using the non-homogeneous 
boundary condition 

Lx =  ( ) ( )yfy,Lus = ∑
∞

=






+=

1m
m0 y

M
mcosL

M
msinhaLa ππ  

If this infinite series is treated as the generalized Fourier series expansion 
of the function ( )yf , then coefficients ma  can be determined as 

 

La0    ( )dyyf
M
1 M

0
∫=     ⇒      0a    ( )dyyf

LM
1 M

0
∫=  

     

L
M
msinham

π  ( ) dyy
M
mcosyf

M
2 M

0
∫ 






=

π  ⇒      ma   ( ) dyy
M
mcosyf

L
M
msinhM

2 M

0
∫ 






=

π
π  

 
2.  Transient Solution    Change the unknown function to 
              ( ) ( ) ( )y,xut,y,xut,y,xU s−=  

It can be easily verified that this function satisfies the unsteady Heat  
Equation 

    
t

Ua
y
U

x
U 2

2

2

2

2

∂
∂

=
∂
∂

+
∂
∂  

and four homogeneous boundary conditions:  

         0x =  ( ) 0t,y,0U =   ( )M,0y ∈ , 0t >   (Dirichlet) 

         Lx =  ( ) 0t,y,LU =  ( )M,0y ∈ , 0t >   (Dirichlet) 

         0y =  ( ) 0t,0,x
y
U

=
∂
∂  ( )L,0x ∈ ,  0t >   (Neumann) 
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          My =  ( ) 0t,M,x
y
U

=
∂
∂  ( )L,0x ∈ ,  0t >   (Neumann) 

          and initial condition becomes 
              ( ) ( ) ( )y,xuy,xg0,y,xU s−=  

This IBVP Is now well suited for solution by separation of variables. 
We assume that the function ( )t,y,xU  can be written as a product of 
three functions 
    ( ) ( ) ( ) ( )tTyYxXt,y,xU =  
each of a single variable.  Substitute it into the Heat Equation 
    TXYaTYXYTX 2 ′=′′+′′  
Rewrite this equation as 

    
T
Ta

Y
Y

X
X 2 ′

+
′′

−=
′′

 

Variables in this equation are not completely separated, but both sides 
are functions of different variables, and, therefore, do not depend on 
either of them and are equal to some constant  

    µ=
′

+
′′

−=
′′

T
Ta

Y
Y

X
X 2  

          It yields a Sturm Liouville problem         
              0XX =−′′ µ   ( ) 00X =  ( ) 0LX =  

which has the following non-trivial solutions (eigenfunctions) for the 
corresponding values of the separation constant  

2
nn λµ −=  2

22

L
n π

−=   ,...2,1n =    

x
L

nsinX n
π

=    ,...2,1m =  
2
LX 2

n =  

Substitute determined values of the separation constant into the second 
part of the equation 

              2

22
2

L
n

T
Ta

Y
Y π

−=
′

+
′′

−  

          and separate variables 

              2

22
2

L
n

T
Ta

Y
Y π

+
′

=
′′

 

          By the same reasoning, both parts of the equation are just a constant 

              ηπ
=+

′
=

′′
2

22
2

L
n

T
Ta

Y
Y  

          Consider the equation for Y  
0YY =−′′ η   ( ) 00Y =′  ( ) 0MY =′  

          which has the following solutions         

              mη  2

22

M
m π

−=    ,...2,1,0m =  

    1Y0 =      0m =   MY 2
0 =  

              y
M
mcosYm

π
=    ,...2,1m =  

2
MY 2

m =  

          Then the separated equation becomes an equation for the function T  

              2

22

2

22
2

M
m

L
n

T
Ta ππ

−=+
′

 

          Solutions of this equation are: 

              
t

a
1

M
m

L
n

mn

22

22

2

22

eT








+−

=
ππ

 
          Then the basic functions for the transient solution are 

          ( ) ( ) ( ) ( )tTyYxXt,y,xU mnmnmn =
t

a
1

M
m

L
n

22

22

2

22

ey
M
mcosx

L
nsin











+−















=

ππ
ππ  
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All these basic functions satisfy the Heat Equation and all boundary 
conditions.  Construct a transient solution in the form of a double 
infinite series  
 

transient solution       ( )t,y,xU ∑∑
∞

=

∞

=











+−















=

0m 1n

t
a
1

M
m

L
n

mn

22

22

2

22

ey
M
mcosx

L
nsinA

ππ
ππ    

 
where coefficients mnA  are chosen such that the constructed function 
satisfies the initial condition:     

( ) ( ) ( )y,xuy,xg0,y,xU s−=   ∑∑
∞

=

∞

=














=

0m 1n
mn y

M
mcosx

L
nsinA ππ   

Basis functions in this expansion are solutions of the corresponding 
Sturm-Liouville problem, therefore, they are orthogonal functions used 
in a generalized Fourier series.  If the equation above is treated as a 
double Fourier series then coefficients mnA  can be determined in two 
steps as follows: 
rewrite the equation in the form 

( ) ( )y,xuy,xg s−  





















= ∑ ∑

∞

=

∞

=

y
M
mcosx

L
nsinA

0m 1n
mn

ππ  

    ( ) 





= ∑

∞

=

y
M
mcosxB

0m
m

π  

          where the following notation is used for coefficients 

          ( ) ∑
∞

=






=

1n
mnm x

L
nsinAxB π  

which are coefficients of a cosine Fourier series expansion of the initial 
condition 
 

( ) ( ) ( )[ ]dyy,xuy,xg
M
1xB

M

0
s0 ∫ −=  

( ) ( ) ( )[ ] ydy
M
mcosy,xuy,xg

M
2xB

M

0
sm

π
∫ −=  ,...2,1m =  

on the other hand by definition they are 

          ( ) ( ) ( )[ ]dyy,xuy,xg
M
1xB

M

0
s0 ∫ −=    ∑

∞

=






=

1n
n0 x

L
nsinA π  

          ( ) ( ) ( )[ ] ydy
M
mcosy,xuy,xg

M
2xB

M

0
sm

π
∫ −=  ∑

∞

=






=

1n
mn x

L
nsinA π  

 
          in which mnA  are coefficients of a sine Fourier series expansion.  

Therefore, 
 

          n0A   ( ) ( )[ ]∫ ∫








−=
L

0

M

0
s xdx

L
nsindyy,xuy,xg

M
1

L
2 π  

            ( ) ( )[ ]∫ ∫ 





−=

L

0

M

0
s dydxx

L
nsiny,xuy,xg

LM
2 π  

 

          mnA  ( ) ( )[ ] dx
L

nsinydy
M
mcosy,xuy,xg

M
2

L
2 L

0

M

0
s

ππ
∫ ∫









−=  

            ( ) ( )[ ] dydxy
L

nsiny
M
mcosy,xuy,xg

LM
4 L

0

M

0
s 














−= ∫ ∫

ππ  
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3.  Solution of IBVP  Now, when coefficients of a double series expansion for transient 

solution are determined, we can recall the equation for the change of 
dependent variable and write a solution for the original IBVP: 
 

( )t,y,xu  ( ) ( )y,xut,y,xU s+=  
 

 

( )t,y,xu  ∑∑
∞

=

∞

=











+−















=

0m 1n

t
a
1

M
m

L
n

mn

22

22

2

22

ey
M
mcosx

L
nsinA

ππ
ππ  

 

              ∑
∞

=






++

1m
m0 y

M
mcosL

M
msinhaLa ππ  

 
 
          where coefficients of expansions are 
 

          n0A   ( ) ( )[ ]∫ ∫ 





−=

L

0

M

0
s dydxx

L
nsiny,xuy,xg

LM
2 π  

 

          mnA  ( ) ( )[ ] dydxy
L

nsiny
M
mcosy,xuy,xg

LM
4 L

0

M

0
s 














−= ∫ ∫

ππ  

 

    0a   ( )dyyf
LM

1 M

0
∫=  

     

          ma   ( ) dyy
M
mcosyf

L
M
msinhM

2 M

0
∫ 






=

π
π  

 
  
4.  Example        Maple solution:  heat5dn-2.mws 
 
          2L =  
          4M =  
          5.0=α  
 
          ( ) 1yf =      fixed temperature at the boundary 
 
          ( ) ( ) ( )MyyLxxy,xg −+−=  parabolic initial temperature distribution 
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( )0u x, y

( )su x, y

( )u x, y,t
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4.6.4  Wave Equation 
 
4.6.4      1)  homogeneous equation with homogeneous boundary conditions 

   

          2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂                ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
                                              Initial conditions:   ( ) ( )xu0,xu 0=        

                ( ) ( )xu
t

0,xu
1=

∂
∂       

          Boundary conditions:  ( ) 0t,0u = ,     0t >    (Dirichlet) 

                ( ) ( ) ,0t,xuh
x

t,Luk 22 =+
∂

∂  0t >    (Robin)   

 

                Denote   2
2

2

h
H

k
=  

                                                                                
1.  Separation of variables we assume that the function ( )t,xu  can be represented as a product of 

two functions each of a single variable 
( ) ( ) ( )tTxXy,xu =    

( ) ( )tTxX
x
u
2

2

′′=
∂
∂    ( ) ( )tTxX

t
u
2

2

′′=
∂
∂        substitute into equation 

       
          ( ) ( ) ( ) ( )tTxXtTxXa2 ′′=′′   After separation of variables, one gets 
 

          µ=
′′

=
′′

T
T

a
1

X
X

2    with a separation constant µ      

   
That yields two ordinary differential equations:  

0XX =−′′ µ  and 0TaT 2 =−′′ µ  
 

2.  Sturm-Liouville problem  
          0XX =−′′ µ         
boundary conditions:       0x =  ( ) ( ) 0tT0X =    ⇒ ( ) 00X =  
          Lx =  ( ) ( ) ( ) ( ) 0tTLXHtTLX 2 =+′  ⇒ ( ) ( ) 0LXHLX 2 =+′   

 
This Sturm-Liouville problem has the following solution with 

2
nn λµ −= : 

 
eigenvalues        nλ  are positive roots of equation 0LsinHLcos n2 =+ λλλ  
 
eigenfunctions       ( ) xsinxX nn λ=  

 
Then solutions of the second differential equation 0TaT 22

n =+′′ λ  are 
       

( ) atsincatcosctT n2n1n λλ +=  
 
 

basic solutions:       ( ) ( )atsincatcoscxsinTXt,xu n2n1nnnn λλλ +==  
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We are looking for a solution in the vector space with the basis ( ){ }t,xun : 
 

( ) ( ) ( )∑ ∑
∞

=

∞

=

+==
1n

n2n1n
1n

nnn atsincatcoscxsinat,xuat,xu λλλ  

( ) ( )∑
∞

=

+=
1n

n2nn1nn atsincaatcoscaxsint,xu λλλ  

( ) ( )∑
∞

=

+=
1n

nnnnn atsindatcosbxsint,xu λλλ  

 

initial conditions:      0t =  ( ) ( )xuaxsinb0,xu 0n
1n

n == ∑
∞

=

λ  

 
which is a generalized Fourier series expansion of the function 

( )xf  over the interval ( )L,0  with coefficients 

( ) ( )

n

n

L

0
n0

L

0
n

2

L

0
n0

n

4
L2sin

2
L

xdxsinxu

xdxsin

xdxsinxu
b

λ
λ

λ

λ

λ

−
==

∫

∫

∫
 

 
The derivative with respect to t of the assumed solution is 

( ) ( )∑
∞

=

+−=
∂

∂

1n
n2nnnn atcosdatsinbxsina

t
t,xu λλλλ  

Then the second initial condition yields 
 

0t =   ( ) ( )xuxsinad
t

0,xu
1nn

1n
n ==

∂
∂ ∑

∞

=

λλ  

  Again, it can be treated as a Fourier series with coefficients 
 

  ad nnλ
( ) ( )

n

n

L

0
n1

L

0
n

2

L

0
n1

4
L2sin

2
L

xdxsinxu

xdxsin

xdxsinxu

λ
λ

λ

λ

λ

−
==

∫

∫

∫
 

  nd
( )









−

=
∫

n

n
n

L

0
n1

4
L2sin

2
La

xdxsinxu

λ
λλ

λ
 

 
 Then the solution of the initial-boundary value problem is: 

 
 
 
3.  Solution:          

( )t,xu  { }∑
∞

=

+=
1n

nnnnn atsindatcosbxsin λλλ  

  ( )
( )

∑
∫

∫
∞

=







































+
















−

=
1n

n
n

L

0
n1

n

L

0
n0

n

n

n atsin
a

xdxsinxu
atcosxdxsinxu

4
L2sin

2
L

xsin λ
λ

λ
λλ

λ
λ

λ  
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4. Normal modes of string vibration Solution of the Wave Equation is obtained as a sum of terms of the form 
         ( ) ( )atsincatcoscxsinTXt,xu n2n1nnnn λλλ +==  
         which we called the basic solutions, but as the contributors to the    
         vibration of string, these functions are known as normal modes.  In our  
         example, for n 1,2,3,4,...= they have the following shape (see Maple file  
         for animation):  
 
   > m1:=subs(n=1,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
   > animate({m1},x=0..L,t=0..9); 

     
   > m2:=subs(n=2,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
   > animate({m2},x=0..L,t=0..9); 

     
   > m3:=subs(n=3,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
   > animate({m3},x=0..L,t=0..9); 

     
   > m4:=subs(n=4,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
   > animate({m4},x=0..L,t=0..9); 

     
 

The first of these normal modes is called the fundamental mode, others are 
called the first overtone, the second overtone, and so on.  The frequency 
of oscillation of the normal mode is increased with its number and is 
determined by the corresponding eigenvalue nλ  and coefficient a  which 
has a physical sense of the speed of propagation of the waves (speed of 
sound). There are fixed points in the vibration of overtones.  

 
The whole motion of the string is a superposition of vibration of all 
overtones with different amplitude.  The involvement of different modes in 
the vibration of string is determined by initial conditions. If for 
representation of the initial shape of the string at rest, different modes are 
required, then all of them will be present in the undamped vibration of the 
string.  But if the initial shape of the string is exactly one of the overtones, 
then only this mode will be present the string vibration.  This phenomenon  
is called standing waves.   Standing waves do not propagate, only shrink 

 and swell in the same shape.  
 
 
 

fundamental mode

st1  overtone

nd2  overtone

rd3  overtone



Chapter 4  Partial Differential Equations                                                                         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4  Partial Differential Equations                                                                         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4  Partial Differential Equations                                                                         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4  Partial Differential Equations                                                                         
 
4.6.4    2) Wave Equation in polar coordinates with angular symmetry 
 
 

          2

2

22

2

t
u

a
1

r
u

r
1

r
u

∂
∂

=
∂
∂

+
∂
∂                ( )t,ru ,  [ ]1,0 rr ∈ , 0t >  

 
 
                                              Initial conditions:  ( ) ( )0u r ,0 u r=    

( ) ( )1

u r ,0
u r

t
∂

=
∂

   

    
          Boundary condition: ( ) 0t,ru 1 =   0t >               (Dirichlet) 
 
1.  Separation of variables    Assume  

( ) ( ) ( )tTrRy,ru =   
then   

( ) ( )tTrR
r
u ′=

∂
∂ , ( ) ( )tTrR

r
u
2

2

′′=
∂
∂ , ( ) ( )tTrR

t
u
2

2

′′=
∂
∂ .   

Substitute into the equation 

          ( ) ( ) ( ) ( ) ( )tTrR
a
1TrR

r
1tTrR 2 ′′=′+′′  

After separation of variables (division by ( ) ( )tTtR ), we receive  

          µ=
′′

=
′

+
′′

T
T

a
1

R
R

r
1

R
R

2    with a separation constant µ      

          it yields two ordinary differential equations:  
 

0RR
r
1R =−′+′′ µ            

 
  0TaT 2 =−′′ µ  

boundary condition: 
          1rr =   ( ) ( ) ( ) 0tTrRt,ru 11 ==   ⇒   ( ) 0rR 1 =  
 
2.  Solution of Sturm-Liouville problem Consider first the boundary value problem from which we expect to  

obtain eigenvalues and eigenfunctions for construction of  a functional 
vector space.  Consider the equation for ( )rR  for which we have a 
homogeneous boundary condition: 

          0RR
r
1R =−′+′′ µ  ( ) 0rR 1 =  

          Multiplication  by 2r  yields 
          0RrRrRr 22 =−′+′′ µ  
          Solution of this equation depends on the form of the separation constant  
 

           ( )
( ) ( )

( ) ( )







+
+

+
=

rYdrJd
drd

rKdrId
rR

λλ

λλ

0201

21

0201

ln      
0
0
0

<
=
>

µ
µ
µ

     
2

2

0
λµ

µ
λµ

−=
=
=

 

See, how these solutions were obtained and how the boundary 
condition can be satisfied: 
 
1)  0>µ   Denote 2λµ = .  Then the equation becomes 
 

( ) 0R0rRrRr 2222 =+−′+′′ λ  
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This is a modified Bessel equation of integer order 0 for the 
independent variable rx λ= .  General solution of this equation is given 
by 

( ) ( ) ( )rKdrIdrR 0201 λλ +=  
At the interior point of the membrane 0r = , the solution has to be 
finite, therefore, we require the coefficient 2d  before function ( )rK0 λ  
(which is unbounded at 0=r ) to be equal to zero, 0d2 = . 
Consider the boundary condition: 

1rr =  ( ) ( ) 0d0Id0R 101 ===  

Therefore, the case 0>µ  leads to a trivial solution. 
 
2)  0=µ  Equation becomes 

0R
r
1R =′+′′   

The order of equation can be reduced by a change of independent 
variable RR~ ′= .  The equation for R~  is a first order linear differential 
equation 

0R~
r
1R~ =+′  

solution of which is obtained with the help of an integrating factor 

( ) ( ) ( )
r
drdededrR rdr

r 11
1

1ln
1

11

1
~

===









= −−

−

∫  

Then the solution of the original equation is 

( ) ( ) 21
1 ln~ drddr

r
ddrrRrR +=== ∫∫  

To have a finite solution at point 0r = , we must put 01 =d . 
Then the boundary condition leads to 02 =d , and we end up with a 
trivial solution. 
 
3)   0<µ   Denote 2λµ −= .  Then the equation becomes 
 

          ( ) 0R0rRrRr 2222 =−+′+′′ λ  
          which we can identify as a Bessel equation of order 0 .  The general  

solution of Bessel equation of integer order is given by 
      ( ) ( ) ( )rYdrJdrR λλ 0201 +=  

where ( )rJ0 λ  and ( )rY0 λ  are, correspondingly, Bessel’s functions of 
the 1st and the 2nd kind of zero order. 
Before considering the boundary condition, we can make one 
observation.  The deflection of membrane anywhere in the domain 

[ ]1r,0r ∈  is assumed to be finite (moreover, the wave equation is 
derived in the assumption of small deflection).  The Bessel function of 
the 2nd kind ( )rY0 λ  approaches −∞  when  r  goes to 0 .  In our case, 

0r =   is the interior point of the membrane.  Therefore, for function 
( )rR  to be bounded at 0r = , the coefficient 2d  should be equal to 0 . 

Then solution of the Bessel equation becomes 
     ( ) ( )rJdrR 01 λ=   

The boundary condition implies  
( ) ( ) 0rJdrR 1011 == λ  

If we want a non-trivial solution, then 1d 0≠ , and we receive 
 

( ) 0rJ 10 =λ  
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The figure shows the graph of the function ( ) ( )10 rJw λλ =  with 1r1 =   
 

           
 

The roots of the equation ,..., 21 λλ are the values of the parameter λ  
for which the boundary value problem has a non-trivial solution (they 
are called eigenvalues). 
The corresponding solutions (eigenfunctions) are 
 

( ) ( )rJrR n0n λ=   
 
To determine the weight function, transform the Bessel equation to the 
self-adjoint form of the Sturm-Liouville problem.  Find the integrating 
factor 

( )
r
1e

r
1rm

r

0
2 dr

r
r

2 ==
∫

   

and reduce the equation to the self-adjoint form 

[ ] 21 rR R
r

λ′′− =           [ ] 2rR rR 0λ′′ + =      ( )p r r=  

Then, according to the Sturm-Liouville theorem, the set of functions  
( ){ }rJR n0n λ=   ,...2,1=n      

is a complete set of functions orthogonal with respect to weight r  over 
interval [ ]2r,0 , e.g. 

( ) ( ) 0drrRrrR
2r

0
mn =∫  when mn ≠  

 
solution for T       The result of a negative separation constant 2λµ −=  agrees with a  

physical sense of solution for ( )tT :  

          0TaT 2 =−′′ µ  










−+−
+
+

=

−

atsincatcosc
tcc
ecec

)t(T

21

21

at
2

at
1

µµ

µµ

    
0
0
0

<
=
>

µ
µ
µ

 

          We expect a periodic solution for an undamped vibration of membrane.   
There should be no constant terms either because boundary conditions  
and the equation are homogeneous.  Therefore, only the case of a 
negative separation constant may be accepted for our problem, 

2
nλµ −=  (or positive eigenvalues).  Then solutions ( )tTn  with 

determined eigenvalues are 
 

( ) atsincatcosctT nn,2nn,1n λλ +=   
 
3.  Basic solutions For basis functions we take the solutions of the wave equation 

satisfying boundary conditions 
 
 

            ( ) ( )( )atsincatcoscrJt,ru nn,2nn,1n0n λλλ +=  
 

          We are looking for solution of the given i.b.v.p. in the vector space  
          spanned by this basis:  
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( ) ( )( )∑
∞

=

+=
1n

nn,2nn,1n0n atsincatcoscrJat,ru λλλ  

( )( )∑
∞

=

+=
1n

nn,2nnn,1nn0 atsincaatcoscarJ λλλ  

( )( )∑
∞

=

+=
1n

nn,2nn,1n0 atsinbatcosbrJ λλλ  

 
We will choose the values of coefficients in such a way that initial  
conditions are satisfied. 
 
 

4.  Initial conditions      Consider the first initial condition 

          ( ) ( ) ( )1,n 0 n 0
n 1

u r,0 b J r u rλ
∞

=

= =∑  

          then coefficients for the generalized Fourier series are defined as 
 

           
( ) ( )

( )

1

1

r

0 0 n
0

1,n r
2
0 n

0

ru r J r dr
b

rJ r dr

λ

λ
=

∫

∫
      

( ) ( )

( )

1r

0 0 n
0

1,n 2
21
1 n 1

ru r J r dr
b

r J r
2

λ

λ
=

∫
 

 
          The second condition for the derivative with respect to time 
      

          ( ) ( )( )∑
∞

=

+−=
∂

∂

1n
nnn,2nnn,1n0 atcosabatsinabrJ

t
t,ru λλλλλ  

          becomes 

          
( ) ( ) ( )2,n n 0 n 1

n 1

u r,0
b aJ r u r

t
λ λ

∞

=

∂
= =

∂ ∑  

          Then coefficients in this generalized Fourier expansion are 
 

          
( ) ( )

( )

1

1

r

1 0 n
0

2,n n r
2
0 n

0

ru r J r dr
b a

rJ r dr

λ
λ

λ
=

∫

∫
   ⇒       

( ) ( )

( )

1r

1 0 n
0

2,n 2
21

n 1 n 1

ru r J r dr
b

ra J r
2

λ

λ λ
=

∫
  

 
 
 
  

Then solution of the initial-boundary value problem for the wave 
equation  is 

 

5.  Solution        ( ) ( )( )∑
∞

=

+=
1n

nn,2nn,1n0 atsinbatcosbrJt,ru λλλ  

 
            

      ( ) ( )

( )
( ) ( ) ( ) ( )

1 1r r
0 n

0 0 n n 1 0 n n2
n 1 2 n0 01

1 n 1

J r 1u r,t ru r J r dr cos at ru r J r dr sin at
ar J r

2

λ
λ λ λ λ

λ
λ

∞

=

     = +    
        

∑ ∫ ∫  
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( )u r ,t
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4.6.5  PDE in spherical coordinates 

Consider a BVP generated by separation of variables in a PDE in 
spherical coordinates.  We will only see what the Sturm-Liouville 
problems are in this case.  Most of them we solve in Chapter 5 Special 
Functions. 
 

1.  Laplace’s Equation Recall the general form of Laplace’s Equation in spherical coordinates 
for the function ( )θφ ,,ru ,  Dr ∈ :  

   

          0u
r
1u

sin
cos

r
1u

sinr
1

r
u

r
2

r
u

2

2

222

2

222

2

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

θθθ
θ

φθ
               (1) 

                   or with differential operators written in self-adjoint form: 
 

                                              0uu
sin
cosu

sin
1

r
ur

r 2

2

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂

+





∂
∂

∂
∂

θθθ
θ

φθ
       (2) 

 
separation of variables     Assume  
 

( ) ( ) ( ) ( )θΘφΦθφ rR,,ru =              (3) 
  
Substitute into equation (1) 
 

          0R
r
1R

sin
cos

r
1R

sinr
1R

r
2R 2222 =′′+′+′′+′+′′ ΘΦΘΦ

θ
θΘΦ

θ
ΦΘΦΘ  

 

          Multiply the equation by 
ΦΘR
r 2

 

  

          0
sin
cos

sin
1

R
Rr2

R
Rr 2

2 =
′′

+
′

+
′′

+
′

+
′′

Θ
Θ

Θ
Θ

θ
θ

Φ
Φ

θ
 

          Consider the axisymmetric case ( 0=
∂
∂
φ

): 

          0
sin
cos

R
Rr2

R
Rr 2 =

′′
+

′
+

′
+

′′
Θ
Θ

Θ
Θ

θ
θ  

 
          Separate variables and set both sides of the equation equal to the same  

constant 

          µ
Θ
Θ

Θ
Θ

θ
θ

=
′′

−
′

−=
′

+
′′

sin
cos

R
Rr2

R
Rr 2  

 
          It yields two equations: 
 

1) µ=
′

+
′′

R
Rr2

R
Rr 2   

 
which can be rewritten in the form   
 

0RRr2Rr 2 =−′+′′ µ            (Euler-Cauchy equation) 
 
or in the self-adjoint Sturm-Liouville form     
 

( ) ( )21 r R R
1

µ′′− = −              (4) 

Solutions of this equation are sought in the form mR r=  (see Section 
2.3.6). 
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2) cos 0
sin

θΘ Θ µΘ
θ

′′ ′+ + =  

 
Use change of independent variable  x cosθ=   , then 

Θ ′  d d dx dsin
d dx d dx
Θ Θ Θθ
θ θ

= = = −  

Θ ′′  d d d d d d dsin cos sin
d d d dx dx d dx

Θ Θ Θ Θθ θ θ
θ θ θ θ

     = = − = − −     
     

 

           
2

2
2

d d d dx d dcos sin cos sin
dx dx dx d dx dx
Θ Θ Θ Θθ θ θ θ

θ
 = − − = − + 
 

 

          Substitute into equation 

          
2

2
2

d dcos sin
dx dx
Θ Θθ θ− +

cos dsin 0
sin dx

θ Θθ µΘ
θ

− + =  

          
2

2
2

dsin
dx

Θθ d2cos 0
dx
Θθ µΘ− + =  

          ( )
2

2
2

d1 x
dx

Θ
−

d2x 0
dx
Θ µΘ− + =  

          or in self-adjoint Sturm-Liouville form: 

          ( )2d d1 x
dx dx

Θ − −  
µΘ=                        (5) 

          This equation is called Legendre’s differential equation.  It happens that 
          its solution is bounded only if the separation constant is a non-negative  
          integer of the form 
            ( )n n 1µ = +   n 0,1,2,...=  

          Its solution consists of Legendre polynomials ( )nP x  (see Section 5.7). 

2.  Heat Equation Consider the axisymmetric heat equation for ( )u r,t ,  Dr ∈ , t 0>  in 
spherical coordinates:   

          
2

2
2

u 2 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
                              (6) 

separation of variables     Assume  
( ) ( ) ( )u r,t R r T t=                   

Substitute into equation (6) 

          22R T R T a RT
r

′′ ′ ′+ =         

          divide by RT  and separate variables   

          2R 2 R Ta
R r R T

µ
′′ ′ ′

+ = =    

          It yields two ordinary differential equations.  Equation for R  is   
          2 2r R 2rR r R 0µ′′ ′+ − =                   (7) 
          which is a spherical Bessel equation of zero order (see equation (25) in  
          Sec. 5.6 with n 0= ).   
          It has a self-adjoint Sturm-Liouville form 

          ( ) ( )2
2

1 r R R
r

µ′′− = −  

          Its solutions are given by spherical Bessel functions  

          ( ) ( )1 2
0

J r
j r

2 r
π

=  

          ( ) ( )1 2
0

Y r
y r

2 r
π

=  
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4.6.6   Singular Sturm-Liouville Problem 
 

We studied a regular Sturm-Liouville Problem in which the ordinary differential 
equation is set in the finite interval and both boundary conditions do not vanish.  
In a singular Sturm-Liouville problem not all of these conditions hold.  Usually, 
the interval is not finite, and one or both boundary conditions are missing.  
Instead of boundary conditions, when the solution may not exist at the 
boundaries,  the eigenfunctions should satisfy some limiting conditions.  One of 
such requirements can be the following: 
Let 1y  and 2y  be eigenfunctions corresponding to two distinct eigenvalues 1λ  
and 2λ , correspondingly.  Then they have to satisfy the following condition: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( )[ ]xyxyxyxyxplimxyxyxyxyxplim 1221
xx

1221
xx 12

′−′=′−′
+− →→

  

In the other cases the absence of boundary conditions is because of the 
periodical or cycled domain, when we demand that the solution should be 
continuous and smooth 

( ) ( )21 xyxy =  and ( ) ( )21 xyxy ′=′  
In this case, it is still possible to have the orthogonal set of solutions ( ){ }xyn  on 
[ ]21 x,x . 
We will not study the formal approach to solution of such problems, but rather 
discuss the practical examples of its application.  
Here, we consider an interesting example of a singular SLP in a cycled domain 
with no boundary conditions.  Physical demonstration of this example can be 
seen on the ceiling of the hall of the Eyring Science Building. 
 
Example 1 Consider vibration of a thin closed ring string of radius r  

described in polar coordinates by deflection over the plane 0z =   
( )t,u θ , [ ]πθ 2,0∈  , 0t >   

The Wave Equation reduces to  

2

2
2

2

2

2 t
uau

r
1

∂
∂

=
∂
∂
θ

  r const=  

with initial conditions 
( ) ( )θθ 0u0,u =  

( ) ( )θθ 1u0,
t
u

=
∂
∂  

There are no boundaries for a closed string, but rather a physical 
condition for a continuous and smooth string: 

( ) ( )t,2ut,0u π=  0t >  

( ) ( )t,2ut,0u π
θθ ∂

∂
=

∂
∂  0t >  

 
separation of variables   Assume     ( ) ( ) ( )tTt,u θΘθ =  

        Substitute into equation TaT
r
1 2
2

′′=′′ ΘΘ   

        Separate variables  µ
Θ
Θ

=
′′

=
′′

T
Tra 22           µ  is a separation constant 

 

        Consider    µ
Θ
Θ

=
′′

 

              0=−′′ ΘµΘ  
We already have experience with solution of this special equation for regular 
Sturm-Liouville Problems and know that in all cases except the case of both 
boundary conditions of Neumann type, only a negative separation constant , 
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2λµ −= , generates eigenvalues and eigenfunctions.  General solution in this 
case is 

( ) λθλθθΘ sinccosc 21 +=  
This solution suits our problem because it is periodic.  The values of λ  which 
satisfy periodicity on the interval [ ]πθ 2,0∈ , are 

n
2
n2

n ==
π
πλ  

Therefore, solutions are 
( ) θθθΘ nsincncosc n,2n,1n +=  

Obviously, that for all ,...2,1,0n =   π2 is a period for this solution and for its 
derivative  

( ) θθθΘ ncosncnsinnc n,2n,1n +−=′  

With these values of the separation constant, 22
nn n−=−= λµ , ,...2,1,0n =  

consider the equation for  ( )tT : 

222 n
T
Tra −=

′′
 

0T
ra

nT
22

2

=+′′  

which also has a periodic (in t ) general solution 

( ) t
ar
nsinct

ar
ncosctT n,4n,3n +=  

Then periodic solution of the wave equation can be constructed in the form of an  
infinite series: 

( ) ( ) ( )tTt,u θΘθ =  ( ) ( )∑
∞

=

=
0n

nn tTθΘ  

     ( )∑
∞

=






 ++=

0n
n,4n,3n,2n,1 t

ar
nsinct

ar
ncoscnsincncosc θθ  

∑
∞

=






 +++=

0n
n,4n,2n,3n,2n,4n,1n,3n,1 t

ar
nsinnsincct

ar
ncosnsincct

ar
nsinncoscct

ar
ncosncoscc θθθθ  

∑
∞

=






 +++=

0n
n,4n,3n,2n,1 t

ar
nsinnsinbt

ar
ncosnsinbt

ar
nsinncosbt

ar
ncosncosb θθθθ  

 
where coefficients b  are new arbitrary constants which can be chosen in such a 
way that this solution will satisfy the initial conditions. 
Consider the first initial condition: 

0t =  ( ) ( )θθ 0u0,u =   ( )∑
∞

=

+=
0n

n,3n,1 nsinbncosb θθ  

      ( )∑
∞

=

++=
1n

n,3n,10,1 nsinbncosbb θθ   

 
which can be treated as a standard Fourier series expansion of the function 

( )θ0u  on the interval [ ]π2,0 .  Therefore, the coefficients of this expansion are 
 

( )∫=
π

θθ
π

2

0
00,1 du

2
1b  

( )∫=
π

θθθ
π

2

0
0n,1 dncosu1b  

( )∫=
π

θθθ
π

2

0
0n,3 dnsinu1b  
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For the second initial condition, differentiate the solution first with respect to t  

( )t,
t
u θ

∂
∂ ∑

∞

=






 +−+−=

0n
n,4n,3n,2n,1 t

ar
ncosnsin

ar
nbt

ar
nsinnsin

ar
nbt

ar
ncosncos

ar
nbt

ar
nsinncos

ar
nb θθθθ  

     
        then apply the second initial condition 

        ( ) ( )θθ 1u0,
t
u

=
∂
∂   ∑

∞

=






 +=

0n
n,4n,2 nsin

ar
nbncos

ar
nb θθ  

             ∑
∞

=






 ++⋅=

1n
n,4n,2n,2 nsin

ar
nbncos

ar
nb0b θθ  

 
        Where the coefficients are determined as 

        ( )∫=⋅
π

θθ
π

2

0
10,2 du

2
10b  

        ( )∫=
π

θθθ
π

2

0
1n,2 dncosu1

n
arb  

        ( )∫=
π

θθθ
π

2

0
1n,4 dnsinu1

n
arb  

 
Coefficient 0,2b  can be any constant, it will not influence the initial speed of the 
string, but not to influence the initial shape of the string it has to be chosen equal 
to zero (otherwise, initially the string will shifted by 0,2b  and will not be 
centered over the plane 0z = ): 

0b 0,2 =  
Therefore, solution of the problem is given by the infinite series 
 

 

    ( )t,u θ ∑
∞

=






 ++++=

1n
n,4n,3n,2n,10,1 t

ar
nsinnsinbt

ar
ncosnsinbt

ar
nsinncosbt

ar
ncosncosbb θθθθ  

 
 

         where coefficients are determined according to abovementioned formulas. 
 
        Consider particular cases (Maple examples): 
 

1) isolated wave;  

 
2) standing waves 
 

 
 
 

( )0u θ

( )u ,tθ

( )u ,tθ
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1.    Let  3D ⊂ \  be a domain (open connected set), and let 
     S  be the boundary of D  ( S D\ D= ). 
    Show that if S∈r  is a point of the boundary of D ,  
    then any ball ( )B ,Rr  with R ,R 0∈ >\  includes points both from D  and 3 \ D\ , i.e. 

    ( )B ,R D∩ ≠ ∅r  and ( ) ( )3B ,R \ D∩ ≠ ∅r \ . 

 
    Remark: this property is usually used as the more general definition: 
    If nA ⊂ \  is an arbitrary subset of n\  (not necessarily domain), then  
    nx ∈\   is called a boundary point of A  if for any radius R 0> : 
    ( )B x,R A∩ ≠ ∅  and ( ) ( )nB x,R \ A∩ ≠ ∅\  

    The set { }nA x x is boundary point of A∂ = ∈\  is called the boundary of A  in n\ . 

 
    Examples: a) ( ] { }0,1 0,1∂ =  

       b) { } { }a a∂ =             (the boundary of an insulated point is the point itself) 
       c) ∂ =_ \  
       d) ∂ =] ]  
       e) ∂∅ = ∅  
       f) n∂ = ∅\  

       g) { }1 1n n 0
n n

   
∂ ∈ = ∈ ∪   

   
` `  

 
2.   Transform the Heat Equation in Cartesian coordinates (8) to cylindrical coordinates (9), using the 

conversion formulas between coordinate systems: θcosrx = , θsinry = , zz = . 
 
 
3.   Set up a mathematical model (choose an appropriate coordinate system and dimension of the 

problem, write the governing equation and corresponding initial and boundary conditions) for the 
following engineering models (do not solve the problem): 

 
a)  A very thin long wire dissipates energy in the massive layer of the stagnant media with the rate 

per unit length q   





m
W .  The media has a thermal conductivity k  





⋅ Km
W .  Determine the 

stationary temperature distribution in the media. 
 

b)  In the massive layer of homogeneous material (with thermal properties pc,,k ρ ) which was 
initially at the uniform temperature 0T , a localized heat source spontaneously started to dissipate 
energy with the rate  q  [ ]W .  Determine the development of the temperature field in the material. 

 
c)  A very long tree trunk of radius R in the forest is exposed  to the surrounding air (average wind 

speed is v 





s
m ), but the dense crown prevents the direct sun radiation of the trunk.  Set up the 

mathematical model describing the temperature distribution in the tree trunk during the day. 
Conductivity in the tree depends on direction: it is much higher along the tree than in the radial 
direction. 

 

d)  A wide reservoir of water of L meters deep is exposed to the solar irradiation 0G  





2m
W  

incident at the angle θ .  Penetration of the solar radiative flux along the path s is described by the 

Lambert-Beer Law ( ) s
0 ecosGxG κθ −= , where κ 





m
1  is the gray absorption coefficient of water.  
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Then the solar energy dissipated in water (radiative dissipation source or the divergence of 

Radiative flux) is determined by ( ) ( )
dx

xdGsQ −=  





3m
W .  Set up the mathematical model 

describing the equilibrium temperature field in the water layer. 
 

e)  Two opposite sides of the long column are insulated.  There is an intensive condensation of the 
water steam on one of the other sides.  The last side is exposed to the convective environment at 

temperature ∞T  and convective coefficient h 





⋅ Km
W
2

.  Due to some chemical reaction there is 

production energy in the column with the volumetric rate q�  





3m
W .  Initially, column was at the 

uniform temperature 0T .  Describe the transient temperature distribution inside of the column. 
 
4.    1)   Find  solution of the Laplace Equation   

     
2 2

2 2

u u 0
x y

∂ ∂
+ =

∂ ∂
 

     in the domain ( ) ( )D 0,L 0,M= ×  subject to boundary conditions: 

     
x 0 x L y 0

u u u 0
x x y= = =

∂ ∂ ∂
= = =

∂ ∂ ∂
 and ( )y M

u f x
=

=  

 
     2)   Sketch the graph of solution for  L 2= , M 3=  and ( )f x x( L x )= −  

    3)  What is the solution for ( ) xf x cos
L

π
= ?   Sketch the graph. 

 
5.    1)   Find  solution of the Laplace Equation   

     
2 2

2 2

u u 0
x y

∂ ∂
+ =

∂ ∂
 

     in the domain ( ) ( )D 0,L 0,= × ∞  subject to boundary conditions: 

     
x 0 x L

u u 0
x x= =

∂ ∂
= =

∂ ∂
 and ( )y 0

u f x
=

=  

 
    2)   Sketch the graph of solution for  L 5=  and  
 
     a)  ( )f x 10=  

     b) ( )f x sin x
2L
π

=  

     c) ( )f x cos x
2L
π

=  

  
6.    1)   Find solution of the Poisson Equation   

     ( )
2 2

2 2

u u F x, y
x y

∂ ∂
+ =

∂ ∂
 

     in the domain ( ) ( )D 0,L 0,M= ×  subject to boundary conditions: 

     
x 0

u 0
x =

∂
=

∂
, 

x L

u 10
x =

∂
=

∂
,  ( )y 0

u f x
=

= , 
y M

u 0
=

=  

 
    2)   Sketch the graph of solution for  L 4= , M 2=  and  
     a)  ( )f x 5=  and ( ) ( )( )F x, y xy L x M y= − −  

     b) ( )f x x=  and ( )F x, y  of your choice 
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7.    1) Solve the Laplace Equation in the cylindrical domain 

     0
z
u

r
u

r
1

r
u

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂  ( )z,ru :     1rr0 <≤ , 1zz0 <<                                         

   
     Boundary conditions:  ( ) 0z,ru 1 =    1zz0 <<              
           ( ) 00,ru =   1rr0 <≤          
           ( ) ( )rfz,ru 1 =  1rr0 <≤  
 
    2) Display some creativity in visualization of solution for 

     

( ) ( )

1

1
2

1

r 2
z 5

f r r r

=
=

= −

 

 
8.    1) Solve the Laplace Equation in the cylindrical domain 

     0
z
u

r
u

r
1

r
u

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂  ( )z,ru :     1rr0 <≤ , 1zz0 <<                                         

   
     Boundary conditions:  ( )1u r ,z 2=    1zz0 <<              

           ( )u r,0 0=   1rr0 <≤          

           ( )1u r ,z 3=   1rr0 <≤  
 
    2) Display some creativity in visualization of solution for 

     1

1

r 4
z 10

=
=

 

 
 
9.    1.    Solve the Dirichlet problem for the Heat Equation:      

   

  
t
ua

x
u 2
2

2

∂
∂

=
∂
∂                ( )t,xu :    [ ]L,0x ∈ , 0t >    

 
          Initial condition:  ( ) ( )xuxu 00, =  
   
    Boundary conditions:  ( ) 0t,0u = , 0t >   (Dirichlet) 
          ( ) ,0t,Lu =  0t >   (Dirichlet) 
  
    2.    Sketch the graph of solution for L=3 and a=0.1 and initial conditions: 
 
     a)   ( ) 10 =xu   
     b)   ( ) ( )xLxxu −=0  
     c)   ( ) xxu 2sin0 =   
 
 
    3.    Observe the Maximum principle for the Dirichlet problem for the Heat Equation 
 
10.    1) Solve the Heat Equation in the cylindrical domain with angular symmetry 

     
2

2
2

u 1 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
  ( )z,ru :     1rr0 <≤ , t 0>                                           

     Boundary condition:  ( )1 1u r ,t f=    t 0>  

     Initial condition    ( ) ( )0u r,0 u r=            
            
 



Chapter 4  Partial Differential Equations                                                                         
 
    2) Display some creativity in visualization of solution for 

     

( )

1

1
2

0

r 0.5
a 3000
f 70

u r 25r 20

=
=
=

= +

 

 
    3)   Give some physical interpretation of the problem 
 
11.      Superposition Principle for Non-Homogeneous Heat Equation with Non-Homogeneous Boundary  
    Conditions: 
 
    Heat Equation 

  ( )xF
t
ua

x
u

+
∂
∂

=
∂
∂ 2

2

2

     ( )t,xu :    ( )x 0,L∈ , 0t >    

 
          Initial condition:   ( ) ( )xuxu 00, =  
   
    Boundary conditions:  ( ) 0u 0,t g= , 0t >    (Dirichlet) 

          
( )

L

u L,t
g ,

x
∂

=
∂

 0t >   (Neumann) 

 
  Supplemental problems:  a)  steady state solution: 

           ( )xF
x
us =

∂
∂

2

2

    ( )xus :    ( )x 0,L∈    

   
             ( )s 0u 0 g=     

             ( )s
L

u
L f

x
∂

=
∂

 

    
         b)  transient solution: 

           
t

Ua
x
U

∂
∂

=
∂
∂ 2

2

2

    ( )txU , :    ( )x 0,L∈ , 0t >    

 
                   ( ) ( ) ( )xuxuxU s−= 00,  
   
             ( ) 0,0 =tU , 0t >        

 ( ) 0, =tLU  0t >  
 
  

  First supplemental problem is a BVP for ODE;  
  the second supplemental problem is an IBVP problem for a homogeneous Heat Equation with  
   homogeneous boundary conditions. 
 
  Show that ( ) ( ) ( )xutxUtxu s+= ,,  is a solution of the non-homogeneous IBVP. 
  Solve the problem with ( ) 0 LF x 0,g 1,g 3= = = and ( ) ( )xxxu −= 40 . 
  Sketch the graph. 

 
12.    a) Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem: 
 
     ( ) ( )X x X x 0µ′′ − =  

     ( ) ( )X 0 HX 0 0′− + =   Robin 

     ( )X L 0′ =     Neumann 
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Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=  
 
    Sketch the graph for L 2= , H 3= , and n 5=  and n 20= . 
14.    a)  Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem: 
 
     ( ) ( )X x X x 0µ′′ − =  
 
     ( )X 0 0′ =      Neumann 

     ( ) ( )2X L H X L 0′ + =   Robin 
 
      

Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=  
 
     Sketch the graph for L 2= , H 3= , and n 5=  and n 20= . 
 
15.    a)  Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem: 
 
     ( ) ( )X x X x 0µ′′ − =  
 
     ( ) ( )1X 0 H X 0 0′− + =   Robin 

     ( ) ( )2X L H X L 0′ + =   Robin 
 
     (do not try to get the solution given in the table for the Sturm-Liouville problem) 
 
  

Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=   in the interval ( )0,L  
 
     Sketch the graph for L 2= , H 3= , and n 5=  and n 20= . 
 
 
16.    a)  Reduce the following BVP to a Sturm-Liouville problem: 
     2x u 2xu u 0µ′′ ′+ + =  

     
( )
( )

u 1 0

u e 0

=

=
         

     and find eigenvalues and eigenfunctions . 
 

Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=  in the interval ( )1,e  
 
 
    Sketch the graph for n 5=  and n 20= . 
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17.    a)  Reduce the following BVP to a Sturm-Liouville problem: 
     2x u 3xu u 0µ′′ ′+ + =  

     
( )
( )

u 1 0

u e 0

=

′ =
         

     and find eigenvalues and eigenfunctions . 
 

Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=  in the interval ( )1, e  

 
 
    Sketch the graph for n 5=  and n 20= . 
 
18.    a)  Reduce the following BVP to a Sturm-Liouville problem: 

     xu u u 0
x
µ′′ ′+ + =  

     
( )
( )

u 1 0

u e 0

=

=
         

     and find eigenvalues and eigenfunctions . 
 

Use the obtained set of eigenfunctions for generalized Fourier series representation of the  
function 

 
     ( ) xf x xe−=   in the interval ( )1,e  
    Sketch the graph for n 5=  and n 20= . 
 
19.      The set of functions { }2 31,x,x ,x ,...  (monoms)  is linearly independent in ( )2L 1,1− .  

a) Using the Gram-Schmidt orthogonalization process, construct an orthonormal basis of 
( )2L 1,1− . 

    b) Use the obtained orthogonal set for a generalized Fourier series representation of the function  

          ( ) ( )
( )

1 x 1,0
f x

1 x 0,1
− ∈ −=  ∈

 

 
20.    Prove that if the set { }nϕ  is orthonormal, then it is linearly independent (show it for a finite set). 
 

21.    Show that the set 1sin n x
2 L

π  +  
  

 is orthogonal in ( )2L 0,L . 

 
22.    Find the solution of the IBVP for the Wave Equation 
                                                       

    2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂               ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
                            initial condition:   ( ) ( )0u x,0 u x=     

          
( ) ( )1

u x,0
u x

t
∂

=
∂

      

    boundary conditions:  ( ) 0t,0u = ,  0t >               (Dirichlet) 
          ( )u L,t 0,=  0t >    (Dirichlet)                                                               
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    Sketch the graph of solution with 2L = , 5.0a = , and  
 
    a)  ( )1u x 0.1= − , ( ) 2 2

0u x x ( L x )= −    
 

    b)  ( )1u x 0= , ( )0
6u x sin x
L
π

=     

    (observe the phenomena called standing waves) 
 
23.    Find the solution of the IBVP for the Wave Equation 
                                                       

    2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂               ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
                            initial condition:   ( ) ( )0u x,0 u x=     

          
( ) ( )1

u x,0
u x

t
∂

=
∂

    

   
    boundary conditions:  ( ) ( )1u 0,t H u 0,t 0′− + =  ,  0t >               Robin 

          ( )u L,t 0=     , 0t >    Dirichlet                                                                
   
     
    Sketch the graph of solution with L 5= , a 2.0= , and  
 
    a)  ( )1u x 0.2= , ( ) 2

0u x ( L x )= −    
 
    b)  ( )1u x 0= , ( ) ( )0 5u x X x=    (eigenfunction) 
     
24.     Set up and solve the IBVP for a 2-D Wave Equation in Cartesian coordinates.  
    Sketch the graph of the solution. 
 
25.     Solve the IBVP for the Heat Equation in polar coordinates with angular symmetry: 
 

    
2

2
2

u 1 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
    ( )t,ru ,  [ )1r 0,r∈ , 0t >  

 
                Initial conditions:  ( ) ( )0u r ,0 u r=               
    

    Boundary condition: 
( ) ( )1

1 1

u r ,t
k hu r ,t f

r
∂

+ =
∂

   0t >   

 
    And sketch the graph of solution for  
    1r 2= , a 0.5= , k 0.1= , h 12= , 1f 2= ,  and ( ) ( )2

0 1u r r r= −  
 
    (hint: find the first steady state solution) 
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26.    a)  Solve the IBVP:     

          

    ( )xF
t
ua

x
u 2
2

2

+
∂
∂

=
∂
∂      ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
    initial condition:   ( ) ( )xuxu 00, =     
           
   
    boundary conditions:  ( ) 1,0 ftu =    0t >                (Dirichlet) 
 

          ( ) ( ) 2,, ftLhu
dx

tLuk =+
∂  0t >   (Robin)                                                     

   
b) Sketch the graph of solution with       
 4L = , 5.0a = , 0.2k = , ( ) 5)2/Lx(xxu0 +−= , 10f1 = , 1f2 = , ( ) xxF =  

27.     Find the solution for vibration of the annular membrane with angular symmetry: 
 

    
2 2

2
2 2

u 1 u ua
r rr t

∂ ∂ ∂
+ =

∂∂ ∂
    ( )t,ru ,  ( )1 2r r ,r∈ , 0t >  

 
                Initial conditions:  ( ) ( )0u r ,0 u r=  

         ( ) ( )1
u r ,0 u r
t

∂
=

∂
              

    
    Boundary condition: ( )1u r ,t 0=    0t >   

         ( )2u r ,t 0=    0t >   
 
    And sketch the graph of solution for  
    1r 1= , 2r 2= a 0.5= , ( )( )0 1 2u r r r r= − − ,  and ( )1u r 0= . 
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