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4.1 Fundamental Principles of Engineering

Engineering models are built upon governing equations which usually are forms
of partial differential equations. Derivation of these governing equations is
based upon fundamental principles that have been developed through
observation of natural phenomena. In this chapter we focus on five fundamental
principles that are true for a Newtonian frame of reference. We present these
principles to illustrate the process of deriving governing equations. The chapter
then focuses on the solution techniques for partial differential equations.

We focus on five fundamental principles of engineering, upon which behavior of
the physical world can be modeled. An effective engineer must have a
theoretical and practical understanding of these principles. Rather than simply
enumerating the principles, we develop them in some detail. We acknowledge
that there are several different approaches to presenting these principles which
are used in the literature. We choose our convention only for consistency.

A fundamental concept which is central to all five principles is that of a control
volume. Since the universe is too large and complicated to model as a whole,
subsets of the universe are carefully chosen to examine and model
independently. These subsets are volumetric pieces of the universe without any
particular shape. They can contain mass, energy, momentum, and entropy. Mass,
heat, and work can cross the bounding surfaces, and forces can act on the
bounding surfaces. These volumetric pieces are called control volumes. There
are different classes of control volumes depending upon what is allowed to flow
across the boundaries. A general control volume referred to as an open system
can have mass, heat, and work cross its boundaries. The mass can carry energy,
momentum and entropy with it as it crosses the control volume boundaries. A
second type of control volume referred to as a closed system can have heat and
work cross its boundaries but not mass. The final type of control volume is an
isolated system. Mass, heat, and work cannot cross the boundaries, but forces
can act on these systems. Freebody diagrams are used to develop balances of
static forces and time-rate-of-change of momentum (inertial forces). These three
types of control volumes are used extensively to model and predict the behavior
of natural phenomena. There are five basic principles common to all natural
phenomena and control volumes, which are developed in detail in this section.
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4.1.1 Conservation of Mass
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Figure 1. Control Volumes

The basic principles are developed as balances of quantities which are inside or
are crossing the boundaries of a control volume. The first four basic principles
may be stated in a common form in terms of the rate of creation:

()

Creation rate rate increase

{Rate of } {Outﬂow} {]nﬂow} +{St0rage rate}
The Outflow and Inflow terms refer to the transfer of quantities across the
control volume boundaries either by mass flow or by direct transfer such as heat
or work. The storage rate increase refers to changes in the quantity stored within
the control volume boundaries. For conservation principles, the rate of creation
of a quantity will be zero. These principles apply to all fields and natural
systems and can be applied in many different contexts. Please note that lower
case letters in the equations denote that the respective quantities are per unit
mass.

The first basic principle we present is the conservation of mass. Within a control
volume, mass is neither created nor destroyed. The rate of creation is therefore
equal to zero:

Rate of Creation
=0 )

of Mass

This means that for a control volume, mass can flow through the control volume
or be stored in it, but cannot be created nor destroyed. We can represent this
principle mathematically in several different forms. We choose to show only
two, a discrete summation of mass quantities, and a continuous summation of
mass quantities. The discrete sum of mass flowing in, out and being stored in a
control volume is shown in equation (Eq 3):

Dy, = D, +%(mw):0 (3)

This equation states that the rate of change in mass flowing out of the control
volume minus the rate of change of mass flowing into the control volume plus
the rate of storage of mass must all balance to zero. Where m is the mass flow

rate and m,, is the amount of mass stored in the control volume.

The continuous form of this principle is given in an integral equation:
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in

L[P(ﬁ.ﬁ)dA} —L[p(f;.ﬁ)d/l} +%|:jpdl/:|:0 @)

out v

This equation is the continuous analog of equation (3), p is density, or mass per
unit volume, V-7 is the velocity of the mass flow in the outward normal
direction, 4 denotes a boundary integral where the boundary is the control
volume surface and ¥ denotes a domain integral where the domain is the volume
of the control volume.

For a differential control volume, equation (3) is posed as a summation of
differential quantities

0 0

u and v are velocity components in the x and y directions. The important concept
is that the balance of mass flowing in and out versus the mass storage must
always be zero for the conservation of mass principle.

4.1.2 Conservation of Energy (First Law of Thermodynamics)

This principle is similar to the conservation of mass, only energy is conserved.
Again the rate of creation is zero:

{Rate of } _o ©)

Creation

Stored energy is often classified into three common forms: potential energy (i.e.
gravity), kinetic energy (i.e. motion), or thermal energy (i.e. temperature).
Energy can also be transformed into heat and work. Energy can cross the
boundary of the control volume with mass flow, or through heat or work. A
quantifiable expression of the conservation of energy is in the form of equation
(6). Again we use the discrete and continuous forms of this principle:

W—Q+[Zrhe} —[Zrhe} +%(mem,):0 @)

The equation is more complicated because of the different forms that energy can
assume. The rate of work crossing the boundaries (or power), Y W , is
traditionally considered going out of the control volume and the rate of heat
transfer, Y Q , is considered going into the control volume. In equation (Eq 7),
the energy contained in the material entering and leaving the control volume
takes the forms of:

2

e:h+v7+gz (®)

Where / is enthalpy and is a combination of thermal energy, u, and flow work.
Thermal energy can come from temperature, chemical energy, etc. The other
two terms make up the rest of the types of energy that can be carried into or out
of the control volume, where V' is velocity, g is the gravity constant, and z is
height above a convenient reference plane. These three terms represent the

forms of energy: 4 (thermal energy + flow work), v° / 2 (kinetic energy), and gz
(potential energy). The energy stored in the control volume takes the form of:
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0
ot

4.1.3 Momentum Principle

(ph)+§(,0uh)+%(pvh)

2
ecv=u+v7+gz 9)

Where the storage can be in terms of thermal (u), kinetic ( v’ / 2), and potential
(gz) forms of energy. The continuous form of equation (7) is:

W — Q+Dp Vi edA} Dp edA} +—Dpe dV}:() (10)

in

The differential form is shown in equation (11).
1%
oP u8P+V8P oq, 94, O_Xa_u_o_ ov \A Ou Ov _0 (11)
ot ox 0Oy oOx Ox ox Yoy V¥

where ¢ is the heat transfer, P is the pressure, G is the normal stress, and 7 is the
shear stress. The subscript denotes the direction of the quantity.

The rate of creation equation is not zero when dealing with momentum. Instead
it is equal to the sum of the forces acting on the control volume.

(12)

Rate of Creation sum of forces acting
on the control volume

of Momentum

Once again, there is a discrete form and a continuous form of the equation
representing the momentum principle. Therefore equation (13) shows the
discrete sum form of the principle where all the terms are as defined before, and

F represents the force vectors acting upon the control volume.
[zma} [zm} < o), (sz (13)
out

Momentum is not generally conserved but can be created or destroyed by forces.
The balance of momentum within the control volume is offset by the forces
acting upon the control volume. Once again equation (Eq 14) shows the
continuous form of the momentum principle.

Lpf/(\?-ﬁ)edA} —va(v-ﬁ)edA} +%DMVL{216L (14)

out in

Again, all the terms are as before defined. It should be recognized by the student
that this is a vector equation; therefore, it represents one scalar equation in each
coordinate direction. The differential form for a two-dimensional system is,

O (p)e 2 a2 v =Py g 1.0, O
o P+ g () = (pw) = =20 pg 4 e

(15)
0 0 0 o oo, Ot
at(pv)-i-ax(pvu)-l-&y(pw) 8y+pg}"+ > + P
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dp Op .
where el represent pressure forces, pg., pg, represent gravity forces,
X oy
oo, Jo, . or, Or,,
< represent viscous normal forces, and —, represent shear
Ox oy ox = Oy

forces.

4.1.4 Entropy Principle (Second Law of Thermodynamics)

Again the rate of creation equation does not equal zero. Entropy is not generally
conserved but may be created by heat flow in or irreversibilities and may be
destroyed by heat flow out. The general rate of creation equation is as follows:

{Rate ofCreation} B {Creation or Zoss} N {The loss of available energy} (16)

of Entropy due to heat flow due to irreversibilities

The discrete and continuous forms are shown in equations (17) and (18)
respectively.

5] foe -t 52).

is entropy generation from irreversible processes.

n

where S,

hps(ﬁ.ﬁ)edA} —Ups(a.ﬁ)em} +%D‘pst}

Q} :

= Z— +S (18)
gen

out in cv |: T

The differential form is typically not used, since correctly specifying viscosity

and thermal conductivity to be positive in the other differential equations forces

the solution to satisfy the entropy principle.

4.1.5 Principles of State and Properties

Any given element of nature exists in a number of states. These states of matter
are important in determining the behavior of natural systems. The principle of
state and properties is defined as:

The state of a pure substance is determined by two independent properties

These relationships are often referred to as thermodynamic properties. These
properties are articulated in several forms:

1. Tabulated: (Steam tables, Phase change, etc.)
2. Algebraic: (Ideal gas, etc.)
3. Graphical: (Temperature-entropy diagrams, etc.)

These relationships are usually expressed in empirical forms due to the difficulty
of forming closed-form equations to represent them under all conditions. There
are other properties that are of interest to engineering. These properties also
define states and are used to determine behavior of materials. Yield strength and
hardness are examples of these other types of properties. The principles of state
and properties are fundamental to the understanding and modeling of natural
systems.
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4.2 Fundamental Phenomena in Engineering

4.2.1

4.2.2

4.2.3

4.2.4

4.2.5

4.2.6

4.2.7

4.2.8

4.2.9

Fluid Flow

Heat Flow

Friction

Motion

Elasticity/Plasticity

Engineering is the art and science of designing and building mechanisms and prediction
of the behavior of natural phenomena is key to designing and building effective
mechanisms and systems. In this section we present nine specific phenomena which
represent a majority of the phenomena encountered in engineering problems.

Fluid flow is the phenomena associated with the motion of fluids and gases. It involves
the intermolecular forces and collective body forces that occur when materials in the fluid
and gas states move. This phenomenon is important in aerodynamics, heating, cooling
and ventilation, piping, casting, etc.

Heat flow is a phenomena related to energy flow in the form of heat from one body to
another through conduction, convection or radiation. It occurs when there are differences
in energy states between two nearby bodies. Heat flow is important in chemical
processes, heating, cooling, refrigeration, thermodynamic cycles, etc.

Friction is a phenomenon that occurs when two bodies contact each other while moving
in relation to each other. It results in the transfer of energy in the forms of heat and noise
and typically reduces the relative velocities of the two bodies. Friction is important in
mechanisms, motion, etc.

The phenomena of motion can be studied relative to bodies in motion or on an absolute
reference frame. This phenomenon is observed in planetary systems as well as molecular
and atomic systems.

When material is deformed it can behave in an elastic manner; meaning it will return to
its original configuration or a plastic manner; meaning it will not return completely to its
original configuration. Elasticity and plasticity occur in all types of materials.

Electrical/Magnetic
Electrical and magnetic phenomena are related and are associated with the influence of
charges on electrons and protons found in atoms. These forces influence motion and flow
of heat and energy.

Thermal
Thermal phenomena deal with the exchange of heat, mass and work within systems. The
rate at which energy is transferred and work is accomplished or mass is moved
determines thermodynamic cycles.

Gravity
Gravity is the attraction of mass to other mass. It is important in planetary motion as well
as earth bound systems of motion and forces.

Behavior of materials

The behavior of materials is a phenomenon that involves states and properties, and how
the materials react to energy, deformation, electricity, etc.
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4.3.1 Domain

o (xvg,®)

-
r

closed set

connected set

Domain

Boundary

Consider the structure and notations of the domains of Euclidian space in which
partial differential equations model some physical processes in continuous
media. We need to recall some elementary topological definitions for its
rigorous mathematical description.

Point in Euclidian space R’ is denoted by a position vector
r= (x,y,z) eR’.

Scalar product of two vectors r, =(x,,y;,z,) and r, =(x,,y,,2, ) is defined by
(e, 0,)=x,%, +y, v, +2,2,

Then the norm of a vector r = (x, y,z).is defined as

[t =y(r.r)=yx’+y7 +2°
The distance between two vectors r, =(x,,y,,z,) and r, =(x,,,,z, ) is defined

with the help of the norm
p(r],r2)5|r] —r2| :\/(xz —x2)2 +(J’1 _J’2)2 +(ZI _22)2

These definitions can be reduced to the cases of 2-dimensional R’ and 1-

dimensional R’ Euclidian spaces.

Open ball in R’ with a center at r, and radius R is defined as a set of points

the distance from which to point r, is less than R

B(rO,R):{r eR3||r—r0| < R}

Point r, is an interior point of the set D — R’ if it belongs to D with some open
ball with a center at r,
B(r,,R)cD  for some radius R >0
The set is called open if all its points are interior.
The set A < R is called bounded if there exists point r, and radius R such that

B(r,,R)> 4
A sequence of points r, converges to point r (denoted r, - r or /{Ti r,=r)if
I{Ti |rk - r| =0
or, in other words, for any & > 0 there exists a number K € N such that
r, e B(r,¢) forall k>K .
The point r, is called a limiting point of set 4 if there exists a sequence
r, €A suchthatr, —>r,.

The closure of set 4 is a set A to which consists of all limiting points of set
A. 1If a set coincides with its closure then it is called closed (a closed set
includes all its limiting points). A bounded closed set is called compact.

A set is called connected if any two points of the set can be connected by a
piece-wise line belonged to the set.

A connected open set is called a domain.

Let D be a domain. Then its boundary S is defined as a set of all points from its
closure D which do not belong to D:

S={re1R<3|reD,re5}=13\D

Initial boundary value problems for classical PDE’s will be set in the domains of
Euclidian space. Typical examples of such domains:
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1-dimensional space R’ : Intervals D, =(x,,x,), D, =(0.L), D; =(a,) are domains in R'. Their

boundaries are sets which consist of points S, ={x,,x,},S, ={0,L},S; ={a},

consequently.
D D, 33
O e ey [ e a. X
X Xy © L a
2-dimensional space R’ : Open box D, =(0,L)x(0.M).

Boundary of D, consists of four segments

then the whole boundary is the union S=§,US,US;US,

Circular domain (in polar coordinates):
D, :{reR2|OSr<r0}

o

with the boundary

SZ:{re]R2|r:r0} orjust r=r,

Annular domain:
D, :{reR2|r, <r<r2}
with the boundary

S3:{reR2|r:r]}u{reR2|r:rz} orjust r=r,

3-dimensional space R’ : Examples of domains in 3-dimensional space R’ are a parallelogram and an
hollow parallelogram, a cylinder and an hollow cylinder, a sphere and an hollow
sphere:
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4.3.2 Heat Equation

1. Modeling of Heat Transport

2. Physical Concepts

In the philosophical treatise “On the Nature of the Universe”, Roman scientist
Titus Lucretius (100 B.C. — 55 B.C.) poetically presented the teachings of
ancient Greek philosophers-atomists Democritus, Epicurus, Leucippus, and
others, who lived in the 4-6 centuries B.C. They considered an example of heat
or cold propagation for proof of some statements of their theory. Assuming that
heat consists of tiny material particles, they end up with the following
observations: any material is porous (includes voids) because heat penetrates to
it; heat particles are extremely small because they are able to penetrate to very
dense materials (like metals or stones); heat particles are practically weightless
because a heated body does not change its weight noticeably; heat consists of
not-rarified clusters of particles because the heating process is smooth and
homogeneous.

We believe that there is no need to convince a modern reader that this theory is
completely wrong. It looks very naive to us. And we also are not going to
present here the contemporary physical theory of heat transport. But, probably,
some readers may be extremely surprised to discover that modern mathematical
modeling of heat transport is based precisely on the statements of ancient Greek
theory, and it is called thermodiffusion. Moreover, in modeling of heat
propagation in turbulent fluid flow, temperature is assumed to be an inert scalar
specie. So, we still can benefit from the achievements of great Greek thinkers,
which have not yet lost their value.

Heat is an internal energy contained in continuous media (which can be solids,
fluids, or gases).

Temperature is a measure of heat (scalar quantity); it is used for the description
of the heat distribution in the media (temperature field). Units for measurement
of temperature are K, C, F, and R.

Notations for temperature: in domain D of R’ , the non-stationary temperature
field is defined by a function

u(x,y,z,1) (x,y,z)e D R’
or vector notation may be used for space variables
u(r,t) reDcR’ t>0

We assume a temperature field to be a smooth continuous function of its
variables in D.

t>0

Z gradient  TW(r,t)

ta ugzwi-

Ptaur_

Level .f_r'io%umgfj
Surface 1

u(xy2t)=c

Gradient is a vector defined by

(6_u@_u@_uj, reDcR’

ox oy oz
The set of points in R’, which have the same temperature ¢ is defined by the
level surface u(x,y,z,¢)=c. Here, the gradient vector Vu(r,¢) is orthogonal to

Vu(r,t)= (1)

the level surface.
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In R’ for a fixed value of time 7, a temperature field in a plane is represented
by the surface

z=u(rz) reDcR’

z:u(x,y,t) (x,y)eDcRZ

Plane temperature fields can be characterized by:

Level curves which are obtained as the intersection of the surface z = u(x, y,t)

with the planes z=c, ceR.

Isotherms are the projections of the level curves on the xy-plane. They
constitute a set of points (x, y) € D satisfying the equation u(x, ¥, t) =c. The
medium in which all points have the same temperature is called the
isothermal.

The gradient vector on the xy-plane Vu is orthogonal to the isotherms,

therefore, Vu indicates the direction in which u increases most rapidly, and
- Vu indicates the direction in which u decreases most rapidly.

z Z=ulx,yt)

1 : ¥

isethe rmg

Thermal conduction (thermodiffusion) is a process of heat propagation due to
the presence of the temperature gradient in a medium: heat tends to propagate
from the regions with the higher temperature to the regions with the lower
temperature; and there is no heat transfer in the isothermal media.

Fourier Law. Thermal conduction is characterized by the heat flux vector
q(r,z) which represents heat flow per unit time, per unit area of the isothermal

surface in the direction of the decreasing temperature. For the qualitative
description of the thermal diffusion, we will use the following empirical law
formulated by the French scientist Joseph Fourier

q(r,1)==kVu(r,z) 2)

which assumes the linear dependence of heat flux on the temperature gradient
with the constant of proportionality &, termed thermal conductivity.

isothermal
sSurface

heat

flux radient
yu

s
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3. Heat Equation Consider a point r € D c R’ . Let ¥ be an arbitrary small control volume
containing point r.
Application of the fundamental principles to a heat transfer system yields the
following balance of conservation of energy for a control volume ¥ with the
Ye surface boundary S:

C9M+v01 Voluw EV

rate of heat flow | | rate of heat rate of heat
through the +| generation |=| storage

boundary S in volume V in volume V

The first term in this equation is caused by the diffusion of heat through the
boundary of the control volume due to the presence of a temperature gradient,
and it is defined by the heat flux through the surface (because n is the outward
normal vector to the surface, the minus sign is used to insure that positive heat
flux is into the control volume):

rate of heat flow
through the =- j q(r,7)-nds

S

boundary S

The second term can be caused by a production of heat inside the control
volume due to some source of energy g(r,t): chemical, electrical, radiative etc.:

[ rate of heat |

generation |= Ig(r,t)dV
| in volume V| g

The remaining term is evaluated as:

[ rate of heat |

storage = J pe, %V
Vv

in volume V

Then the energy balance yields the equation

~Jar.) nds + [ e, v [ pe, %v G)

Application of the divergence theorem to the first term gives us:
Iq(r,t)- nds = IV q(r,t)dV
S 14

Then the surface integral in the equation can be replaced by the volume integral,
and all terms can be combined in one expression

f{— V-q(r.t)+g(r)-pc, M}JV _0

) ot

Because this equation has to hold for an arbitrary control volume for which r is
an interior point, according to the theorem from vector calculus, the integrand
should be identically equal to zero

oulr,t
-V. q(r,t)+ g(r,t)— ee, %) =0
Replacing the heat flux vector by the temperature gradient according to the
Fourier law and moving the last term to the right hand side, one can get the
differential equation of thermal diffusion
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du(r,z)

ot @

V- [kVu(r,t)]+ g(r,f)= pe,

If thermal conductivity £ is a constant, then the equation may be rewritten in the
form

Vulr,t)+ g(lrc’t) _ aug,z) )

where the coefficient « is defined by

1 pc

2 P

ad==="r 6
poiaia (6)
If there are no heat sources in the considered domain, then the equation ( )

transforms to the homogeneous heat equation

(7

Since the heat equation was derived on the general assumption of propagation of
some specie in the continuous media due to the concentration gradient, it is valid
for any diffusion process where instead of temperature we use the other
characterization of a specie’s concentration.

Heat Equation in Cartesian Coordinates

82u(x,y,z,t) . azu(x,y,z,t) N qu(x,y,z,t) . g(x,y,z,t) . au(x,y,z,t) ®)
1 : o’ & o’ KT

Heat Equation in Cylindrical Coordinates

2 2
ii(rg_”j !l 0u 0 u+§:a26_u 9)
v

R +_
ror 2 00° o k Ot

Heat Equation in Spherical Coordinates

¢ ¢ 2
™y LZE rza—u + 21 2 Sin¢a—u +— 12 8lj+§:a26—u (10)
r or or) r°sin@ o¢ op) risin°0 06" k ot
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4. Thermophysical properties

Physical quantities involved in the Heat Equation have the following dimensions in SI units:

Temperature u [K ]
Heat flux "= —ka—T 12} heat flux increases with increase of k
Ox m
Thermal conductivity k LK} shows the ability of material to conduct heat
m .
Density Vel k_g}}
| m
. [ .
Specific heat ¢ i specific heat at constant pressure
L kg-K
o e k [ m? . .. .
Thermal diffusivity a=—- — ratio of thermal conductivity to heat capacity;
pc, | s
o compares ability of material to conduct energy
relative to its ability to store energy:
small o = slow change of temperature
high o = quick change of temperature
Coefficient in small a = quick change of temperature
. 2 1 pcp N .
Heat Equation a =—= P — high a = slow change of temperature
a m
Typical properties of common materials at room temperature (300K)
a a-10° P 2 k
Aluminum 100 80 2700 900 200
Copper 90 100 8900 390 400
Gold 90 130 19300 130 320
Steel 500 3 8000 500 15
Brick 1500 0.4 1900 835 0.7
Glass 1200 0.7 2500 800 1.4
Wood 2900 0.12 500 2500 0.15
Rock 900 1.3 2500 800 2.5
Sand 2000 0.25 1500 800 0.3
Water 2700 0.14 1000 4200 0.6
Beef 2774 0.13 1090 3540 0.47
Turkey 2774 0.13 1050 3540 0.5
Potato 2774 0.13 1055 3640 0.5
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5. Modeling of Boundary Conditions

Heat transfer through the boundary S of the domain D < R’ is modeled by
application of the conservation of energy law to the control surface (which can
be described as a closure of the domain C.S. which contains the boundary
(C.S.o S) and which has negligible volume, such that in a control surface we
can neglect volumetric storage and generation of the heat energy). A control
surface allows us to distinguish heat fluxes crossing the boundary S and divide
then into fluxes inside and outside the domain. Therefore, the rate of heat
transfer which crosses the control surface inside of the domain is equal to the
rate of heat transfer which crosses the control surface outside of the domain:

Qin = Qouf (1)

Locally, on a unit surface area basis, equation (1) results from conservation of
heat flux through the control surface

qin = qour (2)

Consider the function u(r,t) describing a temperature field in the domain

Dc R’ for t>0 and let the surface S be the boundary of the domain D .
Assume that heat transfer in the domain D is accomplished only by conduction
with a coefficient of thermal conductivity k. Therefore, the heat flux ¢, is
described as a component of the flux vector in the normal direction to the
surface §

ou
—ag-n=(-kVu)-n=—k=
q,=9q-n ( u) n k@n

N

where n is the outward unit normal vector to the surface S .

Let the media outside the domain D be characterized by the uniform
temperature u, of the transparent to thermal radiation fluid flow and

the temperature u . of the large surroundings which is emitting thermal

sur
radiation as a black body. Then heat transfer from the surface S is
accomplished by two modes of heat transfer — convection and radiation

qout = qconv + ql‘ad (3)

Convective heat flux is described by Newton’s law of cooling

qc‘onv = h<u|s _uw) (4)
where £ is a coefficient of convective heat transfer and u s is the surface

temperature.

Net radiative heat flux at the surface is described by Stefan-Boltzmann Law

qrad = SO-(UE - u:ur ) (5)

where ¢ is the total emissivity of the surface (physical property of the surface,

0<e<l), 0c=567-10"° [ } is a Stefan-Boltzmann constant, and

214
m K

temperature is measured in the absolute temperature scale (Kelvin).
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Then equations (2-5) yields a boundary condition

0
_ka—Z = h(u|s —uw)+80(u|z —u:ur) (5)

S

This is the most general boundary condition for the heat transfer equation.
Because in the right hand side of the equation, surface temperature appears in
the 4™ power, equation (5) is non-linear. It is more desirable, to have a linear
boundary condition. Therefore, the radiation part of equation (5) either is
neglected (if the contribution of radiation to the energy balance is small) or
linearized, for example, on a basis of temperature u

sur
_ L 34\ 3 _ —h _
Graq = €0\ U s Uy, | =¢€0(U S Uy —Ug, | = EOU, U S Uy | = Mga (U K Uy

If the fluid and surroundings have the temperature u«_, then the linearized

boundary condition can be written with some artificial coefficients
h=h, +h,

conv

o
on

= h(u|s ~u,) (©6)

N

This is the classical boundary condition of convective type for the Heat Equation
in Heat Transfer Physics. It can be rewritten in the form used in the settings of a
BVP for PDE as

{ka—uﬁ-hu} =hu,,
N

on

or, if the right hand side is denoted by a single function f (in general, f is a
function of location on the boundary and time f = f(r,t), reS,s>0), then

ou
[ka+hul =f 7

This is a classical boundary condition of convective type for the Heat Equation
in the theory of Equations of Mathematical Physics (called a mixed boundary
condition, boundary condition of the 3" kind, or Robin boundary condition).

Special cases of boundary conditions:

1) {kg—u+ hu} =( The right hand side is equal to zero. A boundary surface
n s

is exposed to the environment of zero temperature. Physically this condition is
not often realized; but it can be obtained after the change of dependent variable,
when in the heat equation, the temperature u« is replaced by excess temperature

O=u—-u,,orby d=u—u_ where u_is a steady state temperature satisfying
the non-homogeneous boundary condition.

2) u|s = const A thermostated boundary, for which temperature is

supported by a very high value of the convective coefficient # (divide the
equation by % and consider the limit when 4 — o).
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Insulated boundary

insulation = line of symmetry

3) u =0 There is no heat flux through the boundary (this is

nig
accomplished by insulation of the boundary outside the domain with a material
of negligible effective thermal conductivity). This condition also can be used at
the surfaces of symmetry of the considered domain. Then it is sufficient to
solve the problem in the symmetrical part of the domain where the surface of
symmetry becomes a part of the boundary.

Typical values of physical parameters involved in boundary conditions

1) Coefficient of convective heat transfer 4 { i } :

m’K
Gases Liquids
Free convection 2-20 10-100
Forced convection 20-200 50-10,000
Convection with
boiling or condensation 1000-50,000

2) Total emissivity & of some materials (at room temperature) is a surface
property which can depend on material, surface temperature and surface
roughness:

Polished or foil aluminum 0.04
Anodized aluminum 0.8
Polished steel 0.15
Brick (red) 0.95
Paints (from white to black) 0.9-0.98
Concrete 0.9
Wood 0.8-0.9

3) Typical values of conductivity k were presented in the section 4.3.2 4.
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6. Mathematical dimension in modeling heat transfer

All physical models for heat transfer are in 3-dimensional Euclidean space.
Mathematical dimension of the physical model determines the number of spatial
variables in the function u describing the temperature field in the system; and it
depends on the form of the domain and the choice of coordinate system. It is
important to minimize mathematical dimension of the model because it can
reduces the difficulty of solution.

In many cases the “mathematical model” for a reduced dimension of the
problem is not consistent with the physical sense of the model. For example, for
adoption of a 2-dimensional model for heat transfer, the following explanation is
given in a textbook of Engineering mathematics: “the two faces of sheet metal
are insulated, and the sheet is so thin that heat flow in it can be regarded as two-
dimensional. The edges of the sheet are maintained at constant temperature...”
Or for a 1-dimensional model: “A rod has its lateral surface insulated against the
flow of heat and is so thin that heat flow in the rod can be regarded as one-
dimensional. Its left end is maintained at a constant temperature, and its right
end radiates freely into air of constant temperature”.

This approach to the dimension of problems in engineering mathematics
textbooks is typical, but completely incorrect. First, it has the meaning of an
approximation of the physical domain — no physical rod is a mathematical line.
Second, it is inconsistent with the physical process of heat transfer. The thermal
resistance of the material is increased with the decrease of cross-sectional area in
the direction of heat flow — and therefore in the limit, there will be no heat flow
along the line.. Also emission of radiation from the end of a rod of negligible
cross-sectional area is also negligible. For the case of the sheet metal, thermal
resistance in a direction of the sides is negligible compared to the direction
along the infinitely thin layer — and no material can provide in this case a perfect
insulation (even in a vacuum, there will be losses of energy due to thermal
radiation from the surface).

At the same time, there is the other approach to determination of the
mathematical dimension of the physical domain, which is not an approximation
and which is consistent with physical processes. For example, consider steady
state heat conduction in a plane wall with dimensions L,W,H in the directions

of the axes of the Cartesian coordinate system (x, y,z) . Suppose that for a large

wall, the thickness of the wall L is much smaller than other sizes W and H.
Let the sides of the walls defined by planesx =0 and x =L be maintained at
constant temperatures u, and u, respectively , or be exposed to alarge

convectional environment at uniform temperatures u,,, and u,, respectively .
The temperature gradients in the directions y and z are negligible, heat transfer

occurs exclusively in the direction x, and, therefore, the Heat Equation includes
only the derivative with respect to the variable x . It is sufficient to solve the
problem as 1-dimensional; and the determined temperature profile will be the
same along any line across the wall. Boundary conditions for this problem are
set from the physically consistent heat transfer on the plane boundary.

Mathematical dimension of the heat transfer problem can also be reduced by the
appropriate choice of coordinate system. Thus, for heat conduction between two
concentric spherical surfaces maintained at constant temperatures, the problem
becomes 1-dimensional in the spherical coordinate system, because of the
angular symmetry the derivatives with respect to angular variables disappear.
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We list some other typical cases where mathematical dimension of the problem
can be reduced:

A long rectangular column or cylinder of non-circular cross-section — to a 2-
dimensional problem in the plane.

A long cylinder of circular cross section — to a 1-dimensional problem in polar
coordinates.

An appropriate 1-dimensional approximation can be made for elongated
domains of finite cross-sectional area with characteristic length 6 (diameter for
circular, and average width for rectangular cross-section) exposed to a
convective environment with the coefficient of convective heat transfer 4. If

the ratio % < 0.1 (so called the non-dimensional Biot number), then the typical

error in the heat transfer predictions is less than 1%. The lateral surface in this
model is not considered as a boundary and heat transfer through it is included
into the equation as a heat source. Boundary conditions are set at the ends of the
domain in correspondence with physical heat transfer through the cross-section

of the rod.
o
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4.4 Classical Initial-Boundary Value Problems (IBVP)

Initial-Boundary Value Problem

Classical equations of mathematical physics are modelled by three major 2™
order PDE’s with one unknown function u(r, t) ,reDcR’, t>0:

Laplace’s Equation (LE) Viu=0 (D)
. 2 , Ou
Heat Equation (HE) Vu=a > 2)
. N , 0%u
Wave Equation (WE) Vu=a o 3)

defined in the domain of Euclidian space r € D c R’, and let S be a boundary
of the domain D .

These equations can model the particular physical phenomena.

The mathematical problem which models a physical phenomena should be set in
such a way that its solution has a proper physical meaning and it is unique (it
also has to be continuously dependent on the boundary conditions). The
classical equations of mathematical physics are solved subject to initial and
boundary conditions set in the way to provide a physically reliable unique
solution describing the model. In this case, the problem is said to be well-set (or
correctly formulated. Otherwise, it is called an ill-set problem (although
mathematicians still study the ill-set problems, in most cases, they have no
practical interest).

We will consider only well-set IBVP’s for classical PDE’s which have the
following formulation:

Find u(r,z) re DcR’, >0 such that

1. u(r,t) satisfies the PDE in D for >0
2. ur,t) satisfies initial conditions in D for =0

3. u(r,z) satisfies boundary conditions at r € § for >0

Setting of the IBVP for classical PDE’s is summarized in the following table:

Note: 1f D is not a bounded domain and has no boundary (i.e. D =R’), then no
boundary condition is set (however, some restrictions on the solution may be
applied, such as a requirement of a bounded solution, etc.).

That is the most general set of IBVP for classical PDE’s. Next, we will consider
the specific details and treatment for individual equations.
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Is

Laplace’s Equation Heat Equation Wave Equation
2. 2
Vu=0 Vzu—aza—u Vzu:azau
ot ot’
reD
reD,t>0 reD,t>0
Initial Conditions
none u(r,O)z uo(r) u(r,O)z uo(r)
oulr,0
) )
reD
reD
Boundary Conditions
I Boundary condition of the I* kind (Dirichlet )
ul, = /() value of unknown function u
for ¢t>0 is specified at the boundary
flet) reSt>o0
u_ll :3(

for one-dimensional case x € [0,L]:
u(0,t)=f,(1)
u(0,t)= £, (¢)

I Boundary condition of the II" kind (Neumann )

for ¢>0

ou

— reS,t>0
on|g

/(1) f(e1)

for one-dimensional case x € [O,L] :

oul(0,t
=)
ou(L,t
0
III Boundary condition of the III" kind (Robin )
for >0 [kg—u+hu} =f(t)  flrt) resSt>0
n s

for one-dimensional case x [O,L] :

8u(0,t) (O,t)zf,,(t)

—k———=+hu
ox

Gu(L,t)

ox

k

+hu(L,t)=f,(¢)
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4.5 Sturm-Liouville Theorem

4.5.1 Banach and Hilbert Spaces

1. Normed Space

2. Metric Space

The systematic presentation of the Banach spaces is given in the
Chapter 10 “Banach Spaces”. Here, only the necessary for our
purpose material on the normed vector spaces is presented.

Let V' be a vector space over field of real numbers R .

Norm is a map |||| :V — R such that forall u,veV and ceR

Lo =0
lu||=0 " if and only if u =0
2. e =fell]

3. ||u + v" < ||u|| + ||v|| (triangle inequality)

Example:  in the space C [a,b] of all continuous functions defined in

the closed interval [a,b], the norm can be defined as

71 = max | (x)

B (it is called the maximum norm)

Vector space V' is a metric space if there exists a function
p:VxV — R such that for all u,yv,wel

1. p(uu)=0
p(u,v)>0 for u=v
2. p(uv)=p(v.u) (symmetry)
3. forall p(u,v)< p(u,w)+p(w.v) (triangle inequality)

p(u,v) is called the distance between u,veV .

Vector space with introduced metric is called a metric space.

In the normed vector space the metric can be introduced as

)=l
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3. Inner Product

4. Convergence

5. Orthogonality

Inner product is a map () :VxV — R such that for all u,v,welV’

1. (uv) = (vu) ( for complex (uv) = (vu) )
2. (au+ﬁv,w):a(u,w)+,8(v,w) a,felR
3. (u,u)ZO

(v.u)=0 ifandonlyif u=0

Vector space with introduced inner product is called an inner product
space. In inner product space the norm can be defined as

||u|| = J(u.u) forall ueV

Let V be a normed (metric) space and let f,,f eV , k=12,.

The sequence f}, f,,... convergesto f if

l{im"fk—f":O or p(f,.f)—>0 as k— oo for metric space.

The sequence f, €V is called the Cauchy sequence (convergent in
itself) if

lim|f,=f,|=0 o p(f;.f,) >0 as k—o and m— oo

m—»ow

The vector space V is called complete if all its Cauchy sequences are
convergent in V .

A complete normed space is called the Banach space.
For example, R" is a Banach space with |[x]|=/x] +---x; .

A complete inner product space is called a Hilbert space.

In the inner product space u,v eV are called orthogonal if (u,v)=0.

If set {u, } €V consists of mutually orthogonal vectors, (u,,u,, )=0

when & # m , then this set is called an orthogonal set.
If in addition, |u,[ =7, then set {u,} €V is called orthonormal.

Orthogonal set is linearly independent set (exercise).

If set {uk} €V is linearly independent then it can be converted to the
orthonormal set {v, } € V" with the help of the so called Gram-Schmidt

orthogonalization process:
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Gram-Schmidt process

6. Fourier Series

u
_ 1
v, =o—
]
u, (uz,v])v,
v, =
e =Gz
S uk—(uk,v,)vl—(uk,vz)vz—...—(uk,kal)kal
. =
”uk—(uk,v,)vl—(uk,vz)vz—...—(uk,kal)kaln

This algorithm can be formalized with the help of Gram’s determinant:

(“puk) (uZ’uk) (”k’”k)

Orthonormal vectors are determined by the formula

(”1’”1) (”2’”1) (”k’”1)
] () () o ()
v = — . . . . k=12
) (upu) (15,1,
u; u, U,

The orthonormal set {u, } €V is said to be complete if there does not

exist a vector v# 0, velV such that it is orthogonal to all vectors
from {u, }.

Let {u,} €V be an orthonormal set.

D (f.u; )u, is called the Fourier series (generalized Fourier series)
k=1
(fou) are called the Fourier coefficients, ¢, =(f,u,)

Theorem  The Fourier series Y (f,u, Ju, is convergent to the
k=1

function f € I’ (a,b) if and only if

i( A )2 = || f ||2 (Parseval’s equation)

k=1

Proof: Let f(x)= i(f,uk)uk

k=1

i =)
:(:Z(f,uk)”wg(f:”k)”kj
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7. Vector Space I’

= Zc,f (uk,uk)+22 c.C, (ukum)

k=1 k#m

Let {u,} e L’(a,b) be an orthonormal set .

If for any f e L’(a,b) its Fourier series

i(f’”k )2

k=1

converges to f in L’(a,b), then {u,}is said completein L’(a,b).

Consider a particular case of Equation 3.3 from Definition 3.13 (p.205),
with p=2 and interval / =[a,b]:

b
I (ab)= {go :(a.b)—> RHwZ (x)dx < oo}
Inner product in vector space L’ (a,b): For u,ve L’ (a,b) define:

b
(u.v)= Iu (x)v(x)dx inner product in L’ (a,b)

b
(u,v)p = _[u (x(x)p(x)dx weighted inner product in L’ (a,b)

with the weight function p(x)>0

Inner product vector space L’ (a,b) belongs to the class of Hilbert

spaces.
Introduced inner product induces the norm in L’ (a,b) :

b

o= Ju? ()

a

I, = fa (x) p (ki

a

Historically, the first complete set was used by Fourier set of

. . . 1 1 1 .
trigonometric functions {—,—cos kx,— sin kx} ,k=12,. in

N2z r Jr

the interval (0, 27r) .

The complete orthogonal sets used in the solution of PDE will be
generated by the solution of the Sturm-Liouville problems.
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8. Exercize:

The set {I,x,xz,x3 } is linearly independent in L’ (=1,1) .

a) Using the Gram-Schmidt orthogonalization algorithm with inner
product

(1) = jju(x)v(x)dx

construct an orthonormal set in L’ (-1,1 )

(the obtained set will be the set of the Legendre polynomials up to the
scalar multiple).

b) Using the Gram-Schmidt orthogonalization algorithm with inner
product

construct an orthonormal set in L’ (~1,1)

(the obtained set will be the set of the Tchebyshev polynomials up the
the scalar multiple).

¢) Use the obtained orthonormal sets for generalized Fourier series
expansion of the function:

-1 xe (—1,0)

f(x):{l xe(0,1)

Compare the results for truncated series with 2,3,4 terms. Make some
observations.

Lvov University where Stefan Banach worked in 1919-1945



Chapter 4 Partial Differential Equations

9. Generalized Fourier Series

Eigenvalue Problem

Recall from Chapter 3, that functions u(x)e L,[x,,x,] can be represented by

generalized Fourier series in some interval [xl , xz]

u(x) =2 (+) 0

Where coefficients are

Iu(x)¢n (x)p(x)dx

Xy

:[2¢,f (x) p(x)dx

unz

and the set of functions {¢n (x)} is complete in L, [xI,xZ] the set of orthogonal

functions over the inner product with a weight function p (x) :
.[2 ¢m (x)¢n (x)p(x)dx =0if m#n
Xy

Completeness of the set {¢n (x)} in L,[x,x,] means that any function

u(x)eL,[x,,x,] can be represented by generalized Fourier series. Conditions

for that are established in Chapter 3 by the Dirichlet Theorem. In these
equations we used the definition of a weighted inner product in the space
L, (x,,xz)

(u, v)p = ju(x)v(x)p(x)dx 2)

X,

which can be used to define the norm in space L, [x,. x, | as

2

12
|, = {I u (X)p(x)dxl 3)

Analytical solution of IBVP’s for PDE’s will require the construction of such
complete orthogonal sets of basis functions which are used for deriving
solutions, which satisfies the differential equation and initial and boundary
conditions. First, we will see the appearance of already known sets which are

. iy . . nw . Nnx
used in traditional Fourier series {I,cosTx}, {sznTx} and sets for quarter-

range expansions. Then novell sets will appear which happen to posses the
same property of orthogonality and completeness. Generation of such
orthogonal sets is provided by the solution associated with a PDE eigenvalue
problem for the differential operator L acting on one of the space variables.
This eigenvalue problem is formulated in traditional form (which we have
already seen in linear algebra for eigenvalue problems for linear transformations
defined by matrices):

Find the values of parameter 4 for which the operator equation
Lu=Au 4)

subject to boundary conditions has a non-trivial solution.

Under some conditions, this eigenvalue problem will generate the required set of
orthogonal functions. These conditions are formulated in the fundamental form
for analytical theory of PDE’s as the regular Sturm-Liouville Theorem.
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4.5.2 Regular Sturm-Liouville Problem

Sturm-Liouville Operator

4.5.3 Sturm-Liouville Theorem

Consider the homogeneous differential equation

'] + [g(x)+ Ap(a)he =0 )
subject to boundary conditions

a1u(x1)—b1u'(x1): 0 (6)

au(x,)+bu'(x,)=0 (7)
where coefficients a,,a,,b,,b,>20,and a,+b, >0, a,+b, >0 ®)
and functions p(x) >0, p(x) € C[xl , x2] C)

r(x)>0, r(x)eCI[x],xZ] (10)

glx)e Clx,,x;) (11

Find values of the parameter A for which differential equation (5) subject to
boundary conditions (6,7) has a non-trivial solution

u(x)e Cz(xvxz )UC1 [x,,xz], u"(x)e L, (xpxz)
(Remark: coefficients in boundary conditions (6-7) are assumed to be non-

negativea,,a,,b,,b, >0, because we want them to represent physical
properties of the medium).

Consider the differential operator L :C” (x, x, )uc! [x1 , xz] - L, (x1 , xz)

Lu= —é[(ru'), +qu} (12)

which rewrites the Sturm-Liouville problem in the form

Lu=Au (13)
This is an eigenvalue problem for the differential operator L consisting in
finding the values of parameter A (eigenvalues) for which the operator equation

(13) subject to boundary conditions (6-7) has non-trivial solutions
(eigenfunctions).

The following statements hold for a Sturm-Liouville Problem:
1) The differential operator L:
if u, and u, are solutions of SLP (5-11), then
a) operator L is Hermitian (also called self-adjoint or self-conjugate)
(LuI,uz)p:(u],Luz)p (14)
b) operator L is positive

(Lu,u), >0 (15)
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Proof:

2) Eigenvalues have the following properties:

n=20,12,... for which the Sturm-

Liouville Problem has non-trivial solutions u, (x) (eigenfunctions);

a) there are infinitely many values A, ,
b) all eigenvalues are real, 4, € R;

c) all eigenvalues are non-negative, 4, 20 ;

d) 4,=0 onlyif ¢g=0 and a, =a, =0 (Neumann boundary conditions)
e) eigenvalues can be organized in increasing order 0 < A, <4, <4, <...

3) Eigenfunctions have the following properties:

a) all eigenfunctions can be chosen real u,(x): R — R

b) if u,(x) is an eigenfunction then cu,(x) for any ceR is also an
eigenfunction (eigenvalue A, generates a linear eigenspace);

¢) dimension of each eigenspace is one (all A, are simple — there is only
one linearly independent eigenfunction corresponding to A4, );

d) the set of all eigenfunctions {u" (x)} is orthogonal with respect to the
weight function p(x)

(um,u”)p =0 ifm=#n

e) the set {un(x)} is complete in L, (xI,xZ) ie.
forany f e L,(x,,x,) Fourier series ickuk(x)_) £(x)
k=0

(f’”k)p

where coefficients ¢, =
(”k U ) »

) if u, (x)is an eigenfunction corresponding to the eigenvalue A, then
u, (x) has exactly n zeroes in the open interval (x X, );
between two successive zeroes of u, (x) and also between x, and the

first zero and between x, and the last zero there is exactly one zero of

un+1 (‘x) :

1a)Llet u, and u, be two eigenfunctions. Therefore, they satisfy equation (13)
with boundary conditions (6-7) in which assume that a,,a, >0 (a similar

derivation is valid also in the assumption b,,b, >0 or their combination), then

r b !
Lu, = Zu, a/”/,z(x1)_b1”1,z(x1):0 = ”1,2(x1):_1”1,2(x1) (17)

a

’ b !
Lu, = Au, 02”1,2("2)_[72”1,2(352):0 = ”1,2(x2):a_2”1,2(x2) (18)
2

Consider (Lu ;U ),; - (u o Lu, )p (use equation (12))

[—i{(ru]') +qu, D u, pdx — I [—i[(ru;) +qu, Du]pdx (expand integrands)
p p

X,
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X3

- J[_r’u;uz —rulu, —quu, +r'ubu, +rubu, +qu2u1]dx (organize terms)

x;
= J +r(u U, —uju, +uu —u;u})]dx (add uuy —uuy)
- I[ wiu, —uu, ] dx (integrate expression)
= [r(uZuI —uu, )L —[r(u;ul —uu, )L (use equations (17,18))

' b 2 ’ b ’ ' b ’ , b ,
= —r(xz )”2(x2 )_2”1(x2)+r(x2 )"‘l(xz )_2”2 (XZ)_r(xl)uz(xl)_Iul(xl)+r(xl)ul(x1)_1u2(xl)
a; a, a; a,;
=0
Therefore, (Lu,,u, )p =(u,,Lu,), and the operator L is Hermitian. [

)2

1 b) operator L is positive

Lu U, .[u" x)dx >0 (because from condition (9), p(x) >0)m

2 b)Let A, be an eigenvalue and u, be the corresponding eigenfunction, then

Lu, =Ju,. Because the operator L is Hermitian, (Lu,,u, ),, =(u,,Lu, )p.
Then

/1"(14",u") :(/1 u,,u, ) :(Lu",un)p z(/lun,Lun) z(u Au ) Zn(un,un)p

n"n’ n"n

= 4, = /Tn . Therefore, eigenvalue A, isreal, 4, eR. ]

2¢)Let A,be an eigenvalue and u, be the corresponding eigenfunction, then
Lu, = Au, . Consider

(Lu u) (/lnun,un)p=/1 u,,u ||un|| Then

n’"n n n’ )1

Lu,,u,
A, = q >0 (because the operator L is positive (2b)) =
u

n

3d)Let u, and u, be two eigenfunctions: Lu, = Au,and Lu, = Au,.

Consider a, (um,u,, )p = (/lmum,u,, )p
= (Lum 4 un )p
=(u,, Lu, )p (operator is Hermitian)
= (um 4 ﬂ’nun )[)
=2,(u,.u, )p (eigenvalues are real)

Therefore, (/Im -4, )(um,un )p =0
If m#n,then A4, -4, #0 and

(um’un )p = 0

Therefore, eigenfunctions u,, and u, are orthogonalif m#n.
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3 f) Illustration of this property with the eigenfunctions u;(x) and u,(x)

obtained from the solution of equation (20) with Robin-Robin boundary
conditions in the interval [0, 2]

1 b s T
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4.5.4 Reduction to self-adjoint form

If the linear differential equation with parameter A is given in standard form
a, (x)u"+a,(x)u’ +[a2 (x)+/1]u =0
then with the help of the multiplication factor
J‘ a;(x) dx

e )
)=
a,(x)
it can be reduced to the self-adjoint form

[ao (x),u(x)u']' +[a2 (x),u(x)—i-/l,u(x)] =0

The corresponding coefficients of equation (5) can be identified as

a(x)
ja:)(x)dx 20

(19)

r(x)za,,(x),u(x):e

J.a]Ex;dx

ea()x
plx)=u(x)=——>0 if a,(x)>0
()= #()=E >0 T

4.5.5 Sturm-Liouville problem for equation X'—puX=0

Consider a boundary value problem which is important for solution of classical
PDE’s in the Cartesian coordinate system:

X"—uX =0 xe[O,L] (20)
P S —k, X'(0)+ b, X (0)=0 @1)
k,X'(L)+h,X(L)=0 (22)

Depending on coefficients, boundary conditions can be in one of the three
classical types. There are nine possible different combinations of boundary
conditions which yield different solutions.

We can see that equation (20) can be written in the Sturm-Liouville form (5)
which produces non-negative eigenvalues only if the separation constant  is

assumed to be non-positive = -1’ :
-[x]=2x (23)

In this equation, we identify: r=1>0,4=0, p=1>0. The general solution
of this 2™ order homogeneous linear ODE with constant coefficients is given by

X (x)=c, cos Ax+c, sin Ax (24)
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The solution of Sturm-Liouville will consist in finding non-trivial solutions
which satisfy boundary conditions (21-22). Consider some particular cases of
boundary conditions:

1) The case of Dirichlet-Dirichlet boundary conditions:

X(0)=0 Dirichlet (25)
X(L) =0 Dirichlet (26)

(Remark: mathematically, Dirichlet boundary conditions are obtained from the
general case, when in equations (21-22) coefficients k, =k, =0 ; but,

physically, it corresponds, for example, to zero thermal conductivity in the
domain for heat transfer which is not acceptable for modeling. For physical
consistency, we rewrite equations (21-22) in the form

—l;l—jX’(O)JrX(O):O

%X’(L)+X(L)=()

and assume that coefficients of convective heat transfer are very high,
h,,h, — oo, which corresponds to a physically acceptable assumption of

negligible convective thermal resistance at the boundary of the domain. This
case is treated as thermostating of the boundaries).
Substitution of solution (24) into the first boundary condition (25) yields

X(O): c,cos A0 +c, sin A0 =0
¢, I+c,-0=0
And from this the first coefficient ¢, =0.
Then general solution (24) reduces to
X(x)=c,sinAx 27)
Substitute it into the second boundary condition (26)
X(L)= ¢,sinAL=0
Because one coefficient in the solution (24), ¢, is already assumed to be zero,
for a non-trivial solution X (x), the second coefficient should not be equal to

zero. Therefore, the following equation should be satisfied

sinAL =0 (28)
This equation has infinitely many solutions
AL =nx

where 7 is any integer. But we have to restrict ourself only to positive values
of n (because negative values with odd function (27) do not satisfy equation
(23), and zero yields the trivial solution). Therefore, the values of parameter A
for which we have non-trivial solutions of BVP (23,25,26) are eigenvalues

/1:% n=123.. (29)

Then corresponding to these values of parameter solutions are eigenfunctions

X, (x)zsin/ln)c:sin%x n=123,.. (30)

According to the Sturm-Liouville Theorem, this set of functions should be
a complete set of functions orthogonal on the interval [O,L] with the weight

function p =1, which yields already known Fourier sine series expansion

u(x):iaksinﬂx where ak:—:—_[u(x)sin%xdx
k=1
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The Sturm-Liouville Problem (20-22) with Neumann-Neumann boundary

.. . . nw S
Conditions generates a set of eigenfunctions {],cosTx} which is known as a

Fourier cosine series. The combinations of Neumann-Dirichlet and Dirichlet-
Neumann boundary conditions generate sets of eigenfunctions familiar from
quarter-range Fourier expansions. Other combinations of boundary conditions
do not produce traditional sets. Consider, for example, Robin-Dirichlet
boundary conditions:

2) The case of Robin-Dirichlet boundary conditions (n10.mws):

—k,X'(0)+h,X(0)=0 Robin (denote H, =% ) (€2))
1

X (L) =0 Dirichlet (32)

Application of the second boundary condition (32) first, eliminates one of the
constants immediately, if the general solution (24) is rewritten in equivalent
shifted form:

X(x)zc, cosi(x—L)+c2 sin/i(x—L) 24°)
Substitution of solution (24) into the second boundary condition (32) yields
X(L): c,cos A0 +c, sin A0 =0
¢, 1+¢,-0=0
from which yields that the first coefficient ¢, = 0. Then the solution reduces to
X(x) =c, sinﬂ(x—L)
Application of the Robin boundary condition requires also its derivative
X’(x) = czﬁcosﬂ,(x—L)
Thenat x=0
-X'(0)+H,X(0) =-c,AcosA(0—L)+H, sinA(0—L)
=c,(-AcosAL—H, sinAL)=0
For the non-trivial solution ¢, # 0, and, therefore
Acos AL+ H, sin AL =0 (33)
is a characteristic equation for eigenvalues 4,. There are infinitely many

positive roots of this equation (see example for L=2,H, =3)

i TN AN AN A
18% NS O\ 2 \/15\/ a0

Though A, =0 is aroot of the characteristic equation, it is not an eigenvalue,

because it produces a trivial solution.
The set of eigenfunctions for this Sturm-Liouville Problem is

X, (x)={sind,(x-L)} n=123.. (34)
where eigenvalues A, are positive roots of the characteristic equation (33).
The norm (3) of eigenfunctions can be evaluated as

Xz 12 . 12
{I x; (xﬁx] {%%} (3)

n

|,

According to the Sturm-Liouville problem set (34) is complete and can be used
for expansion of functions in a generalized Fourier series (1):

u(x):iuan (x):iun sin, (x—L) (36)
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where

;[u(x)sin A, (x—L)dx

u =

! L sin (24,L)
2 4

Example  Consider expansion of the function u(x)=exp(x/2) on the
interval [0,2]. The graph shows the function u(x) and its

expansion in a Fourier series with /9 terms in summation:

D_ T T T T T T T T T
o 02 04 06 0B 1 12 14 1B 18 2
¥

With an increase of the number of terms (the next graph shows an

approximation with 64 terms in the summation (36)), approximation by
truncated Fourier series improves, there still is a presence of Gibb’s phenomena
at the right boundary because eigenfunctions satisfying homogeneous Dirichlet
boundary conditions are zero at x = L and there is a discontinuity with the non-

zero value of the function u (x)at this point.

3_

251

2_

0 02 04 0B 08 1 12 14 16 18 2
X

Results for all combinations of types of boundary conditions for Sturm-Liouville
problems (20-22) are collected in the table Sturm-Liouville Problems. The table
includes the kernel of integral transforms based on the corresponding

boundary value problem, which in Chapter 6 will be used for solution of IBVP
for PDE in the finite domains. Notice, that 4, = 0 is an eigenvalue only for the

case of Neumann-Neumann boundary conditions when both coefficients
h, =h, =0 (see 2d) of the Sturm-Liouville Theorem).
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sturm-liouville problem

T X (%)X, (x)ex = [ n=m
] ] 0 n

m

o

generalized Fourier series

fix)="Ya X (x

j‘ X (X x

I

inverse transform (Fourier series)

f(x) = SFK,(x)

—1,-1 ‘-“A X' —uX =0 %(x) xeloL] J—L—>y
J k. o L
eigenfunctions norm - kernel X (x)
boundary conditions eigenvalues W, = -2 X, ]| = [ %3 (xjdx K, (x) = ”;(”
[ n
Diirichist Xoi=0 oo 2 nm
. : - nm L = gin 1t
Dirichlst ~ X(L)=0 =T n=13. sin—x Bl .J:sm X
Meumann X0 =0 f | L 2 ( 1=
= | 1)n - R — COS| N+ —[—x
Dhichiet  X(L)o 0 b =[ne ) nant2,. ccs|\n+ t % 5 ‘E | > .|L
Dirichist ¥(0)=0 T ) o L 2 [E.
Mewman (L) -0 Ay =N+ 3 nap2,. 5|n;.n+—|—;< 2 n 5|n|ln+E|Ex
L n=0 I
Mewmann X0l =0 . Mo (g5 I
N\ -— -0 .
Neumann  Xe(L) -0 Ha L WAL L L * L 2 Lo
: - Z cos——
2 n-12 T T x
Dirichlst X0l =0 Lo O T . L sin2x L) St
: sink, X iaink s | (25 L)
Rooin  k X'(L)+hX[L}=0 n : . L _sinj2aL)
" XL)+h, reoshleH sinkl =0 n=i2 . 2 Ak, Ty
i y Cosh X
Neuman  xi(q) -0 St _ L sin(2hL) T
X W i |
Reon oL )shX(Li=0 | ) EEL 2 e et
: ‘ Asindl ~H coshl =0 n=1z,. " 2 4k,
A, are positive roots of sink, (x-L)
Ren e x'(a)+hX(0)=0 T L sin(2hL] =
Dirichlet . sing,(x-L) —— L sin(2h L)
XL}=-0 heoshlaHsinil=-0 n=1z, 2 4k, CR T
i, are positive roots of ) cosh,(x=L)
Rodin kX (0)+hX(0) =0 . L sin2hL) T ol
R— XlL) =0 008 k(X =L) P 4, L . sin| : AN
hsiniL -H,cosil-0 n-1z,. 2 4h.
/., are posiive roots of
‘ b cosh ¥ H sink X
Roin  —k X'(0) + hX[0)= 0 G2aH) M\ M
Aogin K X(L)+hX(L) =0 | HH, - 2%)sini.L + (H, +H, )2 cosiL = 0| &, cos7,x +H,sink,x s\l ﬂ| L
b Bl 2 T ReH) 2
n=12
:X,,I x)! is a complete set of orthogonal functions on [0,L] finite Fourier transform
TR, [x)f{x)dx
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4.5.6 Sturm-Liouville problem for Bessel equation in the circular domain

A
@

Solution of these Sturm-Liouville Problems will be shown in detail in the
Chapter 5 on Special Functions (Section 12). Analysis of corresponding
problems will also be performed later in this chapter during the solution of
PDE’s in cylindrical coordinates. Here we indicate some general results.

Consider a Bessel equation of order v with parameter A
2"

X'y +xy'+(/12x2—1/2)y:0

With the help of the multiplying factor x(x)= 1
x

It can be reduced to a self-adjoint form

, 2
[xy'] +(_V7+ ny y=0 (identify p(x)=x)

Then, the Sturm-Liouville Problem in the circular domain, interval x € [O,L] s
produces infinitely many values of the parameter A, (eigenvalues) for which
there exist non-trivial solutions y, (x) (eigenfunctions):

Y, (x) = {JV (ﬂnx)}

which are Bessel functions of the 1* kind of order v (the Bessel functions of the

2" kind Y, are not included in the solution because they are unbounded at

x=0). The characteristic equation for eigenvalues is determined by the
boundary condition.

According to the Sturm-Liouville theorem, eigenfunctions are orthogonal with
the weight function p(x) =x:

L
fxyn (x)ym (x)dx =0 for n=m
0

Bessel-Fourier Series Obtained orthogonal systems can be used for
expansion of functions in generalized Fourier series

0

f(x) = Z%JV (/lﬂx)

n=1

where coefficients ¢, are determined from the equation

[, (2,0) £ (x) [, (20) £ (x)
a,=1— _0 -
ijf (A,x)dx N

0

The Chapter 5 on Special Functions includes also an analysis of the Sturm-
Liouville problem for a Bessel Equation in an annular domain, and the Sturm-
Liouville problem for the Legendre equation which yield complete orthogonal
sets used for the solution of IBVP for PDE.
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4.6 Method of Separation of Variables

4.6.1 Separation of variables

The classical analytical approach to the solution of initial-boundary
value problems of equations of mathematical physics is based on the
method of separation of variables. This method consists in building
the set of basic functions which is used in developing solutions in the
form of an infinite series expansion over the basic functions.

Thus for a 2-dimensional problem, the unknown function u(x, y) is

assumed to be represented as a product of two functions each of a
single variable:

ulx,y)= X (x)r(y)

where both X (x) and ¥ ( y) are non-zero functions. Substitution of

the assumed form of the solution into a differential equation (consider
the Laplace Equation) yeilds a separated equation
XII _ YI!

X Y

where the left hand side and right hand side depend on different
variables, and therefore, do not depend on either of them. Indeed,
differentiate the equation with respect to x:

2
ox\ X
then by integration we obtain

X"

Y H
with u as a constant of integration.
Therefore,

X" B Yﬂ 3

x v ”

where u is called a separation constant. It yields two ordinary
differential equations:

X'—uX=0
and
Y'+u¥ =0

with corresponding boundary conditions. At this point the Sturm-
Liouville Theorem will provide the existence of the set of eigenvalues

w, and eigenfunctions X, (x) and Y, () which will be a basis for

I

construction of the solution in the form of infinite series:
u(x,y)=2c,X, (x), (»)
where coefficients ¢, should be determined in the process of solution.

But, first we will follow the traditional approach to investigate the
solution set of appropriate boundary value problems. It will be shown
why only the solution of the Sturm-Liouville problem yields the correct
solution of the PDE which satisfies the corresponding initial and
boundary conditions.
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4.6.2 Laplace’s Equation (LE) Dirichlet Problem  Basic Case: 3 homogeneous boundary conditions

1. Separation of variables

o’u  0u
—+t—=0 ulx,y): (x,y)eD=(0,L)x(0,M
PR (v3): (v3)eD=(0.L)x(0.M)
y
u(x,M)=0 N _
y=M O boundary conditions:
x=0 u(0y) = fly)
=L u(Ly)=0
u(Oy)=(y) u(Ly)=0
y=0 u(x0)=0
y=M u(xM)= 0
y=0 O 'al X

x=0 u(x,0)=0 =L

Hence LE is homogeneous, it obviously possesses a trivial solution u (x, y) =0.

It has no interest for us, therefore, we will look for a non-trivial solution.

We assume that the function u(x, y) can be represented as a product of two
functions each of a single variable:

u(x,y)= X (x)r(y)
where both X (x) and Y(y) are non-zero functions.

Differentiate the function u(x, y) consequently with respect to x and y:

2
M _xy TH_
Oox ox’
oy oy’
and substitute the second order derivatives into LE:
XY+XY"=0
Divide this equation by the product XY and separate the terms
X" B Y"
X v

It yields an equation with separated variables: the left hand side of this equation
is a function of independent variable x only, and the right hand side is a function
of the independent variable y only. The equality for all values of x and y is
possible only if both sides are equal to the same constant (call it ¢z ). Indeed,

differentiate the equation with respect to x:

o(X"
= =0
ox\ X
then by integration we obtain
X
5% H
Therefore,
XII _ Y” 3
X Y a

where u is called a separation constant. It yields two ordinary differential

equations:
X"—uX=0and Y'+uY =0
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2. Boundary conditions

Boundary conditions are given for the function u(x, y). Determine, what

conditions should be satisfied by functions X and Y (assuming that both are
non-trivial)

Y(M)=0 boundary conditions:

y=m
x=0 X0)Y(y) = f(y)
x=L X(L)Y(y)=0 —>= XL)=0

X0)Y(y)=f(y X(L)=0
y=0 X(x)Y(0) = 0 —>= Y(0)=0
o & Y X(X)Y(M) = 0 —>  Y(M)=0
y= a) X
x=0 Y (0)=0 x=L

3. Solution of o.d.e.

Start with the equation for which both boundary conditions are homogeneous:

dlcos\/;y+dzsin\/;y A>0
Y'+uY =0 Y(y)= d, +d,y A=0

d, cosh\—puy+d, sinh\|—uy A<0
Consider the first boundary condition at y =0 :

dICos\/;(O)+d2sin\/;(0)=d1 = d,=0
Y(0)=0= d,+d,(0)=d, = d, =

d, cosh~|—u (0)+d2 sinh\J—u (0) =d, = d, =
Therefore, the solution becomes

d, sin\/;y
Y(y): dzy
d, sinh\|—py

Because we are looking for a non-trivial solution, the constant ¢, should not be
equal to zero, d, # 0. Consider the second boundary condition at y = M :

dzsin\/;Mz()
Y(M):O: d,M =0 = d,=0=d,&d, =0 trivial solution
d, sinh\J-uM =0 = d,=0=d, &d, =0 trivial solution

= d,sin \/;M =0, where d, #0 if we want only non-trivial solutions

= sin\/;M =0 = \/;M =nn, where n=123,..

2_2
nmw

:M2

= M, n=123,..

are values of the parameter x for which the differential equation with boundary

conditions has non-trivial solutions. They are said to be eigenvalues.
Corresponding solutions are said to be eigenfunctions:

. T
YI()/)=S1”H}’
niw
Y =sin—
L (v) e

(for simplicity, we choose d, =1, using the fact that any multiple of an
eigenfunction is also an eigenfunction).
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solution for X

basic solutions

We already know that the separation constant which produces non-trivial
solutions is positive, > 0, therefore, the only solution for X is (choose the

shifted form of solution with hyperbolic functions from the table special

equation, because at the boundary x=L, we have a homogeneous boundary
condition)

X'—uX=0 X(x):01cosh\/;(x—xg)+czsinh\/;(x—x0)

Consider the first homogeneous boundary condition atx = L (and

choosex, =L): -
X(L)=0=¢ cosh\/;(0)+cz sinh\/;(()) =c, = ¢;=0

= X(x):czsinh\/;(x—L)

We already know values of x from solution for ¥ (choose also ¢, =0)

= X, (x)zsinh M, (x—L)

= X, (x)= sinh{% (x— L)} where n=123,...

According to the assumed form of solution, we may construct a set of basic
solutions:

sinh %(x - L)} sin%y

I
>
=
SN—
=
<
SN—"
I

uI(x,y)

) = XID) = s T2 (a0 sn

.|\ nrm . nrx

u, (x,y) = X, (x)Yn (y) smh_ i (x L)} sin v y

All these solutions satisfy the LE and 3 homogeneous boundary conditions.
Any linear combination of the basic solutions is also a solution.

Construct a solution of LE in the form of a linear combination with
coefficients a,, :

< S . I nrx . nrx
u(x,y)= X(x)Y(y)— 2anun = ;a” smh[ﬁ(x - L)} smﬁy

n=1

This solution also satisfies LE and 3 homogeneous boundary conditions.
Determine coefficients a, in such a way that the last boundary condition (non-

homogeneous) is also satisfied (it will yield a solution of the problem).
Boundary conditionat x=0:

u(0.7)= XOW (9)==3 a, sinh("7 L)sin”% = £(v)
n=1
Rewrite it as:

s nr nr
b sin—-y= , where b =-a, sinh(—L
z n M y f(y) n n l (M )

n=1
If we treat this sum as a Fourier sine expansion of the function f(y) on the
interval y e [O, M ] with coefficients

2 nw
b =— sin| —y |d
: M!f(y) (My)y
then coefficients a, are determined as:
iAff( )sin T \d
b My y M y|ay

a, =—

nmwo nrz
inh(— L inh(— L
sinh( ) sinh( )

and the solution now is completely determined.
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4. Solution of BVP:

5. Example 1 (010 heatl-1.mws)

6. Observations:

M 7
jsinﬂtdtz—cosﬂt = 217 £=—M (_1) !
0 ) nrw nmw nrw

. ( ),, sinh[']l; (L = x)}
u(x,y):—z = sin—y

n=l sinh(m)

1. The solution is in the form of an infinite series. It represents the
function from the functional vector space spanned by the obtained
eigenfunctions u, (x, y) (basis for vector space).

2. We determined that the ODE ~ Y"+ u¥ =0
with two homogeneous Dirichlet boundary conditions:

7(0)=0
Y(M)=0
for values of the parameter y :
2_2
M, = nM—ﬂz, n=1223,. (eigenvalues)

has non-trivial solutions:

n

Y (y) =sin % y (eigenfunctions)

Compare this result to the Sturm-Liouville Problem (20-22). the self-
adjoint form of the equation for this case is

J -
2y =uy
YT =u
Positive values of the separation constant ux are consistent with (2 c)
of the Sturm-Liouville Theorem.

3. Assumption of separation of variables was used to obtain the basic
functions (eigenfunctions). But the obtained solution is not an
approximation — it is an exact solution (this fact follows from the
unigness of the solution of the Dirichlet problem for Laplace’s
Equation). The same result may be obtained by the other methods
without separation of variables (for example, using the finite integral
transform).

4. Solution of the example problem may be treated:

- as a stationary temperature field in the rectangular domain with a
fixed temperature at the boundaries;

- as equilibrium shape of a membrane stretched on the fixed frame;

- solution of the problem from differential geometry on optimization:
find the surface with fixed boundaries, which has the minimal area etc.
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[ 462 5 Example 1 (heai /- mws)  Laplace's equation, 3 homogenous boundary conditions (Dirichlet)
[ » restart;
L Non-homogeneous boundary condition:
|: > £y):=1:
flvi=1
C Fourier coefficients:
[ > bln] :=2*%int (f(y) *sin(n*Pi*y/M) v=0. M) /M’
) 2icos(nm)—1)
0 ==
L " i
[ > b[n] :=factor (subs({sin{n*P1)=0,cos (n*F1)=(-1) *n},.b[n]));
) 2((-1)"-1)
o -
L " "
[ > a[n] :==b[n]/sinh (n*Pi*L/M) ;
2{(-1)"-1)
Ha (nm

n 7 sinh

> u[n] (x,vy) :=a[n] *sinh(n*PL¥* (x-L) /M) *sin (n*Pi*y /M) ;

|' N I.:‘l'—ll.:l I1ﬁiu. HAY I

20(-17" =1} smnh
\, vl !

ux, yv): 3
S nwil

nT .~iinhl
L

[ Solution:

[ > Li=2;M:=3;
L=2
L M=3
L MNon-homogeneous boundary condition:
[ > plot(f(y),y=0..M,title="f (y)=1"};
fy)=1
2
1.5
1
0.5
o’ s 3

> u(x,y) :=sum(uln] (x,y) ,n=1..100) :
C Vizualization of solution of Dirichlet problem for Laplace Equation:
[ > plot3d(u(x,vy) ,x=0..L,y=0. .M, axes=boxed, title="surface with fixed bocundaries") ;
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surface with fixed boundaries

1
0.8
0.6
0.4
0.2
=
0 o -"3
25
5
L : y
[ > with(plots) :

Warning, the name changecoords has been redefined

> densityplot(u(x,y) ,x=0..L,y=0. .M, axes=none,grid=[100,100] ;,style=patchnogrid, title="statio
nary distribution of density field"):

stationary distribution of density field

[ » contourplot{u(x,y) ,x=0. . L,y=0..M, axes=boxed,filled=true, contours=10, coloring=[whita ,blua]
,grid=[100,100] ,title="contourplot with level curves") ;

contourplot with level curves
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7. Non-homogeneous boundary conditions (superposition principle)

fz(x)
M
fi(») Viu=0 £)
0 L
£,x)
Supplemental problems: J
0 £(x) 0 0
0 Viu,=0 |0 0 Viu,=0 |0 L) Vu,=0 0 0 Viu,=0 [y
£ (x) 0 0 0

Solution of supplemental problems:

o —%If,(x)sin—xdx
uz(x,y)=2a,, Sinﬂxsinhﬂ(y—M) a, = 0
" t L sinhn—M
21 (x)
— | f>\x)sin— xdx
L
( y)= zb szn—xsmh—y b =0
" L sinhﬂM
o —*J.f3 )sin—ydy
. niw . nr 3
ol )=Teosmh e i by o=
sinh—— L
M
211,0)
— | f,»)sin— ydy
( ) Zd Slnh—xsm—y d, = M
" M sinh%L

Solution of Dirichlet problem:

ulx, y)=u,(x, 9)+u, (x, y)+ u; (x, y) +u, (x, )

Examples: (heati-5.mws, heatl-5b.mws)
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8. Non-homogeneous equation (Poisson’s Equation)

fo(x)

£i() Viu=F(x,y) £

0 L
/(%)
Supplemental problems: J
/(x) 0
LW V=0 |7.0) o Yu,=F |0
() 0

Solution of supplemental problems:

Solution of Dirichlet problem (Laplace’s homogeneous equation):
”5(er): u1(x,y)+ ”z(x’J’)+ u3(x,y)+ ”4(3@)’)

Solution of Poisson’s equation with homogeneous boundary conditions

_ ML
A4, = 42( 5 IIF(x,y)sin(ﬂxjsin(m—”yjdxdy
gl e oo L
7 Iz +M2

Solution of Poisson’s Equation (superposition principle):

u(x, y) =Us (X, y) + U, (x, y)

Example 2: (012 heatl-6.mws)
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02 4.6.2 8. Poisson's Equation Example 2 4 non-homeaogeneous bonndary conditions (Dirichlef)

> restart;

boundanes: v=0 fl, v=M 2, x=0 13, x=L {4

> £[1] (x) i=x*(L-x) ;£[2] (x) :=x* (L-x) ;£[3] (y) i=y* (M=-v) ;£[4] (yv) :=y* (M=-v) ;
_f]f_\'] =x(L-x)

LI U e B |

H(x)y=x(L-x)
Lyy=y{M-y)
L)y =yiM-y)

L Volumetric sorce function:

[ > Fx,y) :=-x*y* (L-x) * {M-y) /50;
Flx v : Xy(L—x){M-y)
(xv): _—SU

L Fourier coefficients:
> bln]:=2/L*int(f[1] (x) *sin(n*Pi*x/L) ,x=0..L) ;

2
2 (nmsminw)+2cosinm)i—=2)
bl =-

" i 3
n T

> b2[n] :=2/L*int(f[2] (x) *sin(n*Pi*x/L) ,x=0..L) ;

2
) 2 (nmsminw)+2cos(nmi—2)
b2ni=- 33
"o

> b3[n] :=2/M*int(f[3] (v) *sin(n*Pi*y /M) ,yv=0. .M) ;

2.1-."3[.':ﬁﬁulfu:]—lcc:h‘{n.‘:]—l}

i ==
'r"'ﬂ' i 3
L nm

> bd[n] :=2/M*int (£ [4] (v) *sin(n*Pi*y /M) ,yv=0. .M) ;

2.1-."3[.':ﬁﬁulfu:]—lcc:h‘{n.‘:]—l}

b =— .
L 0o

> b5[n,m] :=factor (int (int (F(x,y) *sin(n*Pi*x/L) *sin (m*Pi*y/M) ,x=0. . L) ,y=0..M)) ;

1 M P (masn(ma)=2+2cos(ma))(nusin(na)+2cos(na)-2)

b5 = .
L e 50 e
[ » b5[n,m] :=factor (subs({sin(n*Pi)=0,cos (n*Pi)=(-1) “n,sin(m*Pi)=0,cos (m*Pi)=(-1) *m} ,b5[n,m])
1
) AL IR (=1 + (-1 (=1 +(-11")
JI""J[.M': -

25 :r’ "
> bl[n] :=simplify (factor (subs ({sin(n*Pi)=0,cos (n*Pi)=(-1)"n},bl[nl)));
42 (-1+(-1)")
b == e
W
> b2[n] :=simplify (factor (subs ({sin(n*Pi)=0,cos (n*Pi)=(-1)"n} ,b2[n])));
4L (-1+(-1)")
b2 - e
L W
> b3[n] :=simplify (factor (subs ({sin(n*Pi)=0,cos (n*Pi)=(-1)"n},b3[nl)));
AM(-1+(-1)")

M S 3 3
L HWw
> bd[n] :=simplify (factor (subs ({sin{n*F1i)=0,cos (n*PF1)=(=1)"n}.bd[n]))):

AM(-14(-11)
hd = —

" 3 _3
n

> al[n] :=-bl[n]/sinh (n*Pi*M/L) ;

A1+ (-1

al =———
3 3 | 1A |
i sinh

> a2[n]:=b2[n]/sinh(n*Pi*M/L) ;
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4L =1+ (-1

X Z N

" 3 3, .| M|
wom sinh| ———

\ L J

> a3[n]:==b3[n]/sinh (n*Pi*L/M) ;

. -1.1F|-1—|-11"1
o T LS
3 1 (nal)
o sl'l'l]'l. ——
L M
[ > ad[n] :=b4 [n]/sinh (n*Pi*L/M) ;
M (=1 +(-1)")
ad = m—

"

3 nwl
nom mt1l1t—1

> aS5[n,m] :=-4*b5[(n,m] /Pi*2/ (n*2/L*2+m"2/M"2) ;
SAF L (=1 +(-1)™){-1+(-11)

5 .
\'.."_.N. o -

.n'?.'z HII
1[2 1

s
3 %
250 m n“—2+

Fourier series terms:
> ul[n] (x,v¥) :=al[n]*sin(n*Pi*x/L) *sinh (n*Pi* (y-M) /L) ;

. p [mmx ) j;l"l—‘a'+.1
AL (=1+(=1) )=zn| |\l11]1‘ 7 J
i, - \, P
ul (x, v):
e 33, ]Ln:.u‘]
I i w0 sinh —1'. |
[ > u2[n] (x,¥) :=aZ[n]*sin(n*Pi*x/L) *sinh (n*Pi*y/L) ;
TR ATy
417 (=1 +(-1)" 'IH]Ht ‘H]I]h| |

A

nwM
o .l;]nh| J
v L
> u3d[n] (x,v) :=a3[n] *sinh (n*Pi* (x=L) /M) *sin (n*Pi*y /M) ;

nmix—1~r) [y
l'l.f2|—1 +(-1)" JH1!1|!I£ Y, 1~.|11L ”' 1

s 3 . nrl)
i smh _|
A

A

u (x.y)=-—

ud (x v):

N> ud[n] (x,¥) :=ad[n] *sinh (n*Pi*x/M) *sin (n*Pi*y /M) ;

¢ y
M)

Sl E— |
s b

M

(hm
1 .‘11’2{—] +(-1 ]"]51r1h| -

fo L
i H][]hl _J
M

> uS[n,m] {x,v) :=a5[n,m] *sin (n*Pi*x/L) *sin (m*Pi*vy /M) ;

wd (x, y):=-—

Do - . (nax)  (may)
ML (=14 (1)) (=14 (1)) sin| === sin| == |
i\, v !

ui, (x.v):

ud
b |cx:
5]
1

> Li=4;M:=3;

Solution of supplemental problems:

ul (x,v¥) :=sum(ul[n] (x,v¥) ,n=1..40):

u2 (x,v) :=sum(u2[n] (x,v) ,n=1..40):

ud (x,y) :=sum(u3d[n] (x,v¥) ,n=1..40) :

ud (x,v) :=sum(ud[n] (x,v) ,n=1..40):

us(x,v) :=sum(sum(us[n,m] {(x,y) ,n=1..4) ,m=1..40):
SOLLUTION:

Lo I s T e T e T e T e W e B
A L L
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C> ulx,y)=ullx,y)+u2(x, y)+ua3(x,y)+ud (x,y) +ud(x,y)
[ > plet3d(u(x,v),x=0..L,y=0. .M, axes=boxed,projection=0.9) ;

P

~ e

' 277 Ty
| ¥ = ﬁr_,( 3 X
[ > plet3d(F(x,v),x=0..L,y=0. .M, axes=boxed,projection=0.9) ;

[ > with({plots) :
Warning, the name changecocords has been redefined

> densityplot(uf{x,y),x=0..L,y=0..M,grid=[50,50] ,scaling=constrained, axes=none, style=patchno
grid) ;
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[ > contourplotiu(x,y),x=0..L,y=0..M,grid=[50,50] ,scaling=ccnstrained, axes=boxed,filled=true,
contours=10, coloring=[white,blue] ,grid=[100,1001);

3
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9. The Maximum Principle for Laplace Equation

harmonic function

Maximum Principle

Dirichlet Problem

Uniqueness

In this section, we will consider some important properties of solutions of the
Laplace Equation, which have a special term. Let D be an open connected

domain in R’
Definition The function u(r) e C?(D) is called a harmonic function if it
satisfies the Laplace Equation in this open domain D .

The Maximum Principle is formulated in the following way:

Theorem  If a harmonic function u(r)is continuous in D , then it cannot
attain its minimum and maximum values in the domain D

min u(r)<u(r)< maxu(r) (1)

reS reS

This theorem is a direct corollary of the other property of harmonic functions
(theorem of arithmetic mean): if the function u(r)is harmonic in some open ball

B(r,,R) and continuous in the closed ball B (r0 , R) then its value at the center
of the ball u(r, ) is equal to its mean value over the sphere § = {r"r - r0| =R }
(boundary of the ball B(r0 , R) ). For the whole closed domain D , the Maximum
Principle yields that

(r) )

If, in particular, for the Dirichlet problem, u(rlres =0 at all points of the

|M r]<max

reS

boundary S of the domain D, then u(r) =( everywhere in the domain D. 3)

For the Dirichlet problem for the Laplace Equation V*u =0 in the rectangular
domain D = (x Lx, )% (v, 2) with boundary conditions:

u(x,y,)Zf,(x) xe(x,,xz)
(x yz)zfz( ) xe(x],xz)
(‘xl’ ) f3() (J’nYZ)
(xz’ ) fs() yE(y,,yz)

the Maximum Principle can be formulated in the following way

m < u(x, y) <M
where = mindmin {1,(0). £, min (£,(5).5, )

M = max{ mas (1,01, mas {1,001, 0}

It means that if the extremum of the solution of the D1r10hlet problem occurs at
the interior point of the domain, then the solution is constant everywhere in the
domain. From the Maximum Principle, the uniqueness of the solution of the
Dirichlet problem follows:

Theorem  Solution of the Dirichlet problem for the Laplace Equation is
unique.

Proof:  Suppose that u,,u, are two solutions of the Dirichlet problem for the
Laplace Equation: VZu =0, u(r]rE ¢ =/ - Then, because the Laplacian is

linear, the function U =u, —u, is a solution of the Dirichlet problem V°U =0,

U (rlrE ¢ =0, then, according to the Maximum Principle (2) , the function U is

identically equal to zero, U =0, and, therefore, u, =u, . [ |
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10. Elimination of the Gibbs Effect

Eigenfunctions of the Dirichlet problem for the Laplace Equation ( ) were
obtained with homogeneous boundary conditions. Therefore, unless in the
considered Dirichlet problem for the Laplace Equation

Viu=0 ul, = f (1)
the function f is equal to zero at the corners of the domain, there will be the

presence of the Gibbs phenomenon (or the Gibbs effect). Thus, to obtain an
accurate approximation to the solution one needs a large number of terms in the
Fourier series solution. But even significant increase of number of terms does
not eliminate the Gibbs effect — the amplitude of oscillation is not reduced. A
simple trick can avoid this and greatly increase the speed of convergence.

For example, consider the Dirichlet problem in the rectangular domain
D =(0,L)x(0,M) with the boundary S = D\D:

2 2
ou au_o

R S LA RV U

at the corners of the rectangular S, the function fis zero,
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In contrast, in the Dirichlet problem in the same domain:

)

o’u

o’u

2

Oy

+

ox’

at the corners of the rectangular S, the function f'is not equal to zero (except at
the point (0,0)) , and there are oscillations in the solution u(x, ) due to the

Gibbs effect:

..‘
e N,
ity o TR R TR S A
e e T e,
R s
A e i
R AN
et e e e R oy
e )
P e e R e o b
T RSRay
A
SR

consider a bilinear

This effect can be eliminated by the following trick:

interpolation of the function f over D

—x)+

(L=x)(

—~

(0,0
LM

<

g(xy)=

Graphs of fand g are shown in this graph:

At the corners of the rectangular S, their values are the same. Therefore,

function f —g has the zero values at the corners:
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(x.y)—g(x.»), where u(x,y) is a solution

=Uu

of BVP (3). The Laplacian of this function is equal to zero, because u is a

¥

>

X

(

Consider the function v

solution of the LE and any bilinear function g satisfies LE. Therefore, the

function V is a solution of the following Dirichlet problem:

(4)

-4

f

N

14

2
8v0

0’y

+—=
oy’

o

Separation of variables solution for this problem does not have the Gibbs effect,

and so then a solution for the original problem:

+g(x,y)

solutions of BVP (3) are shown with an 8 term representation

x,y) = v(x,y

(

u
On these graphs

>

in the Fourier series solution with and without the Gibbs effect:

v(xy)+g(x.»)

u(x,y)

LI N e
%u.u«pﬂhoﬂhﬂ...ﬁ#%ﬁﬂﬂﬂ.mﬂ.ﬁﬁ =
AT R ARy

3 LR g
TSRS

At etle gt
eSS
i

L

Elimination of the Gibbs effect due to discontinuity of the boundary condition
in the interior point of the boundary interval (x,, Ve ) € S, can be performed in

j.

T.E.Peterson Eliminating Gibb'’s effect from separation of variables solutions.

Yo
X—Xx,

Y

the similar manner using the terms of the form tan™’ [

For more about the Gibbs phenomena see elsewhere:

Fourier Analysis. Archive for History of Exact Sciences, 1979, Vol.21, No.2,

SIAM (Society for Industrial and Applied Mathematics) Review, 1998, Vol.40,
pp-129-160.

No.2, pp.324-326.
E.Hewitt, R.E.Hewitt The Gibbs-Wilbraham Phenomenon: An Episode in
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4.6.3 Heat Equation

1) 1-D homogeneous equation and boundary conditions (Neumann-Neumann)

o’u Ou
U(xye) o =a25 u(x,t): xe[O,L], t>0
Uo )
Initial condition: u(x,0) = uy(x)

oul(0,¢

—

]
I
|
! Boundary conditions:
) X ox
0 k ou(L,t
Ox
(both boundaries are insulated)

=0,t>0 (Neumann)

~—

=0, t>0 (Neumann)

1. Separation of variables We assume that the function u(x,7) can be represented as a

product of two functions each of a single variable:
u(x, y) = X(x)T(t)
Calculate the derivatives and substitute into the heat equation
2
M _xr Uy Mg
ox ox? ot
X'T=a’ XT'
Then separate the variables
X” 5 T!

X T
The left hand side of this equation is a function of the
independent variable x only, and the right hand side is a
function of the independent variable 7 only. The equality is
possible only if both of them are equal to the same constant
(callit w2 ); u is called a separation constant:

X T
X T H

Therefore, it yields two ordinary differential equations:

X'—puX=0
r-L71-0
a
2. Boundary conditions To avoid trivial solutions, we require
8”(0, t) ' ’
x=0 =x'(0r)=0 = x'(0)=0
Ox
Gu(L, t) ’ ’
x=L . =x'(L)r)=0 = x'L)=0
X
3. Solution of o.d.e. Start with the equation for a space variable
X"—uX =0

Solution of 0.d.e. depends on the sign of constant 4 :

¢ cosh\/;x+cz sinh\/;x u>0 =i
c,+c,x u=0 u=0

€, COSy|— ux+c,sin—ux <0 pu=-A

X(x)
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Consider the first boundary condition at x =0

cl\/;sinh\/;x+cﬂ/;cosh\/;x u>0
©=0

)
—clﬁsinﬁx+czﬁcosﬁx 1<0

X '(x) =

cn/;sinh0+c2\/;cosh0
X'(0)=0= ¢, =, =0

—clﬁsin0+czﬁcoso

Then the solution becomes:

c cosh\/;x u>0
X(x)= c u=0
€, COSy/— ux n<0

Consider the second boundary condition at x = L:
c 1\/; sinh \/;L u>0

X'(L)=0= 0 u=0
—c,;sin—uL u<0

For the solution to be non-trivial, a constant ¢, #0 .
It can be achieved for the case =0 in which any constant is
a solution of the equation;
and in the case of u <0 by requiring

Siny—uL =0
that yields

—ul=AL=nzr n=12,.

(again, 0 is excluded to avoid a trivial solution). Then the

values of the separation constant for which there exist non-

trivial solutions are defined by
2

nmw 2 n’r
n L Il'ln /In Lz
These values are called eigenvalues. The corresponding
solutions which are called eigenfunctions are
X, =1 n=0

X, :cosﬂx n=12,..
L
They can be combined now in a single expression
X, = cos%x n=0,1.2,.

The values of the separation constant for which there exist
non-trivial solutions satisfying the boundary conditions are

2.2
n°mw
M, :—ﬂi = — L2 n:0,1,2,...
4. Solution for T With determined eigenvalues, solutions of the equation for 7
r-fir-o
a
become
ﬂt 1127[2

T,(t)=e” =e_”2L2t n=012,.

n
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5. Basic solutions Recalling the assumed form of the solution, one gets
uo(x,t)=X0(x)T0(t) = 1
”2
u,(6,)= X, (T, (0) = cos%xe‘ﬁ’
4r?
—t
u,(x,0)=X,(x)1,(t) = coszT”xe a’s?

n2”2

——t
2L2

un(x,t):Xn(x)Tn(t) = cos%xeia

All these solutions satisfy the Heat Equation and both
boundary conditions.

Any linear combination of the basic solutions is also a
solution. The idea is to find such a combination that the initial
condition is also satisfied. So, we are looking for the function

2z

u(x,t) = Zb X, (x)7,(c)= b, +Zb cosTxe e

n=1

suchthatat =0 u(x,0)=b,+ Y b, cos%x =u,(x)

n=1
If the infinite series converges, then under the known
conditions, the function u(x,?) is a solution of the Heat

Equation. The last equation is an expansion of the function
u, (x) in the Fourier cosine series in the interval (O,L) with

coefficients b, defined by the equation
1 L
b, = —I 1y (x)dx

=— f u cos — xdx
Then solution of the given IBVP for the heat equation is:

6. Solution of IBVP

2 2

u(x, f)_—f (x}ix+ ZM ()cosTxdx}cosTﬂxe ﬁt

n=1

2
7. Examples: (heat2-2.mws) u, (x)=1 OOOO(x —%) +100, °C

Material:  stainless steel, a’ = 500’ {%} L=0.1m
m
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8. Comments:

1) the solution is in the form of an infinite series. The obtained solution is
formal, because the convergence of the infinite series was not investigated. But
if the initial temperature distribution given by the function u,(x) satisfies the

Dirichlet conditions, then the Fourier series is convergent and the function
u(x, t) satisfies the Heat Equation and initial and boundary conditions.

Therefore, it is a solution of the given IBVP.

2) We determined that the ODE

X"—puX =0 or -X"= (—,u)X (self-adjoint form)
with two homogeneous Neumann boundary conditions:

xX'(0)=0 a,=0 (in SLP)

X'(L)=0 a,=0

for values of the parameter u :

2_2
nrn
LZ

—u, = A = ,n=01.23,. (eigenvalues)

has non-trivial solutions:
nr . .
X, (x) =cos VA X (eigenfunctions)

According to 2 d) of the Sturm-Liouville Theorem, for this problem, 4, =0 is
an eigenvalue with the corresponding eigenfunction X, =1/.

3) With the increase of time, the solution approaches the steady state (the
averaged temperature in the slab). Boundaries are insulated, and there are no
heat sources. As a result, no heat escapes into the surroundings. The driving
force — temperature gradient — is directed toward the areas with lower
temperature. There exists a process of redistribution of heat energy that
produces the uniform temperature in the slab.

4) Basic functions consist of the product

nZ”Z
nrw SN
u, (x,t)zcos(—x}e al
L

where the cosine function provides the spatial shape of the temperature profile;
and the exponential function is responsible for decay of the temperature profile
in time.

5) The rate of change of temperature depends on the thermophysical property a.

6) Very often, a 1-D Heat equation is treated as a model for heat transfer in a
long very thin rod of constant cross-section whose surface, except for the ends,
is insulated against the flow of heat Although, it is a correct model, the practical
application of it is very limited. But there is another interpretation of a 1-D
model, which is more reliable.
Consider a 3-D wall with finite dimension in the x-direction (within x =0 and
x = L) and elongated dimensions (may be infinite) in y- and z-directions. If the
conditions at the walls x =0 and x = L are uniform, and the initial condition is
independent of variables y and z, then the variation of temperature in the y- and
z-directions is negligible (no heat flux in these directions)

au_au_,

oy 0Oz
and the heat equation becomes 1-D

o’u , Ou

=a —

o’ ot

It describes the variation of temperature along any line perpendicular to the wall.
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C 016 4.6.3 ( heat2-2mws) J._Example: 1-I Heat Equation plane steel wall - both sides are insulated (Neumann BC) L=0.1 m
[ > restart;
> uf0] (x) :=10000* (x-L/3) *2+100;

’ . ¥:
ux): 10D [.1‘—j| + [

[ Eigenfuctions:
> X[n] :=cos (n*Pi*x/L) ;

i (nmx)
L - a_'ns[ J
L L
[ > T[n]:=exp(-n"2*Pi*2*t/L*2/a"2) ;
229
) l'.zuzl
(I lrfl‘ '-.

L Fourier coefficients:
> b[0] :=simplify (factor (int (u[0] (x) ,x=0..L) /L)),

10000 72
by =g+ 100

> bn] :=2%int (u[0] (x)*X[n] ,x=0..L) /L;

200 1800 {2 sin(n )+ 95 n sinf 7 1) + 400 #* ot sin{n ) L2+ 12000 Teos(nTm 1260020

-
L Q 3 3
L " T

> b[n] :=simplify(factor (subs({sin(n*Pi)=0,cos{n*Pi)=(-1)"n} ,blnl)}):
40000 £2(2(-1"+ 1)

Ill‘Jr: 5 2 2
L inm
[ > L:=0.1;a:=500;
L=101
o =500

CL> uix,t):=b[0]+sum(b[n]*X[n]*T[n] ,n=1..10):
> plot3d(u(x,t) ,x=0..L,t=0..600, axes=boxed,projection=0.85) ;

_—o—'—"'_'_'_—_ﬂ__'_'__ﬂ_'_ --H_-\--\_H-q__""‘—-_
_—'—"'_'_'__F'_ _\-\.\-_-""—-\___\_\_
1409 _f.ffj
R e
- """-\-\..___H -_'—____,.—F_'-'-F'f |
130 Iy /
120 I
110 e }f
1003, |
o\, 600
IHEZ B ;f""JEDD
0-0% Ug}‘* 400
. [ T
X >, -~ 200
0.08 ™| 400 t

> with{pleots):
Warning, the name changecocords has been redefined

L wa = veraged temperature of the wall:
[ > va:=valus{int (u[0] (=) ,x=0..L) /L) ;

e = 133 3333333 — 333 3333334 L+ 1111111111 /2
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[ > animate ({ua,u(x,t)},x=0..L,t=0..1200,frames=500, axes=boxed, color=black) ;

140
1304

120+

110

0] T —

0 0.02

ul:=subs (t=0,u(x,t) ) :

ul:=subs(t=60,u(x,t)):
u2:=gubs (t=300,u{x,t) ) :
u3d:=subs (t=600,u(x,t)):

LI O e Y e O e O A
VoW W NV Y Y

plot({ua,u[0] (x) ,u0,ul,uz2,u3},x=0. .L,axes=hoxed,

color=black) ;

01

140

130

120

110

100
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4.6.3 2) non-homogeneous equation and non-homogeneous boundary conditions, reduction to homogeneous

ou  ,ou g(x.7)

—=a"—+b ulx,t), xe(0,L), t>0 b(xt)=

ox’ ot ( ) ( ) ( ) k

initial condition: u(x,0)=u,(x)

boundary conditions: u(O,t) =g, t>0 (Dirichlet)
u(L,t)=g, t>0  (Dirichlet)

1. Steady State Solution Definition A time-independent function which satisfies the heat
equation and boundary conditions obtained as

u,(x)=limu(x,1)
t—o©

is called a steady state solution

Substitution of a time-independent function into the heat equation leads
to the following ordinary differential equation:

2
£ =} subject to boundary conditions: u, (0) =g,

2
X
ux (L ) = g 2
Let b = const , then integrating the equation twice, we come up with

the following solution:

%sz-i-c,
ox

s

b »
u, :Ex +cx+c,

Apply boundary conditions to determine the constants of integration:
x=0 = c,=g

x=L = %L2+c,L+g,:g2

- bL
o oo o828 BL

L 2

u ()= 252 [%%ng

Example b=-2,g,=1,g,=2,L=2
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2. Change of variable

3. Solution of heat equation for U(x,t?)

U(x,t)z u(x,t)—ux (x) or u(x,t): U(x,t)—i—ux (x)

ou oU du 0'U du,
— = - = —
ot ot o’ o o’
U o°u, ,0U
+ =a"—+

substitute into equation

= b
o’ o’ ot
2 2
Since 6u;=b, 8(2J=a2_8U
Oox Oox ot

We obtained the equation for the new unknown function U(x,#) which
has homogeneous boundary conditions:

x=0 U(0.t)=ul0,)-u(0)=g,-g,=0

x=1L U(L,t): u(L,t)—us(L)z g,-g,=0

As a result, we reduced the non-homogeneous problem to a
homogeneous equation for U (x,t) with homogeneous Dirichlet

boundary conditions.
Initial condition for function U (x, t):

U(x,()) = u(x,())—us (x) =u, (x)—us (x)

We consider the following initial boundary value problem:

U _ ,0U
ax—zzclzg U(x,t), XE[O,L],I>0
initial condition: U(x,()) =, (x)—u, (x)

boundary conditions: U(0,t)=0, t>0  (Dirichlet)
U(L,t)=0, t>0  (Dirichlet)

We already know a solution of this homogeneous Dirichlet problem

obtained by separation of variables (exercise):

-n’x?

Ulxt)=X(x)T(1)=d, sin%xeﬁ'
n=1

where coefficients d, are the Fourier coefficients determined by

the corresponding initial condition for the function U(x,?):

d = %:[[uo (x)—u, (x)] sin%xdx

4. Solution of Non-homogeneous Heat Equation:

Return to the original function u (x,t) :

< . nw *#’
uloe,t) = U(x,t)+u,(x) = u,(x)+ >d, sin=xe ol

n=1
Then the solution of the non-homogeneous heat equation with non-
homogeneous Dirichlet boundary conditions becomes:

u(x,t)={%x2 +(

g,—g, bL 22 |¢ . nmw o
#——Jx+g1}+22{b[[uo(x)—us(x)}sznTxdx}smee i

n2”2

JL 2

n=1

5. Example Maple solution: (017 heat3-1.mws)
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Remark: In practice, instead of the exact solution defined by the infinite
series given in section 4, the truncated series is used for calculation of the
approximate solution. How many terms are needed in the truncated series
for the accurate approximation? Comparison of the exact solution (which
is also a truncated series but with a very large number of terms, which we
assume, provides an accurate result) with the calculation with a small
number of terms in a truncated series shows that the accuracy depends on
time: the further we proceed in time, the more accurate becomes an
approximate solution (why?). For uniform characterization of physical
processes, the non-dimensional parameters are used in engineering. In
heat transfer, non-dimensional time is defined by the Fourier number:

FO:j—;

where a = LZ is a thermal diffusivity (see section 4.3.2 4).
a

In engineering heat transfer analysis, a 4 term approximation is considered
as an accurate approximation for all values of the Fourier number. For
simplicity, very often even a 1 term approximation is used, which is
considered to be accurate for Fo > 0.2 (error in most cases does not exceed
1%, and this is a convention in engineering heat transfer).

Consider comparison of the exact solution (100 terms) with 1 and 4 terms
approximations. Results are calculated for Fo=0.0, Fo=0.05, Fo=0.2,
Fo=0.4. The lowest curve is a steady state solution. As can be seen from
the figure, for Fo > 0.2, all results coincide.

Uix.t)

taibral
* O y e
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]

1M

]

1 M

1M1 T

M7 4.6312) 5. Example fheard-imws)

> restart;
> with(plots):

Warning, thes nams

Heat Equation

non-homogeneous equation and boundary conditions (Dinchlet-Dinchlet)

changecoords has been redefined

> Li=2;gl:=1;g2:=3;b:=-2;a:=0.5;

Initial Condition:

|r 3
gl =1
o 3
Ee =
bh=-2
o .5

> uf[0] (x) :=x* (2*L-x) ~2;

Steady State solution:

ujfx)=xid-—x _Iz

> us(x) :=b*x*2/2+( (g2-gl) /L-b*L/2) *x+gl;

> plot({us(x) ,u[0] (x) },x=0. .L, axes=boxed) ;

Evenfunctions:

——

us( ) e A +3x+1
g: i, (x)
4_ —
21, u (x)
D_ 1

0 04 08,12 16 2

> H[n] :=sin(n*Pi/L*x)

. [nmx |
X - mnt
" \ 4

> T[n] :=exp (-n*2*pP1°2/a™2/L"2*L) ;

Fourier Coefficients:

2.2
{— 1000000000 /™ = g

> dn] :=2/L*int ((u[0] (x)-us(x) ) *HX[n] ,x=0. . .L);

d

]

y F 2 . - . 3 3 y . i3
(o wsmina)+8nmcos{am)+Sr w eos(nm)+48sin(n )4+ T - S6nT)

4
”-l T

> d[n] :=simplify (factor(subs({sin(n*PFi1i)=0,cos(n*Pi)=({=1)"n},d[nld});

Solution:

: - . 3 2
2(8(-1V"+5n o (-1)"+n" 7 —56)
"r:r' - T

won

> u(x,t) r=us(x)+sum{d[n]*X[n]*T[n] ,n=1..20):

> plot3d(u({x,t) ,x=0..L,t=0..0.3,axes=boxed,projection=0.9,style=wireframe, color=black) ;
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T ;
i X 13 ™"005 t
> animate ({u[0] (x) ,u(x,t) ,us(x) },x=0..L,t=0..0.5,frames=500, axes=boxed) ;
- ﬁ“ﬁ:&ﬁ“-?fw
8 ()// \
6 /
4 /
] — T &
2:%;“#’_’_’__,,—'—" us(x)
g
1/
ﬂ_.'"'|""|""|""|""|""|""|""|""|""
002040608 1 12141618 2
L X
[ > ul:=subs (t=0,u{x,t)):
[> ul:=subs(t=0.01,u{x,t)):
L> u2:=subs(t=0.05,u{x,t)):
[ > ud:=subs(t=0.2 u(x,t)):
[ > plot{{us(x) ,u[0] (x) ,ul,ul,u2,u3},x=0..L, axes=boxed, color=black) ;

] jﬁf’f:%- =
] u”(jlffﬁf =0.00™, \b\f“‘fxl
8] f/
r ff.f"f
~1=0.05
____o-'-"_'_'_'__\_\_‘_‘_‘——-___
—
e &
002040608 1 12 14 1618 2
X

C Note: the Gibbs effect 1s observed only for imtial temperature profile
[ Accuracy of runcated solution (see on web-site):
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4.6.3 3) Heat Equation with Dirichlet and Robin boundary conditions — application of Sturm-Liouville Theorem

Uxt)
Uo(x)

HS (k’j

S

o

1. Separation of variables

2. Boundary conditions

3. Solution of Sturm-Liouville problem

2
Zx_?:az%l u(x,t), xe(O,L),t>0
Initial condition: u (x,O) =u, (x)
Boundary conditions: u(O,t =0, t >0 (Dirichlet)
k a”‘ff” “hu(Li)=0, >0 (Robin)
X

Rewrite second condition as

—au(L’t)+Hu(L,t)=0, where H=£, H>0
dx k

We assume that the function u(x,¢) can be represented as a product of
two functions each of a single variable

u(x,y)= X (x)r(c)

From the analysis of the heat transfer equation, we know that it leads to
a separated equation

X" ,T . .

7 =a ? = u where u is a separation constant.

That yields two ordinary differential equations:

X"—uX =0 and T'—%T:O

Solutions of the first 0.d.e. is determined by (depending on the form of
separation constant x ):

¢ cosh\/;x+ ¢, Sinh \/;x u>0
X(x): ¢, +eyx u=0
C; COS\|— X+ C, Sin|— ux u<o

Apply first boundary condition:

¢, cosh0+c, sinh0
x(0)=0= ¢, +¢,0 = ¢,=0

¢, cos+/— p10+c,sin0

So, the solution and its derivative are written as:

¢, sinh \/;x cﬂ/;cosh \/;x u>0
c

X(x)=1  ox  X()= : u=0
C, Sin~— px Coy|—HCOSA|—pux  u<0

Consider the second boundary condition
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cﬂ/;cosh\/;L +c,H sinh \/;L =0

c,+c,HL=0

Co|— U Siny|— uL+c,H cos~—puL =0

Since we are looking for a non-trivial solution, we require c, # 0 .

Consider the first equation (for ¢ >0)

czﬁcosh \/;L +c,H sinh \/;L =0

division by ¢, yields

\/;cosh \/;L + H sinh \/;L =0

This equation does not have a solution for positive u .

The second equation (for z=0)

c,+c,HL=10

leads immediately to ¢, =0.

The third equation (z < 0, denote for convenience u =—A4") is
Characteristic equation Acos AL + H sin Ax =0
n=12,...

There are infinitely many positive roots of this equation A

n o

Graphically, they can be shown as intersections of the graph of function

w(2)= Acos AL + H sin AL

with the A -axis:

{SANA /\ ,
7 ’\ﬂ\/ \/ v

] 2 4 IamEhda g 10 12

or, if we rewrite the equation in the form which is traditionally used in the

A . . .
textbooks, tan AL = TR they are shown as the abscises of intersection of

the graph fan AL with the graph of —%:

3
2]

1] tan A

4
larbda

Positive roots A, are called to be eigenvalues.
The corresponding solution functions

X, =sind,x

are called to be eigenfunctions.



Chapter 4 Partial Differential Equations

4. Solution for 7(1) With determined eigenvalues, the solution for 7 becomes:
12
-t
7,(0)=c
5. Basic solutions Recalling the assumed form of solution, we construct the basic solution

/12

u,(x,1)= XT—sm/ixe“t

Then the solution of the given IBVP is in the vector space spanned by

the defined above basic functions:
- 12

( ) Za Sln/ixe

n=1

This solution satisfies the heat equation and boundary conditions. We
want to define coefficients a, in a such a way that the obtained

solution satisfies also the initial condition at ¢t =0:

u(x,O) = ian sinA,x=u, (x)

n=1

In our problem, functions sin A,x are obtained as eigenfunctions of the

Sturm-Liouville problem for the equation —X" = A°X ; therefore, the
set of all eigenfunctions is a complete system of functions orthogonal
with respect to the weight function p = 7. Then, the last equation is an

expansion of the function u, (x) in a generalized Fourier series over

the interval (0, L) with coefficients defined by
L
Iuo (x)sin A, xdx

0

a,=-—;

J' sin® A, xdx

0
6. Solution Then, the solution of the initial-boundary value problem is given by

L
. J Sln/I xdx 2,
u(x,t)= z L lsindxe
- J.sm A, xdx

where the squared norm of eigenfunctions may be evaluated after
integration as

| =Isin2 /Inxdx=£—%
Finally, the solution is:
L
u,(x)sin A xdx 22
u(x,t)=Y L sin A, xe“iznt
vl L _sin2,L ’
2 42,

7. Example (018 Heat 4-Tamws) Let L=2, f(x)=x(2-x), a=0.5
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C a& -I.ﬁ.]-]t 7. ]'::.lrrl.p_lr iFeatd-damows) Heat Equation (Dhnchlet-Robkans
[ > restart;
[ > with(plots):

i

oW

L Characteristic equation:
|: > wix) :=x*oos (x*L) +Hvsin (x*L} ;

wixh=xoos 2 x+ 3 anl2 x)
[ &> plot (wix) ,2=0..10);

8
4 —
a 2 q . 8 .8 10
-
El.m.nlm.ﬁ..
|:} lambda r=array (1. .50} ;
o armayd 500 0
> nr=1: for m from 1 to 500 do z:=fsolve{w{x)=0,x=m/10.. (m+l) 10} 1if typeiz,float) than
lambda[m] == ni=n+l £fi od:
> for 1 to & d.c lambda[i] od;
1358224874
2. 768911636
4235147453
5.73R6A6615
7264403194
BEDA5S03R
I:} Mi=n-1;
WNo=32
C* nr='m" rdr="1
C Ei gﬂ_ﬂun.rhnml:
2 ¥in] :=sin{lambda|n]*x);
.'|.'u: siu.{.'l.}_x':-

C Squared-norm:
> H¥[n] i=dnt{X[n]"*2,x=0..L});

| —cosi 2 A hsim{ XA b+ 2 3,

N, -
- e

[ GENERALIZED FOURIER SERIES

C Function {initial condition):

I: > ul(x} r=x* (L-x) +1;

wx)=x(2-x)+1
L Fourier coefficients:
> aln] r=simplify {(int {ud{x) +X[n] ,=0. .L} /H¥[n] ) ;

2(25, BGIII.I:'_;'.J_I—.' cﬂ!ll:-'f.":lf_LIJ.'H'_;'.J'I—.E—'.U-]

o= — T
.-'JL (-cmﬂ:l.'i.u]smll.'r.u':--rli.ﬂj
L Generalized Fourier series:
C = wix,t) r=sum{a[n] *¥[n] Yexp (-lambda[n] *2%t/ A2} ,o=1..N) :
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[ plotdd fu{x, ) x=0..L,t=0. .30, axes=boxed ,projection=0. 8 ,color=black , style=wireframa} ;

s 1.5 "‘\'#___m;' 10 15

L t
[ > animate {{wd{x) wix,th),=0..L,t=0. .50, frames=200, axes=boxad)} ;
21 —
~ -
150 ™
@ -,
\.
¥ b
14
05
&

002040608 1 12141818 2
X

[ > uix,0) r=subs (t=0 alx,t)):
CL> wix,1) r=subs (t=1,ua{x,t}):
[ > uix,5) r=subs (t=5 ulx,t)):
C> uix,10) :=subs {t=10 ,u{x,t) ) :

C>» uix,20) :=subs {t=20,u{x, £} :
> plot ({uld{x) ,af{x, 0} ,ui{x,1} ,uix,5) ,u(x,10p ,uix,20}},x=0. .L, axes=boxed, color=black} ;

24
1,51
11
asi | ; .
F -
.f,,.:*‘f___-——__ u (x — |
8 0":__'_.'_ T T T T T T T T
002040608 1 12 141618 2
L X
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4.6.3 4) Heat Equation in 2-D rectangular domain

Fu oo
o’ oy’ ot

U (x,4,t)

u(x,y,t), (x,y)e (O,L)X((),M), t>0

initial condition: u(x, y,O) =u, (x, y)

boundary conditions: x =0 u(O, y,t) =0 Ve ((),M ) ,t >0 (Dirichlet)

x=L u(Lyt)=f(y) ye(0,M),t>0 (Dirichlet)

y=0 5(x,0,t):0 xe(0,L), t>0 (Neumann)

y=M Z—u(x,M,t): 0 xe (0,L), t >0 (Neumann)
V
1. Steady State Solution Although all boundary conditions except for one and the differential

equation are homogeneous, for the case of an equation with three
independent variables, it is useful to find the first time-independent
steady state solution u, (x, y) and then to use it for a change of

dependent variable. Thus, we are looking for a steady state solution
which satisfies the differential equation

azi + azuf =0
aXZ 6)/2 -
and boundary conditions:
x=0 u(0,y)=0 ye(0,M) (Dirichlet)
x=L u(Ly)=f(y) ye(0,M) (Dirichlet)
y=0 %(x,O) =0 xe(0,L)  (Neumann)
Ou

y=M a)j(x,M)zO xe(0,L)  (Neumann)

This is the basic case of BVP for Laplace’s Equation when all but one
boundary conditions are homogeneous (if the equation is a non-
homogeneous Poisson’s Equation or more boundary conditions are
non-homogeneous, the superposition principle should be used to reduce
the problem to the set of supplemental basic problems).

Separation of variables Assume that the steady state solution can be
written as a product of two functions u, (x, y) =X (x)Y (y) , substitute it

into the differential equation, and separate the variables:

Xy

X Y a

Choose the first equation for Y, because both conditions for Y are
homogeneous. Then we have the following Sturm-Liouville problem:

Y'—uY =0 r')=0 Y(M)=0
According to the table with the results for the Sturm-Liouville problem,
it has the following eigenvalues and eigenfunctions:

U, =4 = "’A;’iz m=0,1.2,..
= m=0 [yl =m
¥, =cos Ty me12 =%
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steady state solution

a,L =

a,, sinh "rp o=
M

2. Transient Solution

Ao =

SIS

Then the second ODE in the separated equation is determined according
to the form of the separation constant

m’n’
Tz
But it has only one boundary condition because only one boundary
condition at x =0 is homogeneous. The general solution can be written
with the hyperbolic functions:

X,=d,+d,x

X" X=0 x(0)=0 m=01.2,..

X, =d, coshﬂx+d2 sinh 2% x m = 12,..
M M

Apply the boundary condition at x =0 and require a non-zero solution:
X,0)=d, +d,-0=0 = d, =0

Xm(O)zdICosh%0+d2sinh%OzO = d, =0

Then solutions for X can be chosen as
X,=x

X, = sinh 22 x m=12,.
M

Therefore, the basic functions for steady state solution are
”.s,o(le’)z XY, =x

mi mrur
u_(x,y)=X Y =sinh——xcos— m=12,..
on(7) m TR

Then the steady state solution can be written in the form of infinite series

u, (x,y) =a,x+ . a, sinh %ﬂx cosmvﬂy

m=1

where coefficients a,, have to be determined using the non-homogeneous
boundary condition

x=L uS(L,y)zf(y) :aoL+Z[am sinh%LJcos%y

m=1
If this infinite series is treated as the generalized Fourier series expansion
of the function f(y), then coefficients a, can be determined as

M

[r(vhy

0

1
LM

M

ff(y)COS(%yjdy = | q, =;Aff(y)w{%yjdy

0 MsinhﬂL 0
M

Change the unknown function to

U(x,y,t) = u(x, », t)— u, (x, y)
It can be easily verified that this function satisfies the unsteady Heat
Equation

0U _ oU _ ,0U
o’ oy’ ot
and four homogeneous boundary conditions:

x=0 U0,y1)=0  ye(,M),t>0  (Dirichlet)

x=L U(Lyt)=0 ye(O,M),t>0 (Dirichlet)

y=0 a—U(x,o,t) =0 «xe(0,L), t>0  (Neumann)
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y=M ‘Z—U(X,M,t)zo xe(0,L), t>0  (Neumann)
y

and initial condition becomes

Ulx,y.0)=glx,y)-u(xy)
This IBVP Is now well suited for solution by separation of variables.
We assume that the function U (x, ¥, t) can be written as a product of

three functions

Ulxyt)= X ()r(0)
each of a single variable. Substitute it into the Heat Equation

X"YT + XY'T =a’ XYT'
Rewrite this equation as

X” Y” 5 T/

=4+ g —

X Y T
Variables in this equation are not completely separated, but both sides
are functions of different variables, and, therefore, do not depend on
either of them and are equal to some constant

XN 3 YIV T/

2
—taq —=

X Y T
It yields a Sturm Liouville problem

X"—uX =0 x(0)=0 x(L)=0
which has the following non-trivial solutions (eigenfunctions) for the
corresponding values of the separation constant

2_2
i, =—7 =—% n=12,.
X, :Sinﬂx m=12,.. ||Xn : :£
L 2

Substitute determined values of the separation constant into the second
part of the equation

and separate variables

Y” 5 T! nZﬂ_Z
—=a —+—
Y T L
By the same reasoning, both parts of the equation are just a constant
Yﬂ 5 T/ n2ﬂ_2
—_—=q — 3 =
Y T L

Consider the equation for Y
Y'-nY =0 r'0)=0 Y(M)=0
which has the following solutions

2_2
m°r
77m =- M2 m=0,1,2,..4
2
1= meo  of =
M
Y, =cosﬂy m=1.2,.. ||Ym||2 =—
M 2
Then the separated equation becomes an equation for the function 7
, T n’n’ m’n’
@ —t—G—=——
T L M
Solutions of this equation are:
(e ey
T —e L M° a

mn

Then the basic functions for the transient solution are

(7w )1
Umn ('x’y’t): Xn (x)Y:n (y)Tmn(t) = Sin(%x)cos(%y)e [ r M Ja '
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All these basic functions satisfy the Heat Equation and all boundary
conditions. Construct a transient solution in the form of a double
infinite series

w’n’ m’n’ |1
. . 0 o . nrw mir 7[ > +- 3 j—zt
transient solution U (x, y,t) = z Z A, szn(T xj cos(ﬁ yje e

m=0 n=1

where coefficients 4,, are chosen such that the constructed function
satisfies the initial condition:
o nr mru

Ulr,y0)=glxy)-ulxy) =3 > A,,sin —=x|cos| — =y

m=0n=1 L M
Basis functions in this expansion are solutions of the corresponding
Sturm-Liouville problem, therefore, they are orthogonal functions used
in a generalized Fourier series. If the equation above is treated as a
double Fourier series then coefficients 4,, can be determined in two

steps as follows:
rewrite the equation in the form

eloy)—u,(6y) = Z{ZA (T”xﬂ(%yj

m=0|_n=1I
B (x)cos| —
Z (%) ( m yj
where the following notatlon is used for coefficients
B, (x) = ZAW Sin[%xj
n=1

which are coefficients of a cosine Fourier series expansion of the initial
condition

M

[le(x (x, )y

0

§|~ i|~

[ xy)]cosﬁydy m=1.2,.

M

[le(x (x »)ky -34, sin(%xj

n=1

T
0
on the other hand by definition they are
0
0

)L

M

:iM xy)]cos—ydy —ZA sm(ﬂxj
m M M mn L

n=1

in which 4 are coefficients of a sine Fourier series expansion.

mn

Therefore,
A ij iAf[g(x y)—u (x y) fy sin "2 xdx
" Lyl ;=0 L
2 LM
=— —x |dyd.
LM;[-J; xy)sm(ijyx
2¢] 21
A,, :Z;[{ﬁ;[ x,y) (x y)]cos—ydy}sm—dx
4 LM d d
W;[;[ glx, y (x y) cos(vyjsm(—yj lydx
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3. Solution of IBVP

Now, when coefficients of a double series expansion for transient
solution are determined, we can recall the equation for the change of
dependent variable and write a solution for the original IBVP:

u(x,yt)  =UCcy)vu(xy)

m=0 n=1

| rrznz+m3;iz i’
u(x,y,t) = ZZA,M szn(—xjcos(n;; y)e [ roM Ja.t

m=1

+a,L+ Z(am sinh%LJ cos%y

where coefficients of expansions are

2 LM
A, m}[ '([ x y) sm(T x]dydx
A = i_L[Af x y) cos(mﬂ yj sin(ﬂyjdydx
" LM 33 M L
] M
ay =T bff (v Ky

G [10)eo 2

M sinh 2L 0
M
4. Example Maple solution: heatSdn-2.mws
L=2
M =4
a=05
S (y) =1 fixed temperature at the boundary

g(x, y) = x(x - L)+ y( y-M ) parabolic initial temperature distribution
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Colo46247 4 Exgmenly fwarion-Tuwus) 200 Head Equaibes LN
|: > rastart;

[ > wath ip].-:ts:

MWarning, Che nava changesoords has Poen Podal]ned

[ & Lo=2;M:=d;alpha:=0.58;

E =2
M=4
L =05
> £iy) =1y
[ i1
[ & plot (f {w) ,v=0. .M, axes=boxad) ;
2
1.5
1
05
04 : : :
[¥] 1 2 3
¥

[ > gix,y) r=x# (x-L) dy* (v 7
g yi=x{r-2}y{y-4)
[ &> plot3d{g{x,y} ,x=0. .L,y=0. .M, axes=boxad ,projectioo=0. 58} ;

e
i

el 1". '
i

I . )
lr! ,-t Ili,‘\
; j l' 'l:‘ 1|'|_

C Steady State Solution:
[ > al0) z=int (£ (y) ,y=0. . M) /L M;

1
a e —
L i
[ & am):=2%int (f (v} *oos (m*Fity/ M) ,y=0. . ) /sinh (ot Fi & L) M
I oani e w )
Wy - m:]
m 7 simby =—
L Fi

> us|m] {x,v}:=a[m] *sinh {mkPi%*x/ M) *ocos {m*EBddy/ M) :
C> us(x,y):=a[0]*xt+sum (us [m] {x, v} ,m=1..2}:
3 plotddfus (x,v) ,x=0. .L,y=0. .M, axas=hoxed ,projeactiocn=0. 92} ;
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C sSupplemental Proklem:

[ > wix,vw) r=g(x,v) -us (x,v);

wxvi=x{r—I}¥ 1-—4_’]—%

C>® Aln;0)] c=2%int {int (w (x,¥) ,y=0. M} *sin{n*Pi%*x/ L) ,3=0. .L) /L/M:

C> Aln,m] :=d%int {int {w (x,v) *oos (mé BLéy /M) y=0. M) #¥sin{n#Fidx/L) ,x=0. . L) /L/M:

C> U[n,0] {x,v,t) r=h[n,0] ¥sin{n*Fitx/L) *axp (-0 2/L 2¢Fi~24t alpha*2) :

C> U[n,m] {x,v,t) r=h(n,m] *sin{n*Pidtx/L) *oos (m*Pity,/M) taxp (- (@2 /M 2402/ L2) #P1 24 /alpha™2) ¢
C> Uix,w,t) r=sum{F[n,0] {x, ¥, t),o=1._ 20) +sum{sum (W [n,m] {x,v,t) mo=1.. 28} ,n=1..20):
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L > Uix,y,0) r=subs (t=0 ,0{x,y,t}}:

[ Salution of IBY P

C > wix, v, &) r=us (=, vi+00x, v, th:

[ uix,v,0) r=subs (t=0,a{x,y,t}}:

[ * animatedd fulx,v,t) s=0. . L,y=0..H,t=0..0.3, frames=100, axes=hoxad , projaction=.52) ;

[ * animatedd({us {x;v)  gix, v} ulx,v.0) ufx, vt} },=0. .L,y=0..M,t=0. .03, framas=100; axas=boxd
ystyle=wireframs projecticn=0. 52} ;
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4.6.4 Wave Equation

4.6.4 1) homogeneous equation with homogeneous boundary conditions

1. Separation of variables

2. Sturm-Liouville problem

boundary conditions:

eigenvalues

eigenfunctions

basic solutions:

O’u 1 du
ax—zzyy u(x,t), XE(O,L), t>0
Initial conditions: u(x,0)=u,(x)

Oulx,0

u(@); ) = 1( )

Boundary conditions: u(0,6)=0, t>0 (Dirichlet)

k, ou(L.1) +hyu(x,t)=0, t>0 (Robin)

ox
Denote H, = L3
kZ

we assume that the function u(x,7) can be represented as a product of
two functions each of a single variable

ux,y)= X (x)T(¢)

2 2
2—1; =X ”(x)T (t) ZTZ; =X (x)T "(t) substitute into equation
X

a’X"(x)T(t)= X (x)7"(c) After separation of variables, one gets

X" 171"

—=——= with a separation constant
X &7 H p H
That yields two ordinary differential equations:

X' —uX=0and T"— pa’T =0

X"~ uX =0
x=0 Xx(0)()=0 = X(0)=0
x=L X(L)(e)+H,xL)re)=0 = X'(L)+H,X(L)=0

This Sturm-Liouville problem has the following solution with
2

M, ==1"
A, are positive roots of equation Acos AL+ H,sinA,L=0

X, (x)=sinA,x

Then solutions of the second differential equation 7"+ A.a’T =0 are

T, (t) =c, cos A,at +c, sin A, at

n

u, (x,t) =X,T, =sin lnx(cj cos A,at +c, sin ﬂnat)
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We are looking for a solution in the vector space with the basis {un (x, t)} :

u(x, t) = i au, (x, t) = i a, sin ﬂ,,x(c, cos A,at +c, sin ﬂ,,at)

n=1 n=1

u(x, t) = isin /lnx(ancj cos A,at+a,c, sin ﬂnat)

n=1[
u(x, t) = i sin /lnx(b,, cos A,at +d, sin /lnat)

n=1

initial conditions: t=0  u(x0)= ibn sin A, ax = u,(x)

n=1

which is a generalized Fourier series expansion of the function
£(x) over the interval (0,Z) with coefficients

L L
Ju,, (x)sin A, xdx Ju,, (x)sin A, xdx
0 0

b= j T L sin2alL
0

. 2
sin® A, xdx -~

2 42

n

The derivative with respect to ¢ of the assumed solution is

% = i/lna sin /lnx(— b, sin A,at +d, cos /lnat)
n=1

Then the second initial condition yields

t=0 au((;’o):id A,asin 2,x =u,(x)
- =/

n-n
Again, it can be treated as a Fourier series with coefficients

L

L
fu](x)sin A, xdx J.u] (x)sin A, xdx
_0

_ 20
d,A,0 =" e L2l
l‘sm xdx 5 74/1’1
L
Iu,(x)sin A, xdx
d = 0
! L sin2A,L
Aal ————"—
2 44,

Then the solution of the initial-boundary value problem is:

3. Solution:

u(x, ) = i sin i,,x{b,, cos A,at +d, sin inat}

n=1

L
. ) ju, (x)sin A, xdx
-y sin A,x 7

L
— J.uo (x)sin A, xdx |cos A, at +| ——— |sin A, at
w1 L sin2A,L ) || o A.a
2 44,
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4. Normal modes of string vibration Solution of the Wave Equation is obtained as a sum of terms of the form

u, (x,t) =X,T, =sin ﬂnx(cj cos A,at +c, sin ﬂnat)
which we called the basic solutions, but as the contributors to the
vibration of string, these functions are known as normal modes. In our
example, for n=1,2,3,4,... they have the following shape (see Maple file

for animation):

>ml:=subs (n=1,X[n]* (b[n] *cos (lambda[n] *a*t)+d[n] *sin(lambda[n]*a*t))) :
>animate ({ml},x=0..L,t=0..9);

fundamental mode

0.1

10

o

U R ARG RARAS:
0.1

>m2:=subs (n=2,X[n]* (b[n] *cos (lambda[n] *a*t)+d[n] *sin (lambda[n] *a*t))) :
>animate ({m2},x=0..L,t=0..9);

3 I* overtone
014

0059
0,051 2 4 4 B a 10
-0.14

>m3:=subs (n=3,X[n] * (b[n] *cos (lambda[n] *a*t)+d[n] *sin (lambda[n] *a*t))) :
>animate ({m3},x=0..L,t=0..9);

0.06
0.04
0.0z

-D.DB

-0.04
-0.06

d
2" overtone

>mé4 :=subs (n=4,X[n] * (b[n] *cos (lambda[n] *a*t)+d[n] *sin (lambda[n] *a*t))) :
>animate ({m4},x=0..L,t=0..9);

01 /_\ 3" overtone
ay """ 2 - " T
-0.1

The first of these normal modes is called the fundamental mode, others are
called the first overtone, the second overtone, and so on. The frequency
of oscillation of the normal mode is increased with its number and is
determined by the corresponding eigenvalue A, and coefficient @ which

has a physical sense of the speed of propagation of the waves (speed of
sound). There are fixed points in the vibration of overtones.

The whole motion of the string is a superposition of vibration of all
overtones with different amplitude. The involvement of different modes in
the vibration of string is determined by initial conditions. If for
representation of the initial shape of the string at rest, different modes are
required, then all of them will be present in the undamped vibration of the
string. But if the initial shape of the string is exactly one of the overtones,
then only this mode will be present the string vibration. This phenomenon
is called standing waves. Standing waves do not propagate, only shrink
and swell in the same shape.
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[ 010 4.64 1) Exsmple  fvenee- 128 ooesy) WAVE EQUATION X000, XNLHXL-0 (Denichlet-Robin

C > rastart;
[» Le=10;H[2]:=3;a:1=2;

Hy =3

[ oquation:

[ B owix) i=x*ocos (x*L)+H[2] #*sindx*L} ;
wixho=reos 0x)+ 3 s 10x)

[ > plot iw{x) ,o=0..2)

'3'* 04 /0B Ly 42 15 2

2

C Eigenvalues:

[} lambda r=array (1. .100) ;
A= array( 1. 10D, | 1)
> mr=1l: for m from 1 to 100 do =:=fsolve{w{x)=0,x=m/8..{m+1} /5): if type(z,float) than
lambda[n] := ni=ntl £fi od:
> for 1 to 8 d.c lanbda[i1] od;
0. MK05R4T5]
06083 | 26850
0.91 293465619
1 2 1R0GRZ00
1 523 7T9R943
|::b H:=n
o= fid
C=> Ar=miify
C hgcrd'un-cunlu
> ¥in]:=sin({lambda[n]*x]);
Xy o= sind &, )
C Squared norm:

> HE2 [n] r=ink(X[n]*2,3=0..L};
| oos 10k Jsing 105 y— 10 &

MNYZ -
L ) 2 ;"J
C Inmitind comaditions:
C simusoadal:
[ > ul(x} =sin{x L} ;jul {x) ;=sin{2%x/ L} ;
&
LS —
wi(x):==n ||:|J
l{x} EA
ulfx )= =m|—
)

C impulse:
[ > wlix):={Heaviside (x-&) -Heaviside {x-T)} rul {x) :=0;
uil x) == Heavisidel! x — &3 — Heaviside{ x— T

L al{x) =0
C parnbalie:
[ > ul{x) =xk (L-x) ;jul {x}:=1;
ol x) o= x{ 10 -x)

mlixi= 1
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C Fourier cocfficients:
[ > bin] :=int (ul (x}*X[n] ,==0..L) N2 [n];

45 dp i 1A +oos 10 40— 1)
L ?.:{ouw{ 10k, bsimf 100 - 104}
[ > d[n] :=ink (ul (x}*X[n] ,==0..L} /N2 [n] lambda[n] fa;

cog 10R §-1

o :

L A, Coost 1 ysml 10— 100y

[ Solution:

[ wix,th r=sum¥[n]* {b[n]*cos (lambda[n] *a*t) +d[n] *sin{lazsbhda[n]*a%t} ) ,n=1. .H) :

[ plot3d({ufx,t) ),x==0..L,t=0..2]1, axas=boxed , style=wireframe , projection=0. %, coclor=black} ;

[ > withiplots):

Harning, the nava changesoords has boon Poedellne]

[ > animate({w{x,t) , udix)i,==0.. L,t=0..21, axes=boxed , framas=500} ;

20+

=20
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C impailee:
[ > wlix}:={Heaviside (x-£)-Heaviside (x-T)) ;ul (x) :=0;
ul x == Heavissdel x — ) — Heavisida{ x — T}
L al{x) =0
[ Fourier coefficients:
[ > bin] :=int {ud{x)}*¥[n] ,x=0..L} /HX2[n];
{2032 cosn ) ~ 4B cos(n 1 + 1B cos(h 1 — 1 — 63 cos(i, ) + 112 cos( b )’ — 56 cos(%, )’ + 7 cos{i,}}
i - —zl

Yo

-32 cos(i, ) + 48 cos(h, ) — 18 cos 3} + | +64 cos(h, ) — 112 cos(i, ) + 36 cos(a, ) — 7 cos(A,)

N - LA

Lﬁ

ool 10 A psin 10 3,y — 1000
[ 2 din) r=int ful ix)}*¥[n] ,x==0..L} /W2 [n] lazbda[n] fa;
=1

C Solution:
[> wix,t) r=som(¥[n] * (b[n]*ocos (lambda [n] ¥avt) +d[(n] *sin{lambda[n] *a*t}) . n=1. .H) :

[ > plot3d{{ufx,t) ) ,>=0..L,t=0..12, axas=boxed ,projection=0.%,style=wireframe ,grid=[150,150]} ;

[ > withiplots):
[ > animate|{w{x,t),ud{x) ), =0, L, t=0..21, axes=bonxed , framas=300, mmpoints=500) ;

1 ]

0.9
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4.6.4 2) Wave Equation in polar coordinates with angular symmetry

2 2
ou 16u_ 1 Ou u(}",f), rG[O,Vl],t>0

ugr;t) o’ ror a o
% Initial conditions: u (r,O) =u, (r)
ou (r, 0)
A o )
Boundary condition: u(r,,t)=0 >0 (Dirichlet)
1. Separation of variables Assume
ulr,y)=R(-)T(0)
then
ou , 8214 " 82” "
5 =R (r)r(e), =R (r)r(e), o R(r)T"(r).

Substitute into the equation
R0+ LR =L RE)T()
r a
After separation of variables (division by R(¢)T'(¢)), we receive
R + IR 1T with a separation constant
R'rrR &1 " P #
it yields two ordinary differential equations:

r+lr—ur=0
r

T" — 1a’T =0

boundary condition:
r=r u(rl,t):R(r])T(t):0 = R(rl):0

2. Solution of Sturm-Liouville problem Consider first the boundary value problem from which we expect to
obtain eigenvalues and eigenfunctions for construction of a functional
vector space. Consider the equation for R(r) for which we have a

homogeneous boundary condition:
R+LRuR=0  R()=0
r

Multiplication by r° yields
P’R"+rR' — r’R=10
Solution of this equation depends on the form of the separation constant

d1,(Ar)+d,Ky(Ar)  u>0  u=2
R(r)= d/Inr+d, u=0 u=0
dJ,(Ar)+d,Y,(Ar)  u<0 u=-2

See, how these solutions were obtained and how the boundary
condition can be satisfied:

1) 4>0| Denote u=A". Then the equation becomes

P’R"+rR — (/12?2 + OZ)R =0
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This is a modified Bessel equation of integer order 0 for the
independent variable x = Ar. General solution of this equation is given
by
R(r)=d,1,(Ar)+d,K,(4r)

At the interior point of the membrane » = 0 , the solution has to be
finite, therefore, we require the coefficient d, before function K,(Ar)
(which is unbounded at » =0 ) to be equal to zero, d, =0.

Consider the boundary condition:

r=r R(0)=d110(0):d1:0

Therefore, the case >0 leads to a trivial solution.

2) #=0| Equation becomes

R"+1R':0
r

The order of equation can be reduced by a change of independent

variable R = R'. The equation for R is a first order linear differential
equation

F+li-o
r
solution of which is obtained with the help of an integrating factor
1 -1

R | -afer) <agy -4
r

Then the solution of the original equation is

R(r)= ’[ﬁ(r)dr :’[ﬂdr =d,Inr+d,

r
To have a finite solution at point » =0, we must put d, =0.

Then the boundary condition leads to d, =0, and we end up with a
trivial solution.

3) 1 <0| Denote 1=-A". Then the equation becomes

r’R"+rR' + (/121”2 - OZ)R =0

which we can identify as a Bessel equation of order 0. The general
solution of Bessel equation of integer order is given by

R(r)=d J,(Ar)+d,Y, (4r)

where J,(4r) and Y,(4r) are, correspondingly, Bessel’s functions of
the 1 and the 2™ kind of zero order.

Before considering the boundary condition, we can make one
observation. The deflection of membrane anywhere in the domain

re [0, rl] is assumed to be finite (moreover, the wave equation is
derived in the assumption of small deflection). The Bessel function of
the 2" kind Y, (/Ir) approaches —o when r goesto 0. In our case,
r =0 1is the interior point of the membrane. Therefore, for function
R(r) to be bounded at r =0, the coefficient d, should be equal to 0.
Then solution of the Bessel equation becomes

R(r) = dljo(/l”)

The boundary condition implies

R(’"i)z dzJo(/l”l)z 0

If we want a non-trivial solution, then d, # 0, and we receive

J,(ar,)=0
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solution for 7

3. Basic solutions

The figure shows the graph of the function w(l) =J, (ﬂr]) with r, =1
n.a
0.4 P
AN
-0.4

The roots of the equation A,,4,,... are the values of the parameter A4

12 ST A

for which the boundary value problem has a non-trivial solution (they
are called eigenvalues).
The corresponding solutions (eigenfunctions) are

Rn(r):‘]()(ﬂ’nr)

To determine the weight function, transform the Bessel equation to the
self-adjoint form of the Sturm-Liouville problem. Find the integrating
factor

R
m(r) =—e' =—
r r
and reduce the equation to the self-adjoint form

] ’ !
——[rR'] =4°R [/R] +2°rR=0  p(r)=r

,
Then, according to the Sturm-Liouville theorem, the set of functions
R, = {J(,(/?,nr)} n=12,..
is a complete set of functions orthogonal with respect to weight » over
interval [0, rz], e.g.

_[ar (r)R,,(r)r =0 when n#m

0

The result of a negative separation constant z =—A" agrees with a

physical sense of solution for T (t):

c,eﬁ‘" + cze“ﬁ“' u>0
T"—ua’T=0 T(t)= ¢, +c,t u=0

€, COS+|— pat +c, siny—pat  pu<0
We expect a periodic solution for an undamped vibration of membrane.
There should be no constant terms either because boundary conditions
and the equation are homogeneous. Therefore, only the case of a
negative separation constant may be accepted for our problem,
1 =—A. (or positive eigenvalues). Then solutions 7, (t) with
determined eigenvalues are
T, (t) =c,,cos A,at+c,, sinA,at

n

For basis functions we take the solutions of the wave equation
satisfying boundary conditions

u, (r, t) =J, (/”tnr)(cm cos A,at +c,, sin ﬂnat)

We are looking for solution of the given i.b.v.p. in the vector space
spanned by this basis:
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u(r,t) = ianJ,, (ﬂnr)(cm cos A,at+c,, sin lnat)

/1 r)(a ¢, cosdat+a,c,,sini, at)

Ms 3 Ms

(ﬂnr)(bm cos A,at +b,, sin /lnat)

]
~

n
We will choose the values of coefficients in such a way that initial

conditions are satisfied.

4. Initial conditions Consider the first initial condition

u(r,O) = gbm']o (ﬂnr) =u, (r)

then coefficients for the generalized Fourier series are defined as

Jl'ruo (r)Jo (/Inr)dr jruo (r)J,) (ﬂnr)dr
b],n = s ” b]n = s

1 ' r’
IrJOZ (lnr)dr ; J (/1” 1)

0

The second condition for the derivative with respect to time

aug;’t) :iJo(/Inr)( b, AasinA,at+b, A .acosi, at)
n=1

In"n 2n""n

becomes
ou (r 0)

=S b, 2y (A7) =1, ()

Then coefﬁc1ents in this generalized Fourier expansion are

Jl'rul (r)JO (ﬂnr)dr Jl.ruj (r)Jo (l}lr)dr
bZ,nﬂ’na =2 " = bZ,n =2 2
.([rJ,f (A,r)dr A,,G%Jf (41)

Then solution of the initial-boundary value problem for the wave
equation is

5. Solution u(r,t) = iJ,, (/1,1r)(b1yn cosA,at+b,, sin /lnat)

n=1

0 art, %

u(r,t):iz—"{[}mo(r)Jo(znr)dr}osznm{ : }ruI(r)Jo(ﬂnr)dr:lsin/lnat}
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C 021 vaencd-Zoress 4.6.4 3) Example Vibrabng ol ciroalar membane {example? for wavel-1.doc) - Standing Waves
[ > restart;
[ > withiplots) :

a =005

=1
Eipenvalues:

> wix) :=BassalJ{0,x*rl) ;

wix] = Bessal ¥ 0, x)
> plot(w{x) ,x=0..30) ;

081",
04l

ﬂj F 10 15 20 25 an
0.4 L

C
l} lambda r=array {1. .50}
[ b=yt 150, 1)
[} n:=1: for m from 1 to 200 do zi=fsolwve(w(x}=0,x=m/10.. (m+1) /10}; if type (=,float) then
lambda[n] :=z: ni=n+l fi od:
> for 1 to 5 do lambdai1] od;
2 44B25558
5520078110
B.G53T2TAI3
LLT9153444
14 8309 1771
C
C
C

F mm="nrar="1"

Imitin] comditinns:

> £{r) :=PassalJ{0,lambda[4]%*c} ;

1 ey o= Bessel (0, 1179153444 r)

pryz=0
m=4

F

> bin] :=int({c*f{r) *BasselJ (0, lambda[n] *r) ,r=0. .rl} fint (r*Bessel J(0, lambda[n] *c) 2, c=0. .1} ;

by = L OO0

¥ dn] r=inkt (r*gir) *BassalS {0, lambda [n] #r) ,r=0..rl) fint (r*BesselJ {0, lambda [n] #c) 2, =0. .1} f
aflambda[n] ;

o, =1
> uln] {r,t) :=BasselI{d, lanbda[n]*c} * (b[n] *cos {larbda[n]*a*t)}+d[n] *sin(lambda [n] *a*t) ) ;

a4 = LODOO0000) Besseld(0, 1179153444 r) cos{ 05895767220 1)

[ > wir,th:=uln] (r,t}:

C> uir,d) ;=subs (t=0,u{r,th) :

C> uir,1} :=subs {t=1 a{c,t}):

[ > uir,2) =subs (t=2 u{r,t})):

C> ui{r,3) r=subs (t=3 . u{r,td):

[*> uir,4) :=subs (t=4 ;a{r,t}):

C> u{r,5) i=subs (t=58,u{r,td):
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[ # plot({f(r),uir,0),ulr,1) ,ulr,2) ai{r, 3} ,u{r,4) ,ufr,5}),=0..rl,coler=black ; axes=boxed) ;

1-
0.5
S == =
0 AN Nt W .
I —— =
T e RF
. _—
0 5'_#, g
o
X — - . r {

[> un{-r,th=uirc,t):
[ > T:=2+*Pi/aslambda[l];
= 16633122309 =
[ > animate | {un{-r,t),virt) },r=-1..1;t=0..T, frames=100,color=blue, axes=boxad) ;
1 i)

05 / b
O
0.5
R

i k ] i
- L, _

.8 04 o 0.4 0.8
. r
[ * aoylindarplot([r;thata,a{r;5)),=0..rl;thata=0. .24Fi ,grid=[50,50]) ;

[ * animatedd([r,thata , u{r,t}] ,r=0..rl,theta=0..2+Fi t=0. . 24T, coords=aylindrical ,style=patchn
ogrid, frames=100) ;

u(r,t)
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4.6.5 PDE in spherical coordinates

1. Laplace’s Equation

separation of variables

Consider a BVP generated by separation of variables in a PDE in
spherical coordinates. We will only see what the Sturm-Liouville
problems are in this case. Most of them we solve in Chapter 5 Special
Functions.

Recall the general form of Laplace’s Equation in spherical coordinates
for the function u(r,¢,0), reD:

o’u 2 ou 1 o’u 1 cos@ ou 1 &u

Tttt Tt oot A
or~ ror risin°@0¢ r° sin@ 00 r° 00
or with differential operators written in self-adjoint form:

=0 (1)

0| ,0u 1 &u cos@ ou Ou

Ofp0u| 1 Ou cosOou ou_, @)
or or | sin” 0 0¢~ sin@ 060 00

Assume

u(r,,0)=R(r)@(4)0(0) (3)

Substitute into equation (1)

Ro0+2R00+—1 Roo+ L%l roo + L Raoer =0
r resin® 6@ r° sin@ r
]"2
Multiply the equation b
ply q Yy ROO
R" ! 1 @ cosO@O O
—+—=0

et 2t ————+ — =
R R sin@ @ sinf ® O

Consider the axisymmetric case ( 6_a¢ =0):

> R" " cosf @ O
r?+2r—+ —+—=

=0
R sinf & 6

Separate variables and set both sides of the equation equal to the same
constant

It yields two equations:

RU R/
) r—+2r—=
) 2 7

which can be rewritten in the form

#’R"+2rR — R = 0 (Euler-Cauchy equation)

or in the self-adjoint Sturm-Liouville form

_l( ZR’)’ =(-u)R 4)
1

Solutions of this equation are sought in the form R =r" (see Section
2.3.6).
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2. Heat Equation

separation of variables

) 0+%%0 uo-0
sin@

Use change of independent variable x=cos@ ,then

do dx do dx
@" :i @ :i —Sln@ﬁ :_Cose@_singi @
do\ de do dx dx do\ dx
2
=—cosc9d—@—sinl9i d—@ ﬂ:—cosl9d—@+sinzl9d o
dx dx\ dx )dO dx dx’

Substitute into equation

2
0 —cosesinﬁil—@+,u@:0
x

—cos@d—@+sin26 >
dx dx sin@
2

sin’ Hd 2@
dx
d’e de

1-x° 2x—+u@ =0

( ) 2 dx H

—2cost9d—@+,u@ =0
dx

dx
or in self-adjoint Sturm-Liouville form:
d de
—— (1% )— | = u® 5
dx {( * ) dx} a )

This equation is called Legendre’s differential equation. It happens that
its solution is bounded only if the separation constant is a non-negative
integer of the form

,u:n(n+1)

Its solution consists of Legendre polynomials P, (x) (see Section 5.7).

n=012,.

Consider the axisymmetric heat equation for u (r,t) , reD,t>0 in
spherical coordinates:
o’u 2 ou , Ou
_—t———=q" —
or’ ror ot

Assume
u(r,t) = R(r)T(t)

Substitute into equation (6)

(6)

RT+ZRT=aRT"
r

divide by RT and separate variables

RI/ 2 RI 5 T/

—_——t——=q — = /,[

R rR T
It yields two ordinary differential equations. Equation for R is
7’R"+2rR' — ur’R=10 @)
which is a spherical Bessel equation of zero order (see equation (25) in
Sec. 5.6 with n=0).
It has a self-adjoint Sturm-Liouville form

] 2 pr !

—r—z(r R') =(-u)R
Its solutions are given by spherical Bessel functions

()= 22t

0 > \/;
r)

—~

T Yz/z

¥ (r)=

N
5
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4.6.6 Singular Sturm-Liouville Problem

We studied a regular Sturm-Liouville Problem in which the ordinary differential
equation is set in the finite interval and both boundary conditions do not vanish.
In a singular Sturm-Liouville problem not all of these conditions hold. Usually,
the interval is not finite, and one or both boundary conditions are missing.
Instead of boundary conditions, when the solution may not exist at the
boundaries, the eigenfunctions should satisfy some limiting conditions. One of
such requirements can be the following:

Let y, and y, be eigenfunctions corresponding to two distinct eigenvalues A,

and A,, correspondingly. Then they have to satisfy the following condition:
tim pla)ly, ()} (x)=y, ()i ()]= tim p(olly, ()3 ()=, () ()]

In the other cases the absence of boundary conditions is because of the
periodical or cycled domain, when we demand that the solution should be
continuous and smooth

yx,)=y(x,) and y'(x,)=y'(x;)
In this case, it is still possible to have the orthogonal set of solutions { u (x)} on

[x1 X3 ]

We will not study the formal approach to solution of such problems, but rather
discuss the practical examples of its application.

Here, we consider an interesting example of a singular SLP in a cycled domain
with no boundary conditions. Physical demonstration of this example can be
seen on the ceiling of the hall of the Eyring Science Building.

Example 1 Consider vibration of a thin closed ring string of radius »
described in polar coordinates by deflection over the plane z =0
u(@.1), 0elo.2z], t>0
The Wave Equation reduces to
1 8%u , 0%u
5 -a 3 r = const
r< o6 ot
with initial conditions
u(0,0)=u,(6)

separation of variables

r=const

ou

" (9.)=1,(0)

There are no boundaries for a closed string, but rather a physical
condition for a continuous and smooth string:

u(O,t): u(27r,t) t>0

M 0.0)=22m0) 150

060 00

Assume u(@,1)=00)r(t)

. . . 1
Substitute into equation — @'T = a’OT"
r

) @Il 5 TII . .
Separate variables 5 =a’r ? =u M 1S a separation constant
Consider o _
e
O" - 1O =0

We already have experience with solution of this special equation for regular
Sturm-Liouville Problems and know that in all cases except the case of both
boundary conditions of Neumann type, only a negative separation constant ,
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n

S

M

0

(
(

1 =—-A", generates eigenvalues and eigenfunctions. General solution in this
case is
O0)=c, cos 10 +c, sin 20
This solution suits our problem because it is periodic. The values of 4 which
satisfy periodicity on the interval & [0,27r] , are
2nrx
= =n

" 2z
Therefore, solutions are
0O, (49): ¢, cosnf+c,, sinnd

Obviously, that for all #=0,1,2,... 2xis a period for this solution and for its
derivative

o, (0)= —c, ,nsinn@+c,, ncosn

With these values of the separation constant, x, =—A. =—n’, n=0,12,...

n

consider the equation for 7'(¢):

n

2.2
ar

which also has a periodic (in ¢ ) general solution

T"+ T=0

n .n
Tn(t):c3n cos—t+c,, sin—t
' ar ' ar

Then periodic solution of the wave equation can be constructed in the form of an
infinite series:

u(0,0)=00))  =Y6,0),()

°°( 0 nno n . n
—Z c,,cosnb+c, simnb)c; cos—t+c,, sin—t

n=0 ar ar
€, ,C3, cOSNOcos—t+c, c, cosnlsin—t+c,, c;, sinnfcos—t+c,,c,, sinndsin—t
ar ar ar
n . n . n . .n
b, cosn@cos—t+b,, cosndsin—t+b,, sinn@cos—t+b,, sinnfsin—t
' ar ’ ar ' ar ' ar

where coefficients b are new arbitrary constants which can be chosen in such a
way that this solution will satisfy the initial conditions.
Consider the first initial condition:

t=0 u(9,0)=u0(9) :i(bm cosn@+b;, sin nt9)
n=0

0

=b,+ Z (bl,,, cosn@+b;, sin n@)
n=1

which can be treated as a standard Fourier series expansion of the function
u,(6) on the interval [(),27[]. Therefore, the coefficients of this expansion are

1 2z
by :Z .([uo(ﬁ)dé’

b, _1 fu,,(@)cosn&d@
7

2
b;, :é Juo(ﬁ)sin nédo

0
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For the second initial condition, differentiate the solution first with respect to ¢

Ou 2 n . n n n n . .n n . n
(0 t) = z -b,,—cosnl@sin—t+b, —cosndcos—t—b, —sinn@sin—t+b, —sinndcos—t
t =0 ©oar ar ©oar ar ©oar ar ©oar ar

then apply the second initial condition

%(‘9’0):”1(6) —Z( COSn6’+b %sinn@]
n=0
b,, 0+;[ cosn9+b4n£smn9j

Where the coefﬁcients are determined as

by 0=—— ju (0)do

b,, 221 u,(é’)cosn&dﬁ
' n sy
ar 1°¢ .
b,,=—— u](H)smanH
n oy

Coefficient b,, can be any constant, it will not influence the initial speed of the

string, but not to influence the initial shape of the string it has to be chosen equal
to zero (otherwise, initially the string will shifted by b, , and will not be

centered over the plane z=10):
by =0
Therefore, solution of the problem is given by the infinite series

= n .n . n . . n
u(é?,t) =b,, +Z(b1,n cosnfcos—t+b,, cosn@sin—t+b;, sinn@cos—t+b,, sin n9szn—t]
ar ar ar ar

where coefficients are determined according to abovementioned formulas.
Consider particular cases (Maple examples):

1) isolated wave;

2) standing waves

u(&,t)




Chapter 4 Partial Differential Equations

Chapter 4

Partial Differential Equations

EXERCISES

2SRy
m'ﬂ"

*n‘

.-ﬂf’" o

TN t
ﬂ/:ff'{f!r’ i \‘,.,




Chapter 4 Partial Differential Equations

1.

Let D c R’ be a domain (open connected set), and let
S be the boundary of D (S=D\D).
Show that if r € S is a point of the boundary of D ,

then any ball B(r,R) with R €R,R >0 includes points both from D and R*\D, i.e.
B(r,R)nD =@ and B(r,R)n(R’1D)=J.

Remark: this property is usually used as the more general definition:
If AcR" is an arbitrary subset of R” (not necessarily domain), then
xeR" is called a boundary point of A if for any radius R >0 :

B(x,R)mA # and B(x,R)m(R” \A) =

The set 04 = {x & R"|x is boundary point ofA} is called the boundary of 4 in R”.

Examples: a) 8(0, I] = {0, I}
b) d{a}={a} (the boundary of an insulated point is the point itself)
¢c) Q=R
& 0Z=17
& D=0
) R =0
1 1
g) 8{—neN}={—neN}u{0}
n n

Transform the Heat Equation in Cartesian coordinates (8) to cylindrical coordinates (9), using the
conversion formulas between coordinate systems: x =rcos8, y=rsin@, z=z.

Set up a mathematical model (choose an appropriate coordinate system and dimension of the
problem, write the governing equation and corresponding initial and boundary conditions) for the
following engineering models (do not solve the problem):

a) A very thin long wire dissipates energy in the massive layer of the stagnant media with the rate
per unit length ¢ {K} . The media has a thermal conductivity & [lK} . Determine the

m m-
stationary temperature distribution in the media.

b) In the massive layer of homogeneous material (with thermal properties &, p,c ) which was
initially at the uniform temperature 7, a localized heat source spontaneously started to dissipate
energy with the rate ¢ [W] Determine the development of the temperature field in the material.
c) A very long tree trunk of radius R in the forest is exposed to the surrounding air (average wind

speed is v {—} ), but the dense crown prevents the direct sun radiation of the trunk. Set up the
s
mathematical model describing the temperature distribution in the tree trunk during the day.

Conductivity in the tree depends on direction: it is much higher along the tree than in the radial
direction.

. . . D w
d) A wide reservoir of water of L meters deep is exposed to the solar irradiation G, {—2}
m
incident at the angle @. Penetration of the solar radiative flux along the path s is described by the

1], . .
Lambert-Beer Law G(x) =G, cosGe™ , where k {—} is the gray absorption coefficient of water.
m
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Then the solar energy dissipated in water (radiative dissipation source or the divergence of

Radiative flux) is determined by Q(s) = _%(x) {Kj} . Set up the mathematical model
x m
describing the equilibrium temperature field in the water layer.

e) Two opposite sides of the long column are insulated. There is an intensive condensation of the
water steam on one of the other sides. The last side is exposed to the convective environment at

2

temperature 7, and convective coefficient 4 { I
m .

} . Due to some chemical reaction there is

production energy in the column with the volumetric rate ¢ {—3} . Initially, column was at the
m

uniform temperature 7,,. Describe the transient temperature distribution inside of the column.

4. 1) Find solution of the Laplace Equation
2 2
8_1; + a_’; =0
ox~ 0oy
in the domain D =(0,L)x(0,M ) subject to boundary conditions:
Quj - _ouf ol and u| = f(x)
ax x=0 a‘x x=L ay =M

y=0

2) Sketch the graph of solution for L=2, M =3 and f(x)=x(L-x)

3) What is the solution for f(x)= cos% ? Sketch the graph.

5. 1) Find solution of the Laplace Equation
2 2
8_1;+6_g _0
ox~ 0oy
in the domain D = (0,L)x(0,%) subject to boundary conditions:
ou ou
—| =—] =0andu| =f(x
ox|,_, ox|_, |y:" /()

2) Sketch the graph of solution for L =35 and

6. 1) Find solution of the Poisson Equation
2 2

S Sr=F(xy)

ox~ 0oy
in the domain D = (0,L)x(0,M ) subject to boundary conditions:
ou ou

— =0,—| =10, u| =f(x),u =0

ox|._, ox|,_, |y:" /(%) |y:M

2) Sketch the graph of solution for L=4, M =2 and
a) f(x)=5 and F(x,y)=xy(L-x)(M-y)
b) f(x)=x and F(x,y) of your choice
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7. 1) Solve the Laplace Equation in the cylindrical domain
u lou o’u
—t——+—=0 ulr,z): 0<r<r,0<z<z
o’ ror oz’ ( ) ! !
Boundary conditions: u(r,z)=0 0<z<z
u(r,O)z() 0<r<r

u(r,21 :f(r) 0<r<r

2) Display some creativity in visualization of solution for

n=2
z;=35
2
7(0)=(=1)
8. 1) Solve the Laplace Equation in the cylindrical domain
u 1ou 0Ou
—t——+—=0 ulr,z): 0<r<r,0<z<z
o’ ror o0z’ ( ) ! !
Boundary conditions: u(r,z)=2 0<z<z,
u(r,())=() 0<r<r
u(r.z;)=3 0<r<r

2) Display some creativity in visualization of solution for

r=4
z,=10
9. 1. Solve the Dirichlet problem for the Heat Equation:
o’u , Ou
=aq° — ulx,t): xel0, L], t>0
o (er): xeloL]
Initial condition: u(x,O) =u, (x)
Boundary conditions: u0,0)=0, >0 (Dirichlet)

u(L,t)=0, t>0 (Dirichlet)

2. Sketch the graph of solution for L=3 and a=0.1 and initial conditions:

o
N
<
S
—
=
~—
Il
A
h
|
=
~—

3. Observe the Maximum principle for the Dirichlet problem for the Heat Equation

10. 1) Solve the Heat Equation in the cylindrical domain with angular symmetry
2
a—z{-i-ia—u:azﬁ—u u(r,z): 0<r<r,t>0
or’ ror ot
Boundary condition: u(r.t)=f, t>0

Initial condition u (r,()) =u, (r)
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2) Display some creativity in visualization of solution for

r,=05
a = 3000
f,=70

u, (r) =25¢"+20

3) Give some physical interpretation of the problem

11. Superposition Principle for Non-Homogeneous Heat Equation with Non-Homogeneous Boundary
Conditions:
Heat Equation
0%u , Ou
—=a —+Flx ulx,t): xe(0,L), t>0
o’ ot ( ) ( ) ( )
Initial condition: u(x,0) = u, (x)
Boundary conditions: u(0.t)=g,, t>0 (Dirichlet)
ou (L, t)
=g, t>0 (Neumann)
ox

Supplemental problems: a) steady state solution:

o*u

L= Fl(x ulx): xe(0,L

P ) xe(od)

us (0) = gO

Ou,

ox (L) =i

b) transient solution:
o’U  ,oU
=a— Ulx,t): xe(0,L),t>0
axZ at ( ) ( )

U(x.0)=uy(x)-u,(x)

Uu(0,2)=0, t>0
U(L,1)=0 >0

First supplemental problem is a BVP for ODE,;
the second supplemental problem is an IBVP problem for a homogeneous Heat Equation with
homogeneous boundary conditions.

Show that u(x,#)=U(x,¢)+u,(x) is a solution of the non-homogeneous IBVP.
Solve the problem with F(x)=0,g, =1g, = 3and u,(x)=x(4-x).
Sketch the graph.

12. a) Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem:
X”(x)—,uX(x) =0
-X'(0)+HX(0)=0  Robin
X'(L)=0 Neumann



Chapter 4 Partial Differential Equations

Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function

f(x) =xe "

Sketch the graph for L=2, H=3,and n=5 and n=20.

14. a) Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem:
X”(x)—,uX(x) =0
X'(0)=0 Neumann
X'(L)+H,X(L)=0 Robin
Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function
f (x) =xe "
Sketch the graph for L=2, H=3,and n=5 and n=20.
15. a) Find eigenvalues and eigenfunctions of the following Sturm-Liouville problem:
X"(x)-puX(x)=0
-X'(0)+H,X(0)=0 Robin
X'(L)+H,X(L)=0 Robin
(do not try to get the solution given in the table for the Sturm-Liouville problem)
Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function
f(x)=xe™ in the interval (0,L1)
Sketch the graph for L=2, H=3,and n=5 and n=20.
16. a)

Reduce the following BVP to a Sturm-Liouville problem:
xu"+ 2xu’ + pu =0

u(1)=0
u(e)zO

and find eigenvalues and eigenfunctions.

Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function

f(x) = xe " in the interval (I,e)

Sketch the graph for n =5 and n=20.
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17.

18.

19.

20.

21.

22.

a) Reduce the following BVP to a Sturm-Liouville problem:

X u"+ 3xu' + pu =0

u(1)=0
V()0
and find eigenvalues and eigenfunctions.

Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function

f(x) = xe " in the interval (I,\/g)

Sketch the graph for n=5 and n=20.

a) Reduce the following BVP to a Sturm-Liouville problem:

xu”+u'+ﬁu =0
X

u (1 ) =0
u (e) =0
and find eigenvalues and eigenfunctions.

Use the obtained set of eigenfunctions for generalized Fourier series representation of the
function

f(x)=xe™ in the interval (/,e)
Sketch the graph for n =5 and n=20.

The set of functions {I,x,xz,xj,...} (monoms) is linearly independent in L, (—I,] )

a) Using the Gram-Schmidt orthogonalization process, construct an orthonormal basis of
L,(-11).

b) Use the obtained orthogonal set for a generalized Fourier series representation of the function

-1 xe (—1,0)

f(x):{ 1 xe(01)

Prove that if the set {(pﬂ} is orthonormal, then it is linearly independent (show it for a finite set).

Show that the set {sin (n + éj%x} is orthogonal in L, (0,L).

Find the solution of the IBVP for the Wave Equation

2 2
;—?:aiz% u(x,t), xe(O,L),t>0
initial condition: u (x,O) =u, (x)
ou(x,0
E?t - (%)
boundary conditions: u0,0)=0, >0 (Dirichlet)

u(L,t)=0, t>0 (Dirichlet)
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23.

24,

25.

Sketch the graph of solution with L=2, a=0.5, and
a) uj(x)=—0.1, u, (x):xZ(L—x)Z

b) u,(x)=0, u,(x)= sin%x

(observe the phenomena called standing waves)

Find the solution of the IBVP for the Wave Equation

o’ 1 ¢°
ax_zl:??l; u(x,t), xe(O,L),t>0
initial condition: u(x,0)=u,(x)
ou(x,0
(az - (%)
boundary conditions: —u'(0.0)+Hu(0,0)=0 , >0
u(L,t)=0 , >0

Sketch the graph of solution with L=35, a=2.0, and
a) u,(x)zO.Z , U (x):(L—x)Z

b) u,(x)=0, u,(x)=X;(x) (cigenfunction)

Robin
Dirichlet

Set up and solve the IBVP for a 2-D Wave Equation in Cartesian coordinates.

Sketch the graph of the solution.

Solve the IBVP for the Heat Equation in polar coordinates with angular symmetry:

Pu lou_ o

o’ ror ot u(r,t), re[O,rl), 1>0

Initial conditions: u(r,0)=u,(r)

. au(r,,t)
Boundary condition: k8—+ hu(r,.t) = f, t>0
r

And sketch the graph of solution for
n=2,a=05,k=01,h=12, f;=2, and u,(r)=(r-r

(hint: find the first steady state solution)
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26.

27.

a) Solve the IBVP:

o’u Ou
6x—2=aZ§+F(x) u(x,t), xe(O,L),t>0
initial condition: u(x,0) = u, (x)
boundary conditions: u(0,6)= f, t>0 (Dirichlet)
6u(L, t) .
k=2 hu(L,t)=f, t>0 (Robin)
x

b) Sketch the graph of solution with
L=4,a=05,k=2.0,u,(x)=x(x=L/2)+5,f,=10,f,=1,F(x)=x
Find the solution for vibration of the annular membrane with angular symmetry:

5 2
8_u+16‘_u_ ZZT? u(r,t), rE(I’I,FZ),t>0

or? 7 or
Initial conditions: u (r,O) =u, (r)
0
% r.0) =, ()
Boundary condition: u(r,,1)=0 >0
u(r2 t)=0 t>0

And sketch the graph of solution for
rn=1,rn=2a=05,u, =(r—r1)(r2—r), and uI(r)=0.
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