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Chapter 5

SPECIAL FUNCTIONS

Introduction

In this chapter we summarize information about several functions

which are widely used for mathematical modeling in engineering.

Some of them play a supplemental role, while the others, such as the
Bessel and Legendre functions, are of primary importance. These
functions appear as solutions of boundary value problems in physics and
engineering.

The survey of special functions presented here is not complete — we
focus only on functions which are needed in this class. We study how
these functions are defined, their main properties and some
applications.
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5.1 Heaviside Function (unit step function)

The Heaviside step function has only two values: 0 and / witha
jumpat x=0:

H(x):{o x<0

1 x>0

Graphically it can be shown as:

>plot (Heaviside (x),x=-3..3,discont=true);

1

H(x)
067
0.44
0.29

Shifting of the step function along the x-axis:

0 x<a
H(x—a):{] x<a

>plot (Heaviside (x-2),x=-1..4,discont=true);

H(x-2)
filter function The filter function can be constructed in terms of the step function:
0 x<a
F(x,a,b)=H(x—a)-H(x-b)={1 a<x<b
0 x>b

It cuts the values of functions to zero outside of the interval [a,b] :

>F(x,1,3) :=Heaviside (x-1) -Heaviside (x-3);
>plot(g(x)*F(x,1,3),x=-1..5,discont=true);

e g(x)-F(x,1,3)

0.5

4 o 1 2 M 3 4 5

The Heaviside step function is used for the modeling of a sudden

)

2

3

increase of some quantity in the system (for example, a unit voltage is

suddenly introduced into an electric circuit) — we call this sudden
increase a spontaneous source.
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5.2 Dirac Function (delta function)

The Dirac delta function &(x) is not a function in the traditional sense — it

is rather a distribution — a linear operator defined by two properties. The
first describes its values to be zero everywhere except at x =0 where the
value is infinite:

I (3‘{ X)
\
' o x=0
Symbolic dlx)= 4
= ) {0 x#0 @
T 1
|
é The second property provides the unit area under the graph of the delta
l function:
- -
0 b
jé‘(x)dx=1 where a <0 and b >0
The delta function is vanishingly narrow at x = 0 but nevertheless
encloses a finite area. It is also known as the unit impulse function.
The Dirac delta function can be treated as the limit of the sequence of
the following functions:
a) rectangular functions:
’ik
I H(x+h)-H(x-h
Ik §(x)=1imS, (x)=lim ( ) ( )
A e h—0 h—0 2h
GG ) S 8z b) Gauss distribution functions:
T I 5(x) =limG (x) =lim ! ei‘xfiz
) o0 © o0 G\/;
’ ¢) triangle functions:
: A 0 x<-h
’“/,4\ il _h<x<0
AN . h’
; ‘ \. 5(x):£lm05h(x) 0, (x):
i 7 242 0<x<h
~ h h "
0 x>h
o 4 d) Cauchy density (distribution) functions:
\\
L ,\_% - §(x)=1lim D, = lim L
ll n—o n~>oc7z.(]+n2x2)
4
R
2% e) sine functions:
B, — o * Ao .

5(x) =lim Sinnx

n—0

X
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Properties

1) Extension of the interval of integration to all real numbers still keeps
the unit area under the graph of the delta function:

_]ié'(x)dx =1

2) The Dirac delta function is a generalized derivative of the Heaviside
step function:

5()() _ dH (x )
dx
It can be obtained from the consideration of the integral from the
definition of the delta function with variable upper limit. It is obvious,
that

x>0

Therefore, the step function is formally an antiderivative of the delta
function which now can be interpreted as a derivative of a discontinuous
function.

]:cé(t}lt = {3 x<0_ H(x)

3) Shifting in x:

5(x_a):{°o x=a

0 x+#a

atc

Jﬁ(x—a)dle, c>0

4) Symmetry:

5) Derivatives:
5'(x)=-Ls(x)
X

The derivative can be defined as a limit of triangle functions and
interpreted as a pure torque in mechanics. The higher order derivatives of
the delta function are:

5O)=(1f K s(x) k=12,
X

6) Scaling:

5(ax)zi

é‘(x) for a#0
[

7) There are some important properties of the delta function which reflect
its application to other functions. If f(x) is continuous at x = a , then

f(x)5(x—a)= f(a)s(x - a)
[plahis=sla)  peace

1f<xw<x—aﬁx=f<a)

[0 —akie = f@)i(xc—a)  x,<a
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Integration with derivatives of the delta function (integration by parts):

]; £(x)8" () = £ () () —]; 7(x)8(x)dx = —1"(0)

©
©

[ £(x)8" (x)dx = f(x)é'(x)|_w - T f(x)8" (x)dx = —[—f'(o)]' = 1"(0)

—o0 —0

8) Laplace transform:

©

L{s(x)} = .([e'”ﬁ(xﬁx =1

L{5(x—a)}=Te'“S(x—a)dxze_“ a>0
0
9) Fourier transform:

F{5(x - a)} = Te”"”"&(x - a)dx =™ a>0

Applications The delta function is applied for modeling of impulse processes.

For example, the unit volumetric heat source applied instantaneously at
time ¢ =0 is described in the Heat Equation by the delta function:

ou
= —kVu=6(t)
ot
If the unit impulse source is located at the point r =r, and releases all
energy instantaneously at time ¢ =¢,, then the Heat Equation has a source
u_
ot
Impulse models are used for calculation of the Green’s function for non-
homogeneous DE.

kVu=5(—1,)5(r-r,)

The other interpretation of the delta function 5(1 - t,,) as a force applied

instantaneously at time ¢ =¢, yielding an impulse of unit magnitude.

Example Consider IVP: unit impulse is imposed on a dynamical system
initially at restat 1 =5:

V'+9y= 5(t—5)
initial conditions: y(0)=0

y(0)=0
Solution: Apply the Laplace transform to the given initial value problem
(use the property of the Laplace transform):

SY+9Y =™

Solve the algebraic equation forY :
B e*S.s
s+9
The inverse Laplace transform yields a solution of [IVP:

y(t)= éH( —5)sin3(t—35)

The graph of the solution shows that the system was at rest until the time
t =5, when an impulse force was applied yielding periodic oscillations.
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5.3 Sine Integral Function

The sine integral function is defined by the formula:

Si(x) = f%d; x (= ,00) )
0

The integrand can be expanded in Taylor series and then integrated term
by term yielding a series representation of the sine integral function:

si() =3 (©)

S (2n+1)2n+1)

Graphically it can be shown as:

>plot(Si(x) ,x=-25..25);

-0 -0

The limiting values of the sine integral function are determined by the
Dirichlet integral

o .

Sin @ V4
[——do==
) @ 2

which was obtained in Section 3.5 (Remark 3.7, p.227) as a particular case
of the Fourier transformation of the step function.

In Chapter 3, we discussed connection of Gibbs phenomena in the Fourier
series approximations of functions with jumps and the properties of sine
integral function.
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5.4 Error Function

The error function is the integral of the Gauss density function

erf(x)= %je“ dt x € (—o0,») (7
0

>plot(erf (x) ,x=-4..4);

erf(x)

The complimentary error function is defined as
erfe(x)=1-erf(x)= i]oe*fz dt ®)
V7

>plot(erfc(x) ,x=-4..4);

erfe(x)
2
5
1
05
4 2 o 2 4

Series expansion of the error function:

Derivatives of the error function:

—x

%erf(x)z%e

d’ —4x _2

dx’ erf(x)= Jz h
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5.5 Gamma Function

Definition

Properties:

The Gamma function appears in many integral or series representations
of special functions. Gamma was introduced by Leonard Euler in 1729
who investigated the integral function

1
fx” (I—x)q dx p,geR
0
which for natural values p,q € N is equal to

rlq!
( p+q+1 ) !
With some transformation of this integral and taking the limits, Euler

ended up with the result
1

J(—lnx)n dx=n!= F(n+])

0
Later, the gamma function was defined by the improper integral which
converges for all x except of 0 and negative integers (Euler, 1781):

I(x)= Te"’ 7 dt ©

0

> plot(GAMMA (x),x=-5..4);

UU 0
Il .

a) I(x+1)=xI"(x) (10)

1]

I(x+1) et gy

=]
0
= Te”txdt
0
= —]O.txde”
0
11—

=- txe”|0 + je’tdtx (limte =0)
0

= x_[ et dt
0

(x)

I
=
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b) When x = n is a natural number then
r(n)=(n-1y n=123,..
I(n+1)=n/  n=0,12,.. provided that 0/=1 (11)

The gamma function is a generalization to real numbers of a
factorial (which is defined only for non-negative integers).

Proof: r (1 ) =1 then using property (a)
rQ)=r(t+n=1r(t)=1=1
r(3)=r(2+1n=2r2)=2-1=2!

(then by mathematical induction)
c) The gamma function does not exist at zero and negative integers.

d) The gamma function is differentiable everywhere except at
x=0-1-2,.... It is a differentiable extension of the factorial.
The derivative of the gamma function is called the digamma
function. It is denoted by

¥ (x) =r '(x)
rg
4
v ¥ (x)
=
- 2 o 2 4
: ®
L
e) Stirling formula (approximation for large x, x > 9)
I(x+1)~ \/Zn:x(i)
e
f) Calculation of gamma function: Lanczos’ approximation in

Fortran or C++ Numerical recipes.

g) Binomial coefficients:

(z}_ zl I(z+1)

w _w/(z—w)/_F(w+1)F(z—w+1)

(12)
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5.6 Bessel Functions

1. Bessel Equation

2. Singular Points

3. Indicial Equation

=0 = x=0

In the method of separation of variables applied to a PDE in cylindrical
coordinates, the equation of the following form appears:

rZR"(r)+ rR’(r)+ (/12}’2 -’ )R(r) =0 re [0,00)

This equation is the second order linear ordinary differential equation with
variable coefficients. It includes two parameters A and v. It is not of
the Euler-Cauchy type. Can be solved by the Frobenius method.

Simplify equation by the change of variables to eliminate parameter A :

y(x)=R(r)

x=Ar
R _dvdv_
dr dx dr

2
df:i AR)_df,dr)_d[,dvide_ 0
dr dr\ dr dr\  dx dx\  dx)dr

Then the equation becomes

xzy"+xy'+(x2—v2)y=0 (14)

Now the equation is written in traditional variables, and it includes only
one parameter v. This equation is called to be a Bessel Equation of
order v. Apply a power-series solution to this equation.

Singular points of the differential equation with variable coefficients are
the points x at which the first coefficient becomes zero:

is the only singular point of the Bessel Equation. Therefore, if we find a
power-series solution around this point, it will be convergent for all real
numbers.

Determine the type of the singular point.

Divide the equation by x” to rewrite it in the normal form:

I 2
y"+—y'+(1—v—2jy =0
x x
Identify coefficients of the equation in normal form:
I 2
P(x)== and QO(x)= J—V—2 .
X X
Check if the singularity is removable:
xP(x) =1 isanalytic: p,=1
X*O(x)=x" —v? is analytic: g, = -V’

Therefore, x =0 is a regular singular point, and the Frobenius theorem
can be used for solution of the Bessel Equation.

Substitute coefficients p,and ¢, into the indicial equation (Ch. 2.42):

r +(p0 —])r+q0 =0

r’—vi=0

There are two roots of this equation:

rn=v r=-v

(choose v >0 for convenience, later we can abandon this assumption).
The Frobenius approach depends on the form of the difference of roots of
the indicial equation:

) =v—(—v):2v

Two cases of the Frobenius theorem may be involved:
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4. First Solution

m=0
m=1
m=2
m=3
m=4

a) 1 —r =2V #integer
b) n —r, =2v =integer
this case includes v =n, ne N, (positive integers and zero) and

v =211 hatf of the odd integer)

In both cases, the first solution, following the Frobenius theorem, has to
be found in the form:

v, = icnx"”’ = icnx"” , x>0 (15)
n=0 n=0

Proceed to this solution, and then we will analyze how it handles the
abovementioned cases.

Using assumed form of solution (2), calculate the derivatives

0

_ n+v
le - :E: cn'x
n=0

©

=3 (v

n=0

V= i(n +v)n+v—1Ie,x""

n=0
and substitute them into the Bessel Equation (1):

0

Sn+vin+v—1Ie,x"" + i(n +v)e, X" + icnx"”” - vzicnx”” =0
n=0 n=0

n=0 n=0

Divide the equation by x” and collect the terms

0

nln+2ve,x" + 3 c,x" =0
0
=

n=0
Rename indices:
in the first sum m = n ; in the second sum n=m + 2

im(m + ZV)mem + icmfzxm =0
m=0

m=2

Combine both series:

0-c,+(1+2v)e,x+ i[m(m +2v)e, +c, )" =0 (16)

m=2
Applying the Identity Theorem 2.6 to the term with summation, we obtain
a recurrence relationship:

¢, =——n2 _ for m>2
m(m+2v)

Using this relationship and also the first two terms of the equation, we get:

0-c,=0 = ¢, = arbitrary
(1 + Zv)c] =0 = ¢, =0 (byassumption,v >0)
) ) )
Cc, = = = ¢, =—"
U 202+2v) 2:2(1+v) P 2.2(1+v)
-,
C, =——<= 0 = C; = 0
33+ 2v) ’
¢, = —% S S

ddr20) 222220002 +y) T 4w 2+y)
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= ¢, =0

—-c, —C,

Bessel function of the 1°* kind

) 2-2-3G3+v)

T T v 2+ )3 +Y)

All coefficients with odd indices are equal to zero. Recognizing the
pattern, we can determine the coefficients with even indices:

(1),
Cy = k=012,.
M k(14 v) 24+ v)-(k+v)
This expression may be written in more elegant form if the gamma
function is used. Multiply and divide the expression by /7~ (1 + v):

o e r(i+v)

%kl T(U+v)I+v)2+v)-(k+v)
Repeatedly using the property (a) of the gamma function, we squeeze the
product in the denominator:
F(I+v)1+v)2+v)--(k+v)=T2+v)2+v)3+v)--(k+v)=T(k+v+1)
Then the expression for the coefficients becomes:
o = (— ])kco F(v+ 1)

*2 ek T(v4k+1)

Choose the value for the arbitrary coefficient ¢, = ﬁ , then

v+1)
1)

C =
I r(v4k+1)
Then the solution becomes

¥ 2k+v
k
. (_ ])k 2k © (_ 1) (2)

x)= =
7ix) % 28k r (v k+1) % kKT(v+k+1)
This series solution converges absolutely for all x >0 because there are
no other singular points. The function represented by this power-series
solution is called to be a Bessel function of the 1* kind of order vand it
is denoted by

Jv(x)=i,E_I)L;) (17)

ITv+k+1)

=0

This formula is valid for any real v >0 (including integers v =n and
2n+1 )

If v is integer (let v =n), then the gamma function is replaced by the
factorial

Tn+k+1)=(n+k)

and the solution simplifies to:

half of the odd integers v =

Jn(x)=iﬂ (18)

= kl(n+k)

This is a Bessel function of the 1* kind of integer order (including zero).
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5. Second Solution

Casel) r, =-v #integer

(including halfs of the odd integers v = 27—

)

Because x appears squared in the equation, the second solution may be
obtained from the first by a simple replacement of v by —v :

J,(x)= iﬂ

SHT(-v+k+1)

(19)

Functions J,(x) and J (x) are linearly independent. It can be shown
that the Wronskian of Bessel functions (17) and (19) is:

Jv(x) J_v(xi:_Zsinwz
Jix) J,(x

v -V

wl, (x) 7, ()= (20)

X

If v#nis not integer, then the Wronskian is not zero and the Bessel
functions J, (x) and J , (x) are linearly independent.
Then the general solution of the Bessel Equation may be written as

y(x)=cJ, (x)+ ., (x) 1)

Case2) v=n When v is integer, the Wronskian (20) is equal to zero
for any x>—0, therefore, Bessel functions of integer orders J, (x) and
J_,(x) are linearly dependent.

We can show that in this case functions J,(x) and J ,(x) are just

multiples of each other. Indeed, write a Bessel function of negative
integer order replacing v by n in equation (19):

2k—n
. 03)
L=yt @2
ST (~n k1)
and change the index of summation & by s to make substitution in the
exponentiation
2k—-n=2s+n

then k£ =s+n, and equation (22) becomes

I,0)=3 (- 1)(;]2

B —n (s + n)!F(s + 1)
Consider a factor in the denominator T'(s+1): when s+1<0 (non-

(23)

positive integer), the gamma function is unbounded, therefore, the first n
terms from s=-n to s=-1 in the summation (23) are equal to zero,

then taking that into account for integers, F(s + 1) =s! , we obtain

puars (s + n)!s! (s + n)!s!

s=0
or

()= (1), (x) (24)
So, function J_,(x) is the function J,(x) up to the sign.

We need to find the second linearly independent solution.
According to the Frobenius Theorem 2.11, it can be found in the form:
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Bessel function of the 2" kind

General solution of Bessel equation

6. Bessel functions of half orders

J,(x)= kidkxk’v +cl, (x)ln|x|
=0

or we can use the reduction formula (Part I, 2.2.9 3, p.131) to find the
second solution:

1L6)= 20 o

where long division and the Cauchy product should be used (which is
tedious but manageable).

But, instead, traditionally, the second independent solution is introduced
by the definition of the Bessel function of the 2" kind of order v :

K,(x) 2 WTJV_(x)_ oy (x) for v #n not integer (25)
sin vz
and for integers, as the limit
7, ()= tim, (x) = 2= L ) (26)
von sin vz

which appear to exist for all »=0,£1,£2,... (or n€ Z).
Can be derived:

Y,(x)= %[lng + y}ln (x)=....... @7)

y = lim(l +%+%+ e +L— In mj =0.5772... Euler’s constant

m—0 m
Functions Y, (x) have a logarithmic singularity at zero, while functions
J,(x) are finite at zero, that leads to their linear independence. It can be
shown that the Wronskian for these functions is given by

W[JV (x), Yv(x)]: g, (x) Y, (xi_ 2

J(x) ¥/(x T

v

(28)

Functions J,(x) and ¥,(x)are linearly independent for all v (including

integers), and can be used for construction of the general solution of the
Bessel equation:

y(x)=cJ, (x)+ )7, (x) (29)

When the order of the Bessel equation is not integer, the complete
solution may be also given only in the terms of Bessel functions of the
first kind:

y(x)=¢J, (x)+c, , (x) (30)

The second solution was derived mostly for integer roots, so, we
emphasize it by the following statement: the complete solution of the
Bessel equation of integer order n is given by:

y(x) =, (x)+ Y, (x) 31)

. . 1 .
It is happens that functions of orders v =n iz can be expressed in terms

of elementary functions. Show it forv = i% . Consider BE (14).
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o u
Use substitution y=—=x 2u
Jx
R
V=——x2u+x ? —
x
5 3 1
- - ~ du
y==xlu-x?—+x?—
4 X dx
then the equation becomes
1
w1+ 2 — u=0
x

1 . . . .
F0rv=iz, this equation reduces to a linear ODE with constant

coefficients
u"+u=0
the general solution of which is given by
y=c,cosx+c,sinx
Apply the back substitution u = y\/; , then the solution becomes

cos x sin x

y=c¢ ——+c, ——
Vo7
2 . . .
If we choose for constants ¢, =c, =,/]— to be consistent with definition
T

(17), we obtain that Bessel functions of half orders are given by:

J, (x)=\/% j;" (32)
J, (x):\/% Sij‘; (33)

It can be verified that Bessel functions of v = i% are:

J;(x)= \/% X (34)

J )= = ——— (35)

= . Ix

Other Bessel functions of half of odd integer orders also can be expressed
in terms of elementary functions. These functions are used for
construction of spherical Bessel functions

J 1(x)

i e (36)

Y 1(x)

Ty A 1 d\ cosx
PRI [‘d—j R
which are solutions of the Bessel equation

X2y + 2xy' + |:x2 - n(n + l)ly =0 n=0+1%2.... (38)
This equation appears as one of the ODE in the separation of variables of
the Laplacian in spherical coordinates [Abramowitz and Stegun, p.437]

v, (x)=
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7. Bessel functions of the 3™ kind

8. Properties of Bessel functions

A linear combination in the general solution (29) assumes that coefficients
¢, and ¢, are real numbers. We also considered the variable x to be a

real number too. But the obtained equations and functions are valid also
for complex numbers. Two particular combinations of Bessel functions
J, (z) and Yv(z) with complex coefficients lead to the introduction of the

complex version of Bessel functions, which also are the solutions of the
Bessel equation but in the field of complex numbers z € Z :

We define two Bessel functions of the 3™ kind of order v ( they are
also called Hankel functions) as

HY(z)=1,(2)+17,(2) (39)

14

H(z)=J,(2)-1,(2) (40)

v

or we can express them in terms of the Bessel function J,(z) only if

function Yv(z) is replaced in this definition by a complex version of

equation (25):
J —eJ
]_[‘(,1)(2)= v(23Si1fVﬂ: v(z) (41)
J —e"J
H‘E])(Z)z v(i)lsne; V”V(Z) (42)

Definitions (41) and (42) are for v # integer . For v=n, n=0,1,2,..., we
take the limits:

H(2)=tim 2= )=/, x) 43)
von 1smvre

HSZ)(Z) _ limM (44)
von —ismvrw

Because Hankel functions Hfl)(z) and Hfz)(z) are linear combinations of

Bessel functions of the 1% and the 2™ type, they have the similar
properties.

The Wronskian of Hankel functions H 5')(2) and H f)(z) is
i) )=
z

therefore functions Hfl)(z) and Hiz)(z) form a fundamental set for the

Bessel equation; and the general solution of the Bessel equation can be
written as

y(x) = clH(l)(z)+ czH(z)(z)

v v

for any order of the Bessel equation v (including integers).

a) Functions J, (x) and Yv(x) are both oscillatory; they have infinitely
many roots for x >0.

2 4 6 8
Jo(x):l_x_+x__x_+x—+...
4 64 2304 147456
X x3 xs x7
1( ):———J,-—— —+ ..
2 16 384 18432
2 4 6 8
P NEANE AN AR S
8 96 3072 184320
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Identities

Differential identities

Integral identities

Addition theorem

9. Generating functions

Expansions of x"

Lol ) Ji(6)==1,(x)

g W=

WL ()= () )= 02,0
W), (W)= )| =) )

.fo“JV (x)dx=x"",,, (x)+c
fx"’”JV (x)dx =—x""J,  (x)+c

T4 )= T, 0)

The same properties also hold for Y, (x).

b) Functions /,(x) and K, (x) are not oscillatory

4 6 8
X X X

2
Io(x):1+x— —t——t
4 64 2304 147456
X

5 7
X X

X 3
= +
2 16 384 18432
X2 X4 X6 Xx
T+ +

8 96 3072 184320

Iz(x):

Lk S,
cosx=J, (x)—2J2 (x)+ 2J, (x)— 2J, (x)+
sinx =2, (x)= 25 (x)+ 275 (x)+ -

(What can be obtained for x=17 ?)
1=J,(x)+2J,(x)+2J, (x)+-+ 275, (x)+--

= (33,0 5 (et (2 Wy ()

%x =J,(x)+ 47, (x)+ 9T (x)+ -+ k2T, (x)+ -

(45)

(46)

(47)

(48)

(49)

(50)

(D
(52)

(53)

(55
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10. Modified Bessel equation

The modified Bessel equation is given by
xzy"+xy'—<x2+v2)y=0 (56)

which can be written in the form of Bessel equation (14) with the second
parameter A =i:

xzy”+xy'+(i2x2—vz)y=0 57
which has a general solution given by equation (29) with x replaced by ix:
yx)=ed, (ix)+ e, (i) (58)

Equation (58) provides a solution of the modified Bessel equation (91) in
complex form. But it is desirable to have a real form of solution.

Consider
k[ixj2k+v [xjﬂcﬂ/
1) 2 r
J,(i0)= i() 2 iy
RU(v+k+1) S kT +k+1)

(59)

because:

(_ l)k (i)2k+v — (_ l)k (l.)zk l-v — (_ 1)k <lz )k iv — (_ l)k (_ l)k l.v — (_ l)Zk l-v — l-v .
Then define a function which is called the modified Bessel function of
the 1° kind of order v

(60)

which is a real function and which is a solution of the modified Bessel
equation (56). Notation / for this function reflects the method of its
definition, and it means “the function of imaginary argument”. For
negative values of parameter —v , define a second solution of the
modified Bessel equation as

1=, ()= i—lzl———

TCv+k+]) 1

The Wronskian of functions 7, (x) and 7 , (x) can be calculated as

W[IV (x). 1., (x)] __2sinvz #0 for v # integer
m

therefore, functions /, (x) and 7, (x) are linearly independent and form a

fundamental set, then the general solution of the modified Bessel equation
of non-integer order is given by

y(x) =c/, (x)+ c, 1, (x) v # integer (62)

In the case of integer orders, function 7 ,(x) is the same as function

I, (x) . Indeed, when v is changed for n in equation (61)
L) =i", (ix)=i" (1), (ix)=i" (1) i [, ()]
Y W= ()= 1,0

For integer orders v=n, n=0,,23,..., the second solution of the

modified Bessel equation is defined with the help of the modified Bessel
function of the 2" kind of order v :
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ol (x)-1,(x)
K, (x) T2 sinwr (63)

as the limit of

K,(x)=limK, (x) (64)

V—n

11. Equations solvable in terms of Bessel functions

Airy equation

Consider some generalizations of the Bessel equation which also can be
solved in terms of the Bessel function.
a) Consider a generalized Bessel differential equation of the form

1=2 Im—1 2 2.2
y”{ xm—Za}y'{pzaZx“%aera(':Z )+m va y=0

if y= y(x) is any solution of the Bessel equation, then the function

y= xme”“y(ax”)
is a solution of the generalized equation. For instance, for any real v >0
(including integers), the general solution can be written as

y=x"e" [CIJV (axp )+ ¢,Y, (ax” )]
or for non-integer orders, a general solution can be written as

y=x"e* [clJv (axp )+ c,J_, (ax" )]
Proof of this statement can be made by the appropriate change of variables
and by reduction of the differential equation to the Bessel equation.

Example 1 Check that the modified Bessel equation

2..0n

x°y +xy'—(x2 +V2)y =0
is a particular case of the generalized equation. Rewrite
it in the form of the generalized equation:

" 1 ’ V2
y +{;}y +{—1—x—2}y=0

2
yu+[1—2~0 _2'O}y'+|:(1)(—1)x2'1_2 +¥:|y -0
X

X

from which we can identify

m=0,a=0, p=1,and a* =-1

and, therefore, solutions of the modified Bessel equation
should include functions

J,(ix), J_,(ix), and Y, (ix)

what we know from Section 10.

Example 2 Consider the Airy equation

y'=xy=0

which is the simplest case of the linear 2" order ODE
with variable coefficients. This equation has
applications in dynamics (oscillation of an aging
spring), quantum mechanics and optics.



Chapter 5 SPECIAL FUNCTIONS

Rewrite the Airy equation in the form of the generalized

equation
1 1
1-2-~ 9 AR 1.9,
'+ 2 2.0 y+[ == 2 +0+0+ 24 y=0
X 4 9 x
from which we can identify
1 4
m=—,a=0, pzi, a’=——,and v’ ==
2 2
from the last equation we can determine the order of the
equation
v:il
3

Then solutions of the Airy equation can be written as

L 2 3
yl(x)zxz./l[gixz]

3

1 2 3
yz(x):szl(gisz

3
If we rewrite Bessel functions of the 1% kind of complex
arguments in terms of modified Bessel functions using
equation (95), then the solutions become

y,(x):x/zlg(éx;j
)’z(x):\/;I ][éij

3
These two linearly independent solutions (note, that
order of modified Bessel functions is not integer) may
be used for construction of the traditional form of
solutions

] 5]
o8] )3

which are called Airy functions. The next plot shows
the graph of Airy functions

5:
4
] Bi(x)
3]
¥
21
13
] Ai(x)
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b) This form of equation is a particular case of the previous equation, but
it is more convenient for applications in simpler cases:

y=0
solutions of this equation have the forms

y(>6)=\/;~’1 [Z—QXZJ
S\ P

2 -2
y'+a x?f

y(x):x/;Yl (Z—ax;}]
P

Solutions of the Airy equation can be obtained in this case much faster.

¢) Equation
y”+(a2e2x -p° )y =0
has solutions

y(x) =J, (aex )

y(x)= J, (ae")
y(x): Y, (ae")
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12. Orthogonality of Bessel functions We know from Sturm-Liouville theory that solutions of the self-adjoint
differential equation satisfying homogeneous boundary conditions form a
complete set of functions orthogonal with some weight function (Sturm-
Liouville theorem). Consider application of this theory to solutions of
BVP for BE.

Self-adjoint form of BE The Bessel equation of order v with parameter A4
xzy"+xy’+(/12x2 —vz)y =0
can be reduced to a self-adjoint form with the help of a multiplying factor

ay X
g J.—d-
Voo _ 1 J5e 1 1
x’ x’ x

ulx)=Le

a

S 1. ..
After multiplication of BE by — it can be reduced to self-adjoint form
x

, 2
[xv'] +(_V7+ ny y=0 (identify p(x)=x)

Then, the Sturm-Liouville Problem in the interval x e [L,,LZ] produces
infinitely many values of the parameter A, (eigenvalues) for which there
exist non-trivial solutions y, (x) (eigenfunctions).

According to the Sturm-Liouville theorem, the obtained eigenfunctions
are orthogonal with the weight function p(x) =x:

L
ngy,1 (x) " (x)dsz for n#m

L

Orthogonal sets for circular domain Consider BE in the finite circle 0 <x < L. The general solution is given
by

y(x)= e, (Ax)+ e, ()

The physical sense of solution of classical PDE requires a finite value of

0<x<L

/—\ solution in all points of [0, L]. Bessel functions of the second kind ¥, (x)
are unbounded at x =0, therefore, to satisfy this condition we have to put

| 4

L an arbitrary constant ¢, equal to zero. Then solution of BE becomes

y(x)z ¢, (/lx)

boundary conditions: Consider the homogeneous boundary conditions at x = L :

I Dirichlet y(x] =0
II Neumann y'(x)ﬂ =0

I Robin [y'(x)+Hy(x)]_, =0
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Equations for eigenvalues

Orthogonality

We are looking for the values of the parameter 4 which provide non-
trivial solutions y(x)=r¢,J, (Ax) satisfying boundary conditions I-IIL.

These values can be found by substitution of the solution into the
boundary conditions I-III as the positive roots of the following equations:

I J,(AL)=0

1 —A,,, (/1L)+%JV (AL)=0
(4, =0 1is also an eigenvalue when v =0)
L, (3)=0 27,(2)=0
dx

/1[— S+, (ax)} o

m -, (AL)+ (H +%ij (AL)=0

Proof:  y'(x)+ Hy(x)
L ), (25) (= 272 ) 1 (3), 02)
X

=4 o, ) 0, (2

=2, (2x)+ (H + KjJ ()

X

In the particular case, when the Bessel function is of zero order, v =0,
equations for eigenvalues are:

I J,(AL)=0
II J,(AL)=0 (and 4, =0 is also eigenvalue)
11 —AJ,(AL)+ HJ ,(AL)=0

Obtained equations generate infinitely many eigenvalues A, , n=1,2,3,...

no

For which the corresponding eigenfunctions are:

¥, (%) ={. (40}

The corresponding set of solutions {J . (xlnx)} is orthogonal with respect

to the weight function p(x)=x:

J'xJV (ﬂnx)Jv (ﬂmx)dx = N2 e

0

L {0 n£m

where the squared norm of eigenfunctions is determined as
(Ozisik N. Heat Transfer, p.133; McLachlan Bessel Functions for
Engineers, p.110):
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Norm of eigenfunctions

Bessel-Fourier Series

or integrating with Maple:

N}, = _[xJ (4, x)dx 2{ I (Ax) =, (A4x) (/'Lnx)}
The derivative can be expressed as (use chain rule and identity in sec. 6)
R =0, )

dx

L

0

=a{wmw%—Jwﬂ

A x

n

nY v+l

A, (4 x)+ LT, (4,x)
X

or if we use the other identity for lower order then

) =40, G,)
=2 {J” (4,%) —%JV (/Inx)}
)lx
=27, (4, x)——J (/Inx)
X

Then taking into account that eigenvalues A, satisfy equations I-III (that

simplifies expressions), the squared norm for specific boundary conditions
is given:

2 2
I N\in = L2 v+l (/I L) or = L? (/I L)
L v? L’
Il N\fn = 7(1 - ﬂiLZ J']‘f (ﬂ’n]‘) N()ZO = 7J
2 2 2
I NI, = %B—z + [1 - ﬁj}/f (4,L)

The obtained orthogonal systems can be used for constructing the function
expansion in a generalized Fourier series

£(x)= ZaJ (2,%)

where coefficients ¢, are determined from the equation

[, (2,0) £ (x) [, (20) £ (x)
a,=1— _0 .
_[xJVZ (/Inx)dx N

0
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v>0

Example 3 (I Dirichlet boundary condition)
Consider an orthogonal set obtained as a solution of a Dirichlet problem
with Bessel functions of zero order { ) (x)=J, (/Inx)} where

eigenvalues A, are positive roots of equation J, (AL)=0.

The squared norm of eigenfunctions can be calculated as

2
v, =L (4,L)

v,n v+l
2

Then expansion of function f (x) in Fourier-Bessel series has the form
L

ijV (ﬁnx)f(x)dx

0

Tl (A1)

f(x): zan']l) (ﬂnx)’ Where an :7
n=1
(it is also known as the Hankel series (1869)).

Consider now expansion of the function f(x)=1-H(x—1), x€[0,3] in
the Hankel series of order v = 0. Coefficients are

_0 ’ _J](/ln) I _2 7, (4)
! N, A, N;, L 2J](4L)

and the expansion becomes

2 J,(4,) 7y (4,x)

(=23

9= AJ7(34,)

This example can be illustrated with a Maple presentation (SF-7.mws)

Example 4 (Il Neumann boundary condition)

Consider an orthogonal set obtained as a solution of the Neumann
)

problem with Bessel functions y")(x)=J,(1,x) where eigenvalues

A, are positive roots of the equation
-, (/IL)+%JV (/1L) =0 (A, =0 isalso an eigenvalue for v=0)

The squared norm of eigenfunctions can be calculated as

2 2 5
N, Z%[l—#]ﬁ(ﬂnm and [Njﬂ :L?]
Fourier-Bessel series:
L
» _[3(«]0 (ﬁ,,x)f(x)dx
f(x)=q, +Zan%(10) (x), where a, =2 —
n=1

f(x) = ianyfl‘/) (x) s where 5
n=1 N
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Consider now expansion of the function f (x) =1-H(x-1), xe [0,3],

v=0:

3

dex

_0 -4

a, = N020 9

3

.([xJ,,(ﬂnx)dx_ , J](ﬂ'n) P J[(ﬂ'n)
K 2 A (ML) 9 AIZ(4)
Maple solutions: v=0  SF-I-2-0.mws

v=1 SF-1-2-1.mws

Example 5 (Il Robin boundary condition)

Consider an orthogonal set obtained as a solution of the Robin problem

Y (L) " Hy(L) =0 with Bessel functions of zero order y(") (x)=1J, (4,x) where cigenvalues

n

A, are positive roots of equation

1

A, (/1L)+(H +%)JV (AL)=0

The squared norm of eigenfunctions can be calculated as

I’ H? v’
N;, = 7{7 + [1 - ﬁﬂf (4,L)

n

Fourier-Bessel series:
L

. J.xJO (ﬂnx)f(x)dx
flx) = Zanyﬁv) (x)  where a, =~

N2
Consider expansion of function f(x) =1 —H(x - ]), xe [0,3], H=2

Maple solution (for v=171)  SF-I1-3.mws
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SF-1.mws Example 3 Fourier-Bessel series 1 Dirichlet boundary condition v = order of Bessel Functions
>nu:=0;

vi=0

L=3

> f (x) :=1-Heaviside (x-1);

f(x) := 1 — Heaviside (x — 1)

Characteristic equation:
>w(x) :=BesselJ (nu,x*L) ;

w(x) := Bessell (0, 3 x)

>plot(w(x),x=0..10);

I:Il'-\.f -

X

Eigenvalues:
> lambda:=array(l..200);

A =array(1..200,[ ])

>n:=1: for m from 0 to 50 do
y:=fsolve (w(x)=0,x=m/2.. (m+1)/2): if type(y,float) then
lambda[n] :=y: n:=n+1 fi od:
>for 1 to 2 do lambda[i] od;
0.8016085192

1.840026037

>N:=n-1;n:="n'":i:="1{"mm:="m':y:="y
N =24

Eigenfunctions:

» vy[n]:=BesselJ(nu, lambda[n] *x) ;
y, = BesselJ (0, A x)
Squared Norm:
>NY [n] :=int (x*y[n]"2,x=0..L) :
NY [n] :=subs (BesselJ (nu, L*lambda[n])=0,NY[n]) :

Fourier-Bessel coefficients:
» a[n]:=int (x*y[n]*f(x),x=0..L)/NY[n];

2 Bessell(1, 4 )

a = —
" 9% Bessel (1,32 )"
Fourier-Bessel series:
>u(x) :=Sum(a[n]*y[n],n=1..N);
24 (9 Bessell (1,2 ) Bessell (0,2 x)
u(x) = 9 3
n=1 A, Bessell (1,34 )

>u(x) :=sum(a[n]*y[n],n=1..N):
>plot ({f(x),u(x)},x=0..L,discont=true,color=black);
] ] .lﬁl

0.5
0.4

A Y
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Orthogonal sets for annular domain
L, <x<L,

a\
-

»
|

L,

Equation for eigenvalues A, :

Consider BE in the finite circle
xzy"+xy’+(/12x2 —vz)y =0, xe (L],LZ)
with homogeneous boundary conditions:

{—klﬂwjy} =0 H, =
d‘x x=L;

{kzg—i-hzy} =0 H, =
X x=L, 2
The general solution is given by

y(x) = CJJV(/bC)"' Czyv(/?"x)
A BVP for BE in the finite domain according to the Sturm-Liouville
theorem generates an infinite set of eigenvalues A, and corresponding
eigenfunctions y, (x) orthogonal with the weight function p(x): x. A

particular form of the orthogonal set depends on the type of boundary
conditions.
Consider a case when both boundary conditions are of Dirichlet type:

Example 6 (Dirichlet-Dirichlet boundary conditions)

Boundary conditions:
y

x=L;

=0

x=L,

y
Apply boundary conditions to the general solution of BE:

¢, (ﬂlﬁ)"‘ .Y, (ﬂ'LI) =0

e, (/ILz)"' Czyv(ﬂLz): 0
This is a homogeneous system of two linear algebraic equations for c,

and c,. Rewrite it in the matrix form

iy vile)-[o

We are looking for non-trivial solution of BVP, i.e. both coefficients in
general solution cannot be zero

¢ 0
%
c, 0
A homogenecous linear system has a non-trivial solution only if the
determinant of the system matrix is equal to zero:

det[j:(ji“:; YV(,1L2 )} = J, (ALY, (AL,) = J, (AL, )Y, (AL,) = 0

The roots of this equation yield the eigenvalues A4, for which BVP has
non-trivial solutions y, (x) (eigenfunctions). Oscillatory property of
Bessel functions provides an infinite set of eigenvalues A, and

corresponding eigenfunctions are
Y (x) = cI,nJv (ﬂ’nx)-'- CZ,an (/1,1)6')
Determine now the coefficients ¢,, and c¢,, from a system where

eigenvalues are substituted
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s KIEH

Because a linear system has a singular matrix, solutions for ¢,, and c,,

are linearly dependent and can be determined just from one equation, let it
be the second one
cln v(ﬂ’ L )+CZn v(ﬂ“ L )

one of the unknowns in this equation is a free parameter, choose

c —; then ¢ —_—]
b JV (ﬂ’nl?) ’ e Yl/(ﬂ“nLZ)

Then eigenfunctions have the form:
J,(Ax)  Y,(2,%)

Eigenfunctions y,(x)= AEN? )_ VL)
v\""'n"2 v\""'n"2

The norm of eigenfunctions is given by:
L
NG = ol
L
L 2
=L{L%ﬂ_ﬂ%ﬂ}ﬁ
L4 AL) Y,(,L,)

1
J(,1L)

JxJ (A, %)dx + ———— JxYZ (A, )dx —
Yv( n 2

! ij X, (4, x)dx

7Ly, (L)

=... express interms of J

IREREE

Summary: For an annular domain with boundary conditions:
Moy, =0

x=L;

=0

x=L,

Y

Eigenvalues A, are positive roots of the characteristic
equation
Jv(ﬂ’Ll)Yv(ﬂ‘LZ)_JV(MZ)Yv(ﬂ’Ll): 0
The eigenfunctions are
V, (X) — Jv (ﬂ’nx) _ Yv (ﬂ’nx)
Jv (A’HLZ) Yv(ﬂ’nl’z)
Fourier-Bessel series:

10)=Xa,,()
jxy,, x)dx IxJ Ax x)dx

0
where a, = Yz
v.n
Ixyn X )dx
0

Maple examples: v=0  SF-AD-1-0.mws
v=1 SF-AD-1-1.mws

L,=2.L=5 f(x)=1-H(x-3)
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L,

e
w

x=1L, - 01/1[ v+l (AL )
x=1L, 01/1|: v+](ﬂ‘L )
x=1,

x=1L,

/1; J, (AL, )} - czz[ L)+

Consider a case when both boundary conditions are of Robin type:

Example 7 (Robin-Robin boundary conditions)  SF-5.mws
Consider BE in the annular domain
xzy"+xy'+(/12x2—v2)y=0, e(LI,LZ)
with homogeneous boundary conditions:
Yyl =0 H =M
dx x=L k)
x=L;
dy h
|: 2 $34 :| . 2 i,

The general solution is given by
yx) =, () + .Y, ()
The derivative of the general solution (use chain rule and differential
identities)
d

ay(x)=cjﬂ{ Sy (25)+ 2, (ﬂx)}czﬂ{ Voo (Ax)+—¥, (ﬂx)}

Substitute into boundary conditions:

YV(A’LI):| + c1H1Jv(/1L1)+ czH1Yv(ﬁL1):

1 1

27, L, ):|+c2/1|: Y., (AL, )+

Collect terms

Yv(ﬂl‘z):| +C1H2Jv(ﬂL2)+czH2Yv(/1L2): 0

2 2

1

c,{/UV” (AL,)+ [H, - LL,]J (AL, )} + Cz|:ﬂYv+1 (AL,)+ [H, - Li]Y (AL, )} =0
c{ A, (AL, )+ [H +Ll2]JV (AL, )} + c{ AY,,,(AL,)+ [HZ —LLJYV (AL, )} =0

Denote:

| -1, )+ [Hz b))

2

Then a system for coefficients has the following matrix form:
dz 4y |6 0
A necessary condition for a system to have a non-trivial solution is
a, a
de t|: 11 12 :| — 0
ay Ay

it yields a characteristic equation for values of the parameter 4 for which
the BVP has a non-trivial solution:
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Equation for eigenvalues A, :

Eigenfunctions:

1 2

{ym(mp (- L )} {_ m,(uz){m +LL)YV(/1L2 )}

- {/IYM (AL,)+ (H, - LLIJY (AL, )} {— A, (AL, )+ (HZ —LV—JJV (AL, )} =0

The positive roots of this equation provide an infinite set of eigenvalues
A, - Then for the determined eigenvalues 4, , coefficients ¢,, and ¢, ,

can be found from one of the equations of the system (choose the second
one):
a,c;+ay,c, =0
One of the coefficients can be taken as a free parameter, choose
1 1

¢, =—,then ¢, =—

as asz
With  determined coefficients, solutions of the BVP y,(x)
(eigenfunctions) have the form:

b)) = J,(4,x) Y,(4,%)

A1n Arn

- ﬂnYw/ (’1an)+ [Hz - ZJY‘/ (/Ian ):l

2

The norm of the eigenfunctions is determined by the integral
L,

N. = [l (x)ax
Ly

Fourier-Bessel series:

119)=Lan ()

L

[tk ol e)rtop

where a = =
n L, N2
2 v,n

[ v (x)ax

L
Maple example v=0 = SF-AD-9-0.mws

v=1 SF-AD-9-1.mws

L,=2,L,=5
H, =2, H,=3
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5.7 Legendre Functions

1. Legendre Equation

2. Solution of Legendre Equation

(change k =k —2 in the first term)

(

»‘MS

e

—xz)ik(k—l)akxkfz —2xikakxk7] +n(n+1)
k=2

>

Separation of variables of the Laplacian in a spherical coordinate system
yields a group of ODE one of which has the form

[1-x2 )] +[n(n +1)- ]’_”; }y —0

where m and n are separation constants.
This equation is called Legendre’s associated differential equation.
Solution of this equation includes Legendre’s associated functions of

degree n and of order m of the 1% and the 2™ kind P"(x) and Q" (x).

When m=0 (in a case when the Laplacian does not depend on the
variable ¢ ), equation is called the Legendre’s differential equation

[(I -x’ )y'] +n(n+1)y=0
Solution of this equation include Legendre’s functions of degree n of the
1*' and the 2™ kind P, (x) and Q, (x).

Consider the Legendre differential equation rewritten in standard form
(]—xz)y"—2xy'+n(n+])y=0 xXeR

This equation has two singular points x =+/, all other points are ordinary

points. We will apply a power-series solution method around the ordinary

point x=0 (the interval of convergence for this solution is (—1,1 ) ).

Assume that the solution is represented by a power series
< k
y= Z a,x
k=0

then derivatives of the solution are

0
k-1
y' =D ka,x
=1

y'= ik(k—])akxk_z
=2

Substitute them into equation

k _
ax =0

Ms

k=1

=
Il

0

k(k—])akxk’z —ik(k—l)akxk —iZkakxk +n(n+])iakxk =0
k=1 k=0

k=2

k_
ax" =0

NgE

k+1)(k+2 akuxk—oC k(k—1)a.x" - > 2ka,x* +n(n+1
=2

k=1 k=0

2-1-a, +2-3-a3x—2-a,x+n(n+1)a0 +n(n+1)a,x+ i{ak[—k(k—])—2k+n(n+])]+(k+])(k+2)ak+2}=0

k=2

n(n+1)a0+1-2-a2+{2-3-a3+[n(n+1)—2]a1}x+ i{ak[n(n+])—k(k+I)]+(k+])(k+2)ak+2}=0

k=2

Using the comparison theorem, determine the relation for coefficients:
_ —n(n +1 ) 4
1-2
_2—n(n+1) (n—1)n+2)

a,
2.3 2.3

2 0

a; a,
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B k(k+])—n(n+1)

Apy =

4 :—(n—k)(n+k+l)
(k+1)-(k+2) " (k+1)-(k+2)
Coefficients a,and a, are arbitrary, consider them to be the parameters

a, k=23,..

for the general solution and collect the terms corresponding to these
coefficients, then the power series solution of the Legendre Equation
becomes

x’ -

n(n=2)(n+ D) n(n—z)(n—4)(n+1)(n+3)(n+5)xﬁ+”}

6!

7!

a {x— (n—])(n+2) e (n—])(n—S)(n+2)(n+4)x5 B (n—])(n—3)(n—5)(n+2)(n+4)(n+6) o+ }
; 5/

=a,L,, (x)+ a,L,, (x)

n=>0
n=1
n=2
n=23
Choose

Choose a sequence of non-negative values of n=0,,2,.. then
corresponding solutions are (note, that in the solution all terms except for
finite number alternatingly disappear: if n=2k is even then in the first
series all terms with multiple (n - 2k) disappear, if n=2k+1 is odd then in
the second series all terms with multiple (n—Zk —1) disappear, and they
become the finite polynomials)

L, (x) L,, (x)

4o a,L,, (x)

al)Ll,l(x) a;x

00(1_3x ) a,L,, (x)

aoLu(x) a{x—;xjj
a(,:(—])%n—! 1:(_1)% (n+1)

2 2
PL n—]l n+1/
2 2

Then Legendre functions of the 1* kind for different values of parameter n
generate the following set of polynomials

P,(x)=1

Pl(x)zx

Pz(x):gx2 —é
Pj(x)zng —%x

P4( ):%x4 —145 x’ +%

which are called Legendre polynomials. Because Legendre polynomials
are solutions of the separated Laplace equation in spherical coordinates,
they are also called spherical harmonics (and the method of solution in
terms of Legendre functions is called correspondingly the Method of
Spherical Harmonics). Recall that this system of polynomials up to scalar
multiple was also obtained from orthogonalization of the linear

independent set of monoms {I,x,xz X } on the interval [-1,1].
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Recurrence formula

Rodrigues’ formula

Orthogonality of Legendre polynomials

Fourier-Legendre series

Integral transform

(n+1)P

n+l

(x)=(2n+1)xP, (x)-nP,_, (x)

P(x) =L (v -ay

C 2"t dx?

Legendre polynomials are orthogonal in the interval [—1, 1 ] with the

weight function p(x) =1

s 0 m#n
[ B (x) B, (x)x =
,] 2
=n
2n+1

Legendre polynomials can be used for expansion of the function f (x),

x € [-1,1] in the Fourier-Legendre series:

where expansion coefficients are

1

fromtas
c, = W = (n 3 Ejl[f(x)Pn (x)dx

-1

Example 8 (expansion in Fourier-Legendre series (spherical harmonics))
f(x) = H(x) xXe [—],]]

Maple Solution: SF-8.mws

10)= 5ok o

n=0

The integral transform based on the Fourier-Legendre expansion
7, = 70K (el

with inverse tra;lsform
1= 2 7.K, ()

where the kernel of the integral transform is defined as a normalized
Legendre function

K,(x)= \/EP” (x)
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SF-8.mws Example 8 Fourier-Legendre Series

>restart;
>with (orthopoly) ;
[G,H,L,P,T,U]

>for n from 0 to 6 do P(n,x) od;

63 5 35 5, 15
Sx 4x 8x
5 231 , 315 , 105 ,
"6 16 16 T16

> f(x) :=Heaviside (x);

f(x) := Heaviside (x)

Fourier-Legendre coefficients:
> c[n]l:=(n+l/2)*int (£ (x) *P(n, x) ,x=-1..1);

1
c, = (n+ %J jo P(n,x) dx

Fourier-Legendre series:

> u(x) :=sum(c[n]*P(n,x),n=0..10);

218295 315315 ; 1702701

1
) =5+ 65536 ¥ 16384

i 984555x7 N 1616615x
32768 16384 65536
> plot ({f£(x),u(x)},x=-1..1);

9

0.8
0.

Tos gz O .' .'

>u(x) :=sum(c[n]*P(n,x),n=0..100) :
>plot ({f(x),u(x)},x=-1..1)

’
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The Best Approximation by Polynomials

Consider a vector space of square integrable functions L, [—1,1] . The span of all

polynomials of order 7 is a subspace of L,[~1,1]. Callit 7, .
Let f(x)er, and let
fi(¥)=2e.B,(x)
k=1

be the n” partial sum of the Fourier-Legendre expansion of the function f (x) in

[-1.1].

Then f, (x) provides the best approximation of the function f (x) by the n”
order polynomials, i.e. function f, (x) is the closest to the function f(x) among

the functions in 7, in the sense that it minimizes the distance

1

|f (x)=p, ()| =(f=p0f=p)=[(f-p.) ax

-1
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Graphs of Legendre polynomials

Legendre-1.mws  Legendre polynomials

>restart;
>with (orthopoly) :

>plOt({P(OIX)IP(IIX)IP(2IX)}IX:_lool);

>plot ({P(3,x),P(4,x),P(5,x)},x=-1..1);

1_
P, ]
3 0.o P,
P, .57

14

>plot ({P(6,x),P(7,x),P(8,x)},x=-1..1);
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5.8 Exercises:

1) Show

sin x5(x —nz)=0
sinxd'(x—nx)=(=1Y"8(x—nx)

(by multiplying both sides by an arbitrary differentiable function and
integrating)

2) Show

15(3“ 6)f (et = (; 2)

In general

Tmé‘[g(x)lf(x)dx = |§'§§{;§| where g(x,)=0

3) Solve the IVP and sketch the solution curves (use Maple and Laplace
transform):

y'=y=(-2H(-2)  »0)=0 y(0)=0
Y42y +y=38(-2) y0)=1 y(0)=1
4) Sign function is defined as

1 x>0
sgn(x)= _1 x<0

a) Express sgn(x) in terms of Heaviside step function A (x)

b) Express Heaviside step function A (x) in terms of sgn(x)
c) Calculate isgn(x)
dx

d) Sketch the graph of sgn(x -3 )

5) Investigate convergence of the Bessel function J, (x) using the ratio
test (see supplemental materials)

6) Use term-by-term differentiation (why can we do it?) to show

Ly (x) ==, (x)
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7) Solve in terms of Bessel functions
xzy"+(x—2)y =0
8) Finish Examples 4 and 5 in section 6.12 Orthogonality of Bessel

Functions
9) Hermite’s differential equation with parameter A is

V'=2xy'+ Ay =0 xe(—oo,oo),/leR (HE)

a) Solve the HE by the power series method

b) Consider two linearly independent solutions
¥ (x) =

¥, (x) =
which include parameter A

c) If 4 is anon-negative even integer, A =0,2,4,...,2n,..., then the series
terminates, and one obtains, alternating for y, andy,, polynomials of

degree n, which are called Hermitian polynomials H, (x) . Write them in

traditional form in which the coefficient of x" is equal to 2" (the second
solution is not polynomial).

d) Rewrite HE in self-adjoint form and determine the weight function

w(x)

e) Check if the HP are orthogonal with the weight function w(x)

over (—0,):

THm (x)H, (x)w(x)dx=0 if m=n

—0

f) Give an example of function representation into Fourier-Hermite series



Chapter 5 SPECIAL FUNCTIONS
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Lom= () = 1(a)41(3)

LR=BF= oo
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