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7.1 Normed Vector Spaces

1. Euclidian vector space R”

2. Vector space C(é)

3. Vector space L,(G)

We will start with some definitions and results from the theory of normed vector
spaces which will be needed in this chapter.

The n-dimensional Euclidian vector space consists of all points
R" = {x =(x,.%,,0x, )| X%, € R}

for which the following operations are defined:

Scalar product (x,9) =Xy, + X0, +..4+X,, x,yeR"
Norm || =\/(x,x) :\/xl2 +X; F X

Distance p(x.y)=|x-y|

Convergence /{Ti x, =x if ££r){)10|x—xk| =0

Vector space C(é) consists of all real valued continuous functions defined on

the closed domain G — R":

C(C_}) = {f(x) :DcR" - R| conlinuous}

Norm "f"c = max f(x)|
Convergence lim f, = 1 if lim |-l =0

The space of functions integrable according to Lebesgue (see Section 3.1)

LZ(G)={f(x) :GcR" —><c|£|f(x)|2dx<oo}

Inner product (f.g)= If(x)g(x)dx
Norm U1, =7 0) = ]l o)

The following property follows from the definition of the Lebesgue integral

J' f (x)dx

G

< £|f(xldx

4. Cauchy-Bunyakovsky Inequality

(7.2 <[71, e, forall £, L,(6)

Proof:

If f,geL,(G), then functions |f], |g| and any combination | f|+ flg| are
also integrable and therefore belong to L, (G).
Consider

|f]+|g|€ L,(G), A€ R for which we have
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0< [(f]+ Ag]) dx = [|f] o+ 24| fghiox+ 2° [ |g]
G G G G

The right hand side is a quadratic function of 4. Because this
function is non-negative, its discrimenant is non-positive

] e gyt
] o

(7.2 <l el

from which the claimed inequality yields

(&)< [7L, el
because |(f. g) =‘ [ fzax| < [| fgldx < [ | £ glax. n
G G G
5. Minkowski Inequality (3" property of the norm)
7 +el., <[71; +el, forall f,g€L,(G)
Proof:
Consider |f+g|. =(f+g/f+g)
=(/. )+ (1 )+ (g f)+(g.2)
<|71 +(7. )+l ) +lell
<|71; + 20, Nl +lell;  from C-B imequality
=71, +lel.y
Then extraction of the square root yields the claimed result. |

Note that the Minkowski inequality reduces to equality only if functions f and

g are equal up to the scalar multiple, f =ag, o € R (why?).
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7.2 Linear Operators

Let M and N be two linear normed vectors spaces with norms ||||M and ||||N,

correspondingly. We define an operator L as a map (function) from the vector
space M to the vector space N :

L:M—>N

Introduce the following definitions concerning the operators in the vector
spaces:

Operator L : M —> N is linear if Llof + fig)=alf + fLg
forall f,geM andall o, R

Operator L : M — N is continuous if from fi—>finM
follows Lf, = Lfin N

(the image of the convergent sequence
in M is a convergent sequence in N )

Operator L : M — N is bounded if there exists ¢ >0 such that
I, <d7ll,, forall feMm

The norm of operator L : M — N can be defined as the greatest lower bound
of such constant ¢

24K
L|| = sup ———
=2,
Theorem 7.1 If operator L : M — N is bounded then it is continuous

Proof:

Let operator L:M — N be bounded, then according to the definition there
exists ¢ >0 such that ||Lf||N < c||f||M .

Let f, > f in M . That means that I{im"fk —f"M =(. From the definition of

the limit it follows that for any &>0 there exists K e N such that
If =11, <e forall k=K .

To prove the theorem, show now that Lf, >Lf in N or that
I{im"Lfk —Lf"N =0. We have to show that for any £ >0 there exists K, € N

such that ||Lfk —Lf"N <E forall k2K, .

Choose ¢ = E , then
c

s =], =[Lh =), <dlfi - 11, <c.§: E forall k2K . n
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7.3 Integral Operator

Consider an operator called an integral operator given by the equation

Kf =[K(x,p)f(W)dy  xeGc R

Obviously, that integral operator is linear.

Function K (x, y) is called a kernel of the integral operator. We will consider
kernels K(x,y)e L,(GxG), therefore

J.“K(x,ylzdxdy< 0
GG

In a case of G R, the domain G =(a,b), where a,b can be finite or infinite.

Theorem 7.2 Let K be the integral operator with a kernel K(x,y)

continuous in [a,b]x[a,b]. Then operator K is bounded,
and, therefore, continuous. Moreover:

1) K : L,(a,b)> Cla,b] |Kf||. <M~b-a|f|, for feL,(ab)
2) K:Ly(a,b)>Ly(ab)  |Kf|,<M(b-a)f], for feL,(ab)

3) K : Cla,b]— Cla,b] |Kf], <M(p-a)|f], for feClab]

Proof:

Since K(x,y)is continuous in the closed domain [a,b]x[a,b], there exists
M >0 such that M = max K(x,y].

X,ye a,b]

1) Let felL,(a,b). Then because function K(x,y) is continuous in
[a,b]x[a,b], the function (Kf)x) is continuous in [a,b], and, therefore
K : L,(a,b)— C[a,b]. Consider

|7l = max

X€]|

(5] = maxlf K)ol

= Z[leﬁ (K(x, ) f(y )l

< max.
xe[a,b]

K || 5 || f || ,  (from Cauchy-Bunyakowski inequality)

b

12
2
, max) J|K(x ) dy}

a

<[

rh 12
max JAMZdy}

2 xe[u,b]

<[

=Mb-d|/],
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2)

5 12
o, =X =t a]

5 12
dx]

e

T )f (3 )y

M 12
200 12
SHWLWLﬁ}

a a

1] ﬁK(x,ywadx]’”

b(b 12
<.l | JMzdy]dx}

Ye 12
<, fo o

= M|f],(b-a)

3) Exercise
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7.4 Integral Equations

Integral equations are equations in which the unknown function is under the
integral sign. The typical integral equations for unknown function u(x),

xeGc R" (in this chapter , we consider x (a,b) C R) include integral term
in the form of integral operator with the kernel K(x, y)

Ku = [ K(x, y)u(y)dy

The main types of integral equations are the following:

I Fredholm integral equation 1) Fredholm’s integral equation of the 1¥ kind:

jK (x, yu(y)dy = f(x) Ku=f non-homogeneous eqn
J.K X, y)u y)dy 0 Ku=0 homogeneous eqn

G

2) Fredholm’s integral equation of the 2™ kind: A € C is aparameter

= /LJK(x,y)u(y)dy + f(x) u=AKu+ f non-homogeneous eqn
G

= /LJK(x,y)u(y)dy u=AKu homogeneous eqn
G

I Volterra integral equation Let G = (0, a) cR.
K(x, y) is called a Volterra kernel if K(x,y)=0 for 0<x<y<a

y

»
»

0 a x

1) Volterra’s integral equation of the 1* kind:

[ K, vl = £(x)

2) Volterra’s integral equation of the 2™ kind:

X

u(x)= 2] K(x, ylu(y)dy + £ (x)

0

III Integro-Differential Equation includes an unknown function under the integral sign and also any derivative of
the unknown function. For example:

% —ulx)+ JG'K(x,y)u(y)dy+f(x)

An important representation of the integro-differential equation is a Radiative
Transfer Equation describing energy transport in the absorbing, emitting and
scattering media (analogous equations appear in the theory of neutron transport).

Some other types of integral equations will be considered in the Section 8.2.4.
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Solution of integral equation

Eigenvalue problem

is any function u(x) satisfying this equation:
u=AKu+ f non-homogeneous equation

u=AKu homogeneous equation

The value of the parameter A € C for which the homogeneous integral equation
has a non-trivial solution u € L, which is called an eigenvalue of the kernel

K(x, y), and the corresponding solution is called an eigenfunction of this
kernel.

We will distinguish eigenvalue problems for the integral kernel (integral
equation):

u=AKu

and for the integral operator
Ku=—u

The eigenvalues of the integral operator are recipical to eigenvalues of the
integral kernel, and eigenfunctions are the same in both cases.
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7.5 Solution Methods for Integral Equations

1. The Method of Successive Approximations for Fredholm’s Integral Equation
For the integral equation

u=AKu+ f

the following iterations of the method of successive approximations are set by:

Lemma 7.1 u, (x): Zn:/‘tkka where K* = K(K(-~~K))
k=0 k times

Proof by mathematical induction (assume that the formula for # is true):

n=0 uo(x) :AOanzf(x) confirmed
n=n+1 u,, (x) =AKu,+f by definition
= AK[Z ﬂkkaj +f by assumption
k=0
=f+Y. MK linearity
k=0
n+l
=f+D K" f change of index p =k +1
p=1
n+l
=K [+ A’K"f
p=1
n+l
=Y VK" f
p=0
n+l
=Y AK'f change of index p=4 M
k=0
Neumann Series z AKEf is called to be the Neumann Series
k=0
Estimation of iterations "K "f ”C = "K (K iy l|c
<M(b- a]|1<"-’ f"C Theorem 7.2 (3)

w - k],

<M"(b-a)|f].
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SAK| <l S e -a)
k=0 c k=0

= "f "C i H/1|M (b a)]k geometric series

k=0
. 1
converges if |/‘L| < m
_ e
1-|AM(b-a)
1

Therefore, the Neumann series z AK* f converges for |/I| < .
k=0 M (b — a)
Denote the sum of the Neumann series as a function u(x):

u(x):i/ikka

Show that this function satisfies integral the equation u = AKu+ f . Consider

iterations

u, (x): AKu, ,+ f
then

ulx) = lij}}c u, (x)

=K limu, ,(x)+ f

71

And, recalling estimation, ||u(x]|c < m

Show that this solution is unique. For that, it is enough to show that the
homogeneous equation u = AKu has only a trivial solution. Indeed, if

u, =AKu,,then u, € C[a,b] and , according to Theorem 6.2 3),

o]l <|2{p (B =)l .. then

1 |Ap (6~ a)]u, | <0

! a) , []—|/1|M(b—a)]> 0 and, therefore, "u(,"C =0. That

M(b

yields, that u (x)=0 forall x e [a, b]. So, only the trivial solution exists for the

Because |A| <

homogeneous equation.

The non-homogeneous equation u = AKu + f can be rewritten in the form

(I-2Ku=f
where [ is an identity operator
Then solution of this equation can be treated as an inversion of the operator

u=(1-2K)"f

Therefore, if |A| < , then there exists an inverse operator (1 - AK )_1 .

1
M(b—a)

The abovementioned results can be formulated in the following theorem:
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Theorem 7.3

Fredholm’s integral equation
u=AKu+ f

with |/1|< ] and continuous kernel K(x,y) has a

1
M(p-a
unique solution u(x)e Cla,b] for any flx)e C[a,b].
This solution is given by a convergent Neumann series

u(x):i/ikka

and satisfies

171
Wl = pp—a)
If |ﬂ|<;, then there exists an inverse operator
M(b—-a)
(1-2K)"

Conditions of Theorem 7.3 are only just sufficient conditions; if these conditions
are not satisfied, solution of the integral equation still can exists and the
Neumann series can be convergent.

Example 7.1 Find the solution of the integral equation
1
=e* +—[uly)dy
€y
by the method of successive approximations and in the form
of the Neumann series.
Identify: K(x,y)=1 fx)=e* b-a=1
M=1 A= !
e
.. 1 1
Check condition: |A| < _r 1 <—x1

1) iterations:

M(b—a) e 11

! I

_[[ J’)dy =€"+é£e"dy =e‘+é[e‘]f) :e*+1_é
1 1

! ,y)dy =ex+££(e“+]—£]dy :eMFI_eL2

u,(x) =e"+= Ju y)dy =e’ +1——
e"

€y

Then solution of the integral equation is a limit of iterations

ulx)  =limu,(x) :lim(eer]_Lnj g

e

This result can be validated by a direct substitution into the given integral

equation.
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2) Neumann series:

u(x):ilekf = f(x)+ 'K f+ 2K [+
fl)  =e

Kf :jexdy =e—1

K*f z_l[(e—l)dy =e—1

K"f =e-1

Then the Neumann series is

u(x) =ex+l(€_1)+L2(€—1)+---+in(e—])+...

e e e
S ) ) y
n=0 €

=e* —e+1+(e;§)

-2

e

=e" —e+l+e
=e" +1

So, the Neumann series approach produces the same solution.
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2. The Method of Successive Substitutions for Fredholm’s Integral Equation (the Resolvent Method)

Iterated kernel Let integral operator K has a continuous kernel K (x, y), then define:
Repeated operator K" = K(K"” ): (K ! )K n=23,..
It has a has a kernel K, (x,y) j X,y )Kn ; y y)dy
G
Indeed, (Kf )x) = [ K(x,y)f (v)dy
G
(k7)) =K (&)

iny){jKy iy )dy}dy’

g

Kernel K,(xy)  =[KGy K, Oy

Q'—.

[ Ky )K (", y}’y} S()dy

G
=K, (e K (', y)dy'
G

is called an iterated kernel. Kernels K, (x,y) are continuous, and if domain
G =(a,b), then

K, (x.y)<M"(b-a)”
Resolvent Function defined by the infinite series

R(x,3,2)= Y 24K, (x, )
k=0

is called a resolvent.

Theorem 6.4 Solution of integral equation u = AKu+ f with continuous
kernel K(x, y) is unique in C[a,b] for |/1| < m , and for
any f € C[a,b] is given by

b
u(x)= f(x)+ 2] R(x,y, 2)f (v)dy
i.e. there exists inverse operator

M(b-a)

(I-2K)" =1+aR, |4|<
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Example 6.2 Find solution of integral equation

23 1
ulx) ===+ [ou(y)dy
0

by the resolvent method .
. 23
Identify: K(x,y): xy f(x):?x b-a=1
M=1 a=1
8
.. 1 1
Check condition: || < —<—x<I
Mp-a) 8 11
Iterated kernels:
K(xy)  =w
1 1 '3 !
Ky(xy)  =[KGy KOy =[xyydy = xy{T}
0 0 0
h Nelor Vo [ x|y
Ki(oy) =Koy KOy =[Sy ===
0 0
Xy
Kn ()C, y) = 3n71
Resolvent:

R(x,y,/l) ZZ/V‘KM(XJ)
k=0

Solution:
) = () A] R AY (M

—£x+ilﬁx 23 d
6 8023y6yy

23 1 ¢,
=—x+—x|y°d
i {y y
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3. The Method of Successive Approximations for the Volterra Integral Equation of the 2™ kind

Consider the Volterra integral equation of the 2™ kind (note that equation of the
1 kind can be reduced to the 2™ kind by diffrerention)

u(x) = ﬂ]'K(x,y)u(y)dy+f(x)
0
where K(x, y) is a continuous Volterra kernel.

The method of successive approximation is defined by the following iterations:

uo(x) = f(x)

u,(x) =S VK'f  =iKu, , +f
k=0

Theorem 6.5 The Volterra integral equation of the 2™ kind
u(x) = ﬂjK(x,y)u(y)dy+f(x)
0
with continuous Volterra kernel K(x,y) and with any 4 e R

has a unique solution u(x)e C[O,a] for any f (x)e C[O,a].

This solution is given by a uniformly convergent Neumann
series

u(x) = 2/1" (kaXx)

and its norm satisfies

el <Al e

Example 6.3 Find solution of integral equation
u(x) =1+ I u(y)dy
0

by the method of successive approximations.

Identify: K(x,y)=1 fx)=1
M=1 A=1
K'f =) =1
K'f =[KeoNK Sy =[r1dy =Dl =x

S D

l
Ky K (e MK £ Y ey =j1-ydy - y_} :x?
K =[KeNe oy =[1-2d :é y?} e

K'f =X

Solution: ulx) = i A (kaXx) = ix_ =e"
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7.6 Connection between integral equations and initial and boundary value problems

1. Reduction of IVP to the Volterra integral equation

Example 7.4 Reduce IVP
u' —3x°u=0 u(0)=1
to the Volterra integral equation.

Integrate the differential equation from 0 to x:
(u'—SxZu)ix =0

(u’}lx—.xf (3x2uyx =0

0

S D,

X

u(x)-u(0)-3 j xudx =0 use the initial condition u(0)= 1

>

ulx)=1+ 3} x’udx is a Volterra equation with K(x,y)=x’
0

2. Reduction of the Volterra integral equation to IVP

Recall the Liebnitz rule for differentiation of expressions with integrals:

P ") o(x, y) db(x) dal)
ge Jlenhr = T £ e b} 2 e}

In particularly,

X

L Telyhy = gl)

dx

d i < glx,y)
— ,v)d = d ,
» l g(x, )y l . y+ g(x, x)

Reduction of the Volterra integral equation to IVP is performed by consecutive
differentiation of the integral equation with respect to variable x and
substitution x =0 for setting of the initial conditions.

Example 7.5 Reduce the Volterra integral equation
ulx)=x"+ [ (x=y) u(y)dy
0

initial value problem.

substitute x =0 to get initial condition

X 0

u(x):x3 +I(x—y)2 u(y)dy u(O):()3 +I(x—y)2 u(y)dy u(O):()

0 0
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S [l hlky w(0)=30"+ [ 2 yhohy wl0)=0
u"(x)=3x’ +2ju(y)dy u"(0)=30° +2ju(y)dy u"(0)=0

u"(x) = 6x+ 2u(x)
Therefore, the integral equation is reduced to IVP for 3 order ODE:

u"(x)=6x+2ulx) u(0)=0

3. Reduction of BVP to the Fredholm integral equation

Recall repeated integration formulas:

3t

xl, il 1 7 n-1
?[_([”'_l[?[f(tl)dtldtz”'dtn—ldtn = (n—])/'([(x_t) f(t)dt

Example 7.6 Reduce the boundary value problem
y'(x)+y(x)=x xe(0,7)
Wo)=1
y(ﬂ) =r-1
to the Fredholm integral equation.

Set y"(x)=u(x)

integrate I y"(¢)dt = Iu(t)dt
0 0

integrate J{b/’ }112 J{{[u )dt]}dtz
0 oLo
{f o
0
(x t)/( )dt repeated integration

Use the first boundary condition

Wx)=1+y(0)+ I(x 10%

In this expression, y’(O) is not known. Substitute x = 7 and apply the second
boundary condition
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Wr)=1+y(0)r+ J(n ple)ar
r-1=1+y (0} + j(ﬂ lear

Solve for y'(0)
y(0)=1-2- Lz pa

Then

W) =1k 1_é_éj(n_t),(t)dt}ﬁi(x_ty(t)dt

0

:z+x_§x_ﬂ<ﬂ_,),(t)dt+j(x_t),(t)dt

Now substitute this expression for y(x) and y"(x)=u(x) into the original

S

differential equation
u+z+x_fx_ﬂ(ﬂ_z),(t)d,+1(x_t)4(z)dz=x
u+1_£x_£} Y z)dHI (o= hle )t = 0
s (IO (SIOT
e OV (T R CH 0T
umx- 1{ [T (Y )dt} jﬁ Ml
uzgx_ub ki =M dt} {@u(t)dt
u:ix_uj{ }t)dﬁj_‘fu(t)dt

T

u—2x ]+J.t )dt—i—J. ﬂ t

T

It yields a Fredholm integral equation

u:ix_uIK(x,t)u(t)dt

T

with a kernel

t(ﬁ—x) 0<
Kw0)=1 (r—y)

T

t<x

x<t<lrm
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Exercises

1. Prove part 3) of the Theorem 6.2.

2. Classify each of the following integral equations as Fredholm or Volterra integral equation, linear or non-linear,
homogeneous or non-homogeneous, identify the parameter A and the kernel K (x, y) :

2 u(x):x+Ixyu(y)dy

b) u(x)=1+x2+I(x—y)u(y)dy
0 u(x):ex+jyu2(y)dy

d) i ) u( v )dy

e) = .[

3. Reduce the following integral equation to an initial value problem

)Xty u(y)

u(x) :x+j(y—x)u(y)dy
0
4. Find the equivalent Volterra integral equation to the following initial value problem

y"(x)+y(x)=cosx y(0)=0  y'(0)=1

V'+y=x xe(O,]) y(O)zI y(]):O
6. Solve the following integral equations by using the successive approximation method and the resolvent method:

a) u(x)=x+/1jxyu(y)dy

b) u(x):x+ cosxu(y)dy

N~
se—uly

7. Solve the following integral equation by using the successive approximation method

X

u(x):]—j(y—x)u(y)dy

0
8. Solve the following integral equations:
t
a) u(x) =sin 2t + Iu (t - s)sin (s)ds

b) u t2+Iu' "”ds u(O)zO
0



