Laplace Equation (stationary heat transfer equation) 

 

 

set of the problem                                                                                    , 

                                            

 

separation of variables      we assume that function  can be represented as a product of two functions each of single variable

                                          

                                                                                                                                        substitute into heat equatio              

                                                                                              

in this equation, left hand side is a function of independent variable x only,

and right hand side is a function of independent variable y only. 

The equality is possible only if both of them are equal to the same constant (call it ) .

 Therefore,

                                                                                    it yields two ordinary differential equations:

 and

 

solution of o.d.e.                  solution of o.d.e. depends on  form of constant :

                                       

        

                                         

  

boundary conditions                                                                                                            

                                     

start with

homogeneous b.c.              

                     choose ,   then

 

   

   

therefore, 

 

 

 

                                                                    

      

 

                                                                                ,          where 

 

                                                                               

 

                                                                                ,                  where

 

                                                                                ,                where                or           

 

                                                basic solutions:   

 

 b.c. for                             start with homogeneous boundary condition: (we already know that ), therefore the only solution

                                                                                                               

 

 

                                                      choose  ,   then                             

               

                                                                                                                              but we know values of

 

                                                                                                         

 

                                                                                                                           where

 

 

basic solutions of LE                                                      

                                                                                            

                                               

                                                                                            

                                               

 

                                                all these solutions satisfy LE and 3 homogeneous boundary conditions

and one boundary condition is left

 

any linear combination of basic solutions is also a solution

the idea is to find such combination that the last boundary condition is satisfied

so, we are looking for solution in the form

 

                                   such that

 

at                 

 

 

 non-homogeneous  b.c.    

                                

 

                                                let function  be expanded in Fourier sine series  

 

,         where

 

                                                after comparing it to solution at          we can see, that if we take

 

                                                                               

 

                                                then solution           satisfies condition    

 

 

solution of LE                                                     

 

 

 

particular case                    Let ,        then