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6-8 CARNOT PRINCIPLES   Efficiency of two Heat Engines operating between the same two reservoirs at LT  and HT  

 
 
        C1   irreversible  reversible   η η<  
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6-9  THE THERMODYNAMIC TEMPERATURE SCALE    For reversible heat engine operating between LT  and HT : 
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6-10  THE CARNOT HEAT ENGINE    The efficiency of heat engine operating on a reversible Carnot cycle between LT  and HT : 
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6-11  THE CARNOT HEAT PUMP     Carnot Heat Pump:      Carnot Refrigerator: 
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COMMENTS AND ADDITIONAL NOTES ON CARNOT CYCLE 
 
Carnot Cycle  consists of 4 reversible processes which operate between two temperature recervoirs at HT   and LT .  
      

Where HT   and LT  are temperatures according to not specified temperature scale (empirical). 
We know only that ordering of this temperature scale is such that HT  > LT   
to be consistent with the 2nd Law of Thermodynamics (Clausius statement). 

 
 
Carnot Principles    CP1  any  reversible   η η≤    Assume the opposite,   any  reversible   η η> , to demonstrate  

that violation of the CP1 yields violation of the 2nd Law. 
 

 
      CP2  reversible,1  reversible,2   η η=  From CP1, we have   reversible,1  reversible,2   η η≤    and 
                    reversible,2  reversible,1   η η≤     
 
 
 
 
Derivation of the Thermodynamic Temperature Scale (from Carnot Cycle with intermediate temperature reservoir at 0T  ) 
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Demonstrate that the temperature of the Thermodynamic Temperature Scale is the same as  
Absolute Temperature of the Ideal Gas equation of state 
 
         PV  mRT=   
 
This absolute temperature T   can be measured by the Ideal Gas thermometer by measuring V  of the fixed mass at constant 
pressure: 

         PT V
mR

= ⋅   

 
or by measuring pressure P  in the rigid tank of constant volume V : 
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(formally, then zero absolute temperature corresponds to zero volume or zero pressure (no molecules in the tank)) 
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  Consider reversible process without heat transfer (adiabatic) expansion/compression of ideal gas  (process 4 1→  ):  
 

Qδ  PdV  m du− = ⋅     differential energy balance 
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Divide second equation by the first, then the Thermodynamic temperature scale of Kelvin for Carnot cycle is obtained: 
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Dependence of the temperature of the atmosphere on the height above the sea level 
(application of adiabatic expansion of a gas) 
 
 
When air rises to the upper regions of lower pressure, it EXPANDS.  
This expansion can be considered ADIABATIC,  
because air is a poor conductor of heat. 
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Another derivation: 
Consider the Carnot Cycle operating between two temperature reservoirs (for which both LT   and HT  are the absolute 

temperature of ideal gas equation of state) for the fixed mass m  of ideal gas, and show that  L L
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Energy balance for 
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Adiabatic process  2 -> 3:   Q ( )23 3 2 W  m u u− = ⋅ −  
 
         PdV  m du− = ⋅      differential balance 
 
 
        v PdV m c dT− = ⋅     ideal gas 
 

        v
1 mRTdV  mc dT
V

− = ⋅    from ideal gas equation of state 1P  mRT
V

=  

 

        vc1 1 dV  dT
V R T

− = ⋅  

 

        
v

v

p c

c1 1 dV  dT
V c c T

− = ⋅
−

   from p vc c R= +   

 
 

        
p

v

1 1 1 dV  dT
cV T1
c

− = ⋅
−

 

        

        1 1 1 dV  dT
V k 1 T

− = ⋅
−

   p

v

c
k

c
=     specific heats ratio 

 



        
3 3

2 2

1 1 1 dV  dT
V k 1 T

− = ⋅
−∫ ∫  

 

        ( ) 32

3 2

TV k 1 ln  ln
V T

− ⋅ =  

 

        
k 1

32
k 1

23

TV ln  ln
TV

−

− =  

 

        
k 1

2 L
k 1

H3

V T  
TV

−

− =       can be obtained faster for isentropic process 

 

        

1
k 1

2 L

H3

V T  
TV

− 
=  

 
 

 
 

Adiabatic process  4 -> 1:   
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Divide second equation by the first, then 
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Conclusion: the absolute thermodynamic scale coincides with the absolute temperature scale of the ideal gas thermometer. 
 



Derivation of   
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with the help of entropy: 
 
 

( )L L 4 3Q T S S= − ⋅ −  
 

( )H H 2 1Q T S S= ⋅ −  
 
Because adiabatic processes 2->3 and 4->1 are isentropic, 1 4S S=  and 2 3S S=  , 
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Negative absolute temperature 
 
Definition of the thermodynamic temperature scale does not prohibit to choose the negative absolute temperature scale, because 
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Show that choice of the negative absolute temperature scale will yield violation of the 2nd law of thermodynamics. 
 
 
 
Zero absolute temperature – is it allowed by this definitions? 
 
 



Entropy 
 

Equation  L L
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=   looks like the …basic equation for derivation of the results for reversible machines. 

 
Yes, this equation, in fact, is fundamental for the further development of classical thermodynamics, if rewritten as 
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Quantity  Q   S
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=  is called entropy.     ‘loose definition of entropy” 

 

It is equal to transferred heat per unit temperature kJ
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Change of entropy during the Carnot cycle is zero: H L
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Entropy is a property of the system and depends on its state like other properties , , ,...P T V   
 
 
 
 
 

Nernst’s postulate:  entropy of any system at zero absolute temperature is zero. 
 
 
 
 
 
 
Differential change of entropy during the differential part of reversible process: 
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