

$$
G=1353\left[\frac{W}{m^{2}}\right]
$$

$\Omega=\frac{\pi R_{S}^{2}}{\left(S+R_{S}\right)^{2}}=6.7 e-5[\mathrm{sr}]$
a

Solar irradiation $=G \quad=\int_{2 \pi} I_{i} \cdot \cos \theta d \omega \quad \cos 0=1$

$$
=\int_{2 \pi} I_{i} d \omega
$$

$$
=I_{i} \int_{\Omega_{E \rightarrow S}} d \omega
$$

$$
=I_{i} \cdot \Omega_{E \rightarrow S}
$$

$$
=I_{i} \cdot \frac{A}{r^{2}}=I_{i} \cdot \frac{\pi R_{S}^{2}}{\left(S+R_{S}\right)^{2}}=\pi I_{i} \cdot \frac{R_{S}^{2}}{\left(S+R_{S}\right)^{2}}=E_{S} \cdot \frac{R_{S}^{2}}{\left(S+R_{S}\right)^{2}}
$$

$$
E_{S}=G \cdot \frac{\left(S+R_{S}\right)^{2}}{R_{S}^{2}}=6.3 e 7\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
$$

b
$E_{S}=\sigma T_{S}^{4} \quad \Rightarrow \quad T_{S}=\left(\frac{E_{S}}{\sigma}\right)^{1 / 4}=5787 \mathrm{~K}$
c
$\lambda_{\text {max.S }}=\frac{c_{3}}{T_{S}}=\frac{2898}{5787}=0.5[\mu \mathrm{~m}]$

