

$$
A_{A_{E}}
$$

$q_{\text {cerrh sulface,direct }}^{\prime \prime}=\left(\frac{q}{A_{E}}=q_{d i r}^{\prime \prime} \cdot \frac{A_{n}}{A_{E}}=q_{d i r}^{\prime \prime} \cdot \frac{a \cdot w}{c \cdot w}=q_{d i r}^{\prime \prime} \cdot \frac{a}{c}\right)=q_{d i r}^{\prime \prime} \cdot \cos \theta$

Solar irradiation $=q_{\text {earrh surface,direct }}^{\prime \prime}+q_{\text {earth surface, dififise }}^{\prime \prime}=q_{\text {dir }}^{\prime \prime} \cdot \cos \theta+\int_{2 \pi} I_{\text {diff }} \cdot \cos \theta d \omega$

$$
\begin{aligned}
& =q_{d i r}^{\prime \prime} \cdot \cos \theta+I_{d i f f} \cdot \int_{2 \pi} \cos \theta d \omega \\
& =q_{d i r}^{\prime \prime} \cdot \cos \theta+\pi I_{d i f f} \\
& =(1000) \cdot\left(\cos \frac{\pi}{6}\right)+\pi \cdot(70) \\
& =866+220 \\
& =1086\left[\frac{W}{m^{2}}\right]
\end{aligned}
$$

12.10

$$
\Omega_{\text {sum }}=\frac{A_{\text {coss }}}{R^{2}}=\frac{\pi D_{\text {smn }}^{2} / 4}{\left(R_{\text {Earth }- \text { ssum }}+R_{\text {Sumn }}\right)^{2}}=\frac{\pi(1.39 e 9)^{2} \cdot 0.25}{(1.496 e 11+1.39 e 9 / 2)^{2}}=6.7 e-5[s r]
$$

Solar irradiation $=q_{\text {earth surface,direct }}^{\prime \prime}+q_{\text {earrt surface, edififise }}^{\prime \prime}$

$$
\begin{aligned}
& =\int_{2 \pi} I_{\text {dir }} \cdot \cos \theta d \omega+\int_{2 \pi} I_{\text {diff }} \cdot \cos \theta d \omega \\
& =\cos \theta_{\text {incident }} \cdot I_{\text {dir }} \cdot \int_{\Omega_{\text {ane }}} d \omega+I_{\text {diff }} \cdot \int_{2 \pi} \cos \theta d \omega \\
& =\cos \theta_{\text {incident }} \cdot I_{\text {dir }} \cdot\left(\Omega_{\text {sun }}\right)+I_{\text {diff }} \cdot(\pi) \\
& =\left(\cos \frac{\pi}{6}\right) \cdot(2.1 e 7) \cdot(6.78 e-5)+(70) \cdot(\pi) \\
& =1233+220 \\
& =1433\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
\end{aligned}
$$

12.11

Solar irradiation $=q_{\text {earth surface, incident }}$

$$
\begin{aligned}
& =\int_{2 \pi} I_{i}(\theta) \cdot \cos \theta d \omega \\
& =I_{n} \cdot \int_{2 \pi} \cos ^{2} \theta d \omega \\
& =I_{n} \cdot \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta d \phi \\
& \text { integrate with respect to } \phi: \\
& \text { integrand does not depend on } \phi
\end{aligned}
$$

$$
=I_{n} \cdot(2 \pi) \cdot \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta \sin \theta d \theta
$$

$$
=-I_{n} \cdot(2 \pi) \cdot \int_{\theta=0}^{\pi / 2} \cos ^{2} \theta d(\cos \theta)
$$

$$
=-I_{n} \cdot(2 \pi) \cdot\left[\frac{\cos ^{3} \theta}{3}\right]_{0}^{\pi / 2}
$$

$$
=-I_{n} \cdot(2 \pi) \cdot\left[0-\frac{1}{3}\right]
$$

$$
=\frac{I_{n} \cdot(2 \pi)}{3}
$$

$$
=167.5\left[\frac{W}{m^{2}}\right]
$$

12.16
$E_{\lambda},\left[\frac{W}{m^{2} \cdot \mu m}\right]$

$E=\int_{0}^{\infty} E_{\lambda} d \lambda=5 \cdot(100+200+100)=2000\left[\frac{W}{m^{2}}\right]$
emissive power $=q_{\text {enitred into the given solid angle }}^{\prime \prime}$
$=\int_{\Omega} I_{e} \cdot \cos \theta d \omega$

For diffuse surface:
$I_{e}=\frac{E}{\pi}=\frac{2000}{\pi}=636.6\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]$
$=I_{e} \cdot \int_{\phi=0}^{2 \pi} \int_{\theta=\pi / 4}^{\pi / 2} \cos \theta \sin \theta d \theta d \phi$
$=-I_{e} \cdot 2 \pi \cdot \int_{\theta=\pi / 4}^{\pi / 2} \cos \theta d(\cos \theta)$
$=I_{e} \cdot 1.58$

Fraction $=\frac{I_{e} \cdot 1.58}{E}=\frac{I_{e} \cdot 1.58}{\pi I_{e}}=\frac{1.58}{\pi}=0.5$
for integration see Problem 12-9

$$
\begin{aligned}
& =\int_{\Omega} I_{e} \cdot \cos \theta d \omega \\
& =I_{e} \cdot \int_{\phi=0}^{\pi} \int_{\theta=\pi / 4}^{\pi / 2} \cos \theta \sin \theta d \theta d \phi \quad \begin{array}{c}
I_{e} \text { is diffuse } \\
(\text { does not depend on } \theta \text {) }
\end{array} \\
& =I_{e} \cdot \pi \cdot \int_{\theta=\pi / 4}^{\pi / 2} \cos \theta \sin \theta d \theta \\
& =-I_{e} \cdot \pi \cdot \int_{\theta=\pi / 4}^{\pi / 2} \cos \theta d(\cos \theta) \\
& =-I_{e} \cdot \pi \cdot\left[\frac{\cos ^{2} \theta}{2}\right]_{\frac{\pi}{2}}^{\frac{\pi}{2}} \\
& =-I_{e} \cdot \pi \cdot\left[\frac{\cos ^{2} \frac{\pi}{2}-\cos ^{2} \frac{\pi}{4}}{2}\right] \\
& =-I_{e} \cdot \pi \cdot\left[\frac{0.79}{2} \operatorname{los}^{2} \frac{\pi}{4}\right] \\
& =\left[\begin{array}{ll}
2
\end{array}\right]
\end{aligned}
$$

$$
\text { Fraction }=\frac{I_{e} \cdot 0.79}{E}=\frac{I_{e} \cdot 0.79}{\pi I_{e}}=\frac{0.79}{\pi}=0.25
$$

Energy balance:

$$
\begin{array}{ll}
q=E_{S} \cdot A_{S}=E_{S} \cdot\left(4 \pi R_{S}^{2}\right) \\
q=G \cdot A_{S+R_{S}}=G \cdot 4 \pi\left(S+R_{S}\right)^{2}
\end{array} \quad \Rightarrow \quad E_{S} \cdot\left(4 \pi R_{S}^{2}\right)=G \cdot 4 \pi\left(S+R_{S}\right)^{2} \quad \Rightarrow \quad E_{S}=G \cdot \frac{4 \pi\left(S+R_{S}\right)^{2}}{\left(4 \pi R_{S}^{2}\right)}=G \cdot \frac{\left(S+R_{S}\right)^{2}}{\left(R_{S}^{2}\right)}
$$

