$$
\begin{array}{ll}
I_{i}=I_{\text {emitted }}+\rho I_{\text {incident }} \quad & \text { intensity leaving a surface is diffuse (does not depend on direction) } \\
& \text { - it emmits diffusely } \\
& \text { - any incident radiation is reflected diffusely } \\
& - \text { surfaces are gray }
\end{array}
$$

Assumptions :

non-participating medium between surfaces (vacuum, gas)
no effect on radiation exchange between surfaces
surfaces are gray and diffuse (emit, absorb and reflect diffusely)
radiation leaving the surface is considered to be
radiation leaving directly toward (means without intervening reflections)
irradiation is uniform

$\begin{align*} & F_{d A_{i} \rightarrow d A_{j}}=\frac{\text { intercepted }}{\text { leaving }}=\frac{q_{d A_{i} \rightarrow d A_{j}}}{q_{d A_{i}}} \\ & q_{d A_{i}}=\left(\pi I_{i}\right) \cdot d A_{i} \\ & q_{d A_{i} \rightarrow d A_{j}}=I_{i} \cdot\left(d A_{i} \cdot \cos \theta_{i}\right) \cdot d \omega_{i \rightarrow j}=I_{i} \cdot\left(d A_{i} \cdot \cos \theta_{i}\right) \cdot \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}} \\ & d \omega_{i \rightarrow j}=\frac{A_{o n} \text { sphere }}{r^{2}}=\frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}} \\ & F_{d A_{i} \rightarrow d A_{j}}=\frac{\not \not X \cdot\left(d A_{i} \cdot \cos \theta_{i}\right) \cdot \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}}}{(\pi \nmid X) \cdot d A_{i}}=\frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi r^{2}} d A_{j} \\ & F_{d A_{i} \rightarrow d A_{j}}=\frac{\cos \theta_{i}}{\pi} \cdot \frac{\cos \theta_{j} \cdot d A_{j}}{r^{2}} \quad(13.0) \tag{13.0} \end{align*}$

$$
q_{d A_{i}}=\left(\pi I_{i}\right) \cdot d A_{i}
$$

$$
\begin{aligned}
& q_{d A_{i} \rightarrow d A_{j}}=I_{i} \cdot\left(d A_{i} \cdot \cos \theta_{i}\right) \cdot d \omega_{i \rightarrow j}=I_{i} \cdot\left(d A_{i} \cdot \cos \theta_{i}\right) \cdot \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}} \\
& d \omega_{i \rightarrow j}=\frac{A_{\text {on sphere }}}{r^{2}}=\frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}}
\end{aligned}
$$

$$
F_{d A_{i} \rightarrow d A_{j}}=\frac{\nmid X \cdot\left(d A_{\cdot} \cdot \cos \theta_{i}\right) \cdot \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}}}{(\pi \nmid \times) \cdot d A}=\frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi r^{2}} d A_{j}
$$

$$
\begin{equation*}
F_{d A_{i} \rightarrow d A_{j}}=\frac{\cos \theta_{i}}{\pi} \cdot \frac{\cos \theta_{j} \cdot d A_{j}}{r^{2}} \tag{13.0}
\end{equation*}
$$

$$
\begin{aligned}
& F_{d A_{i} \rightarrow A_{j}}=\frac{\text { intercepted }}{\text { leaving }}=\frac{q_{d A_{i} \rightarrow A_{j}}}{q_{d A_{i}}} \\
& q_{d A_{i} \rightarrow A_{j}}=\int_{A_{j}} q_{d A_{i} \rightarrow d A_{j}}=\int_{A_{j}} \frac{I_{i} \cdot \cos \theta_{i} \cdot \cos \theta_{j} \cdot d A_{i} \cdot d A_{j}}{r^{2}} \\
& F_{d A_{i} \rightarrow A_{j}}=\frac{q_{d A_{i} \rightarrow A_{j}}}{q_{d A_{i}}}=\frac{1}{\left(\pi I_{i}\right) \cdot d A_{i}} \cdot \int_{A_{j}} \frac{I_{i} \cdot \cos \theta_{i} \cdot \cos \theta_{j} \cdot d A_{i} \cdot d A_{j}}{r^{2}} \\
& F_{d A_{i} \rightarrow A_{j}}=\frac{1}{(\pi \nmid X X) \cdot d A_{i}} \cdot \int_{A_{j}} \frac{\not X X \cdot \cos \theta_{i} \cdot \cos \theta_{j} \cdot d A_{i} \cdot d A_{j}}{r^{2}} \\
& F_{d A_{i} \rightarrow A_{j}}=\int_{A_{j}} \frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi r^{2}} \cdot d A_{j} \quad \text { (13.00) }
\end{aligned}
$$

$$
\begin{equation*}
F_{A_{i} \rightarrow A_{j}}=\frac{1}{A_{i}} \cdot \int_{A_{i}} \int_{A_{j}} \frac{\cos \theta_{i} \cdot \cos \theta_{j}}{\pi r^{2}} d A_{i} d A_{j} \tag{13.1}
\end{equation*}
$$

$F_{A_{i} \rightarrow d A_{j}}=\frac{\text { intercepted }}{\text { leaving }}=\frac{q_{A_{i} \rightarrow d A_{j}}}{q_{A_{i}}}$
$q_{A_{i}}=\left(\pi I_{i}\right) \cdot A_{i}$
$q_{A_{i} \rightarrow d A_{j}}=\int_{A_{i}} q_{d A_{i} \rightarrow d A_{j}}=\int_{A_{i}} \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}} \cdot I_{i} \cdot\left(d A_{i} \cdot \cos \theta_{i}\right)$
$F_{A_{i} \rightarrow d A_{j}}=\frac{q_{A_{i} \rightarrow d A_{j}}}{q_{A_{i}}}=\frac{\int_{A_{i}} \frac{d A_{j} \cdot \cos \theta_{j}}{r^{2}} \cdot \nmid X \cdot\left(d A_{i} \cdot \cos \theta_{i}\right)}{(\pi \nmid X) \cdot A_{i}}$
$F_{A_{i} \rightarrow d A_{j}}=\frac{1}{A_{i}} \cdot \int_{A_{i}} \frac{\cos \theta_{j} \cdot \cos \theta_{i}}{\pi r^{2}} d A_{j} d A_{i} \quad$ (13.000)

