b

$$A_{l}$$
 is convex \Rightarrow $F_{ll} = 0$

symmetry
$$\Rightarrow$$
 $F_{12} = F_{13}$

summation rule
$$\Rightarrow$$
 $F_{I2} + F_{I3} = 1$ \Rightarrow $F_{I2} = F_{I3} = 0.5$

reciprocity rule
$$\Rightarrow$$
 $F_{21} = \frac{A_1}{A_2} F_{12} = \frac{A_1}{2A_1} 0.5 = 0.25$

c

e

 A_2

$$\begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}$$

 $\Rightarrow F_{II} = 0$ $\Rightarrow F_{I2} = I$ $\begin{bmatrix} 0 & I \\ F_{2I} & F_{22} \end{bmatrix}$ A_1 is convex

summation rule
$$\Rightarrow$$
 $F_{12} = I$

reciprocity rule
$$\Rightarrow$$
 $F_{2I} = \frac{A_I}{A_2} F_{I2} = \frac{2R \cdot L}{\pi R \cdot L} \cdot I = \frac{2}{\pi}$

summation rule
$$\Rightarrow$$
 $F_{21} + F_{22} = 1$ \Rightarrow $F_{22} = 1 - \frac{2}{\pi}$

 \Rightarrow $F_{II} = 0$ A_1 is convex

symmetry
$$\Rightarrow$$
 $F_{12} = F_{13}$

summation rule
$$\Rightarrow$$
 $F_{12} + F_{13} = 1$ \Rightarrow $F_{12} = F_{13} = 0.5$

reciprocity rule
$$\Rightarrow$$
 $F_{21} = \frac{A_1}{A_2} F_{12} = 0.0.5 = 0$