Graphical method: construct a network of isotherms and adiabates

sotherms and adiabates
are perpendicular to each other at the points of intersection

Graphical Method

1. Find lines of symmetry (to consider the smallest region)
$n=$ number of symmetric blocks
2. Sketch evenly distributed isotherms $T=$ const :
$N=$ number of lanes between isotherms
3. Sketch heat flow lines (adiabates)
to create a network with approximately square cells: $M=$ number of lanes between adiabates

4. Calculate:

$$
\begin{array}{ll}
q_{i}=q_{i}^{\prime \prime} \cdot A=k \cdot \frac{\Delta T}{\Delta x \mid} \cdot \Delta y
\end{array} L=k \cdot \frac{T_{1}-T_{2}}{N} \cdot L \quad \begin{aligned}
& \text { heat transfer } \\
& \text { from one lane }
\end{aligned}
$$

5. Calculate the shape factor:

$$
S=\frac{M \cdot L}{N}
$$

2-D conduction resistance:

$$
R_{t, 2 D}=\frac{1}{k \cdot S}
$$

6. Calculate the heat transfer rate:

$$
q=k \cdot S \cdot\left(T_{1}-T_{2}\right) \cdot n
$$

$$
q=\frac{T_{1}-T_{2}}{R_{t, 2 D}} \cdot n
$$

TABLE 4.1 Conduction shape factors and dimensionless conduction heat rates for selected systems.
(a) Shape fuctors $\left[q=S k\left(T_{1}-T_{2}\right)\right]$

System	Schematic	Restrictions	Shape Factor
Case 1	$\Gamma^{T 2}$		
Isothermal aphere buried in a semi-jnfuite medium		$z>D / 2$	$\frac{2 \pi D}{1-D / 4 z}$
Case 2 Hocizontal isobermal cylinder of length L baried in asemi-infinite medium	T_{2}	$L \leqslant D$	
			$\frac{2 \pi L}{\cosh ^{-1}(2 \pi D)}$
		$\begin{gathered} L \leqslant D \\ z>3 D / 2 \end{gathered}$	$\frac{2 \pi L}{\ln (4-/ D)}$

